xref: /linux/arch/x86/kernel/smp.c (revision f217d94fc632fece2a41030c2eebc4ed34a48b2a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Intel SMP support routines.
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *      (c) 2002,2003 Andi Kleen, SuSE Labs.
8  *
9  *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
10  */
11 
12 #include <linux/init.h>
13 
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/export.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/cache.h>
21 #include <linux/interrupt.h>
22 #include <linux/cpu.h>
23 #include <linux/gfp.h>
24 
25 #include <asm/mtrr.h>
26 #include <asm/tlbflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/proto.h>
29 #include <asm/apic.h>
30 #include <asm/idtentry.h>
31 #include <asm/nmi.h>
32 #include <asm/mce.h>
33 #include <asm/trace/irq_vectors.h>
34 #include <asm/kexec.h>
35 #include <asm/reboot.h>
36 
37 /*
38  *	Some notes on x86 processor bugs affecting SMP operation:
39  *
40  *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
41  *	The Linux implications for SMP are handled as follows:
42  *
43  *	Pentium III / [Xeon]
44  *		None of the E1AP-E3AP errata are visible to the user.
45  *
46  *	E1AP.	see PII A1AP
47  *	E2AP.	see PII A2AP
48  *	E3AP.	see PII A3AP
49  *
50  *	Pentium II / [Xeon]
51  *		None of the A1AP-A3AP errata are visible to the user.
52  *
53  *	A1AP.	see PPro 1AP
54  *	A2AP.	see PPro 2AP
55  *	A3AP.	see PPro 7AP
56  *
57  *	Pentium Pro
58  *		None of 1AP-9AP errata are visible to the normal user,
59  *	except occasional delivery of 'spurious interrupt' as trap #15.
60  *	This is very rare and a non-problem.
61  *
62  *	1AP.	Linux maps APIC as non-cacheable
63  *	2AP.	worked around in hardware
64  *	3AP.	fixed in C0 and above steppings microcode update.
65  *		Linux does not use excessive STARTUP_IPIs.
66  *	4AP.	worked around in hardware
67  *	5AP.	symmetric IO mode (normal Linux operation) not affected.
68  *		'noapic' mode has vector 0xf filled out properly.
69  *	6AP.	'noapic' mode might be affected - fixed in later steppings
70  *	7AP.	We do not assume writes to the LVT deasserting IRQs
71  *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
72  *	9AP.	We do not use mixed mode
73  *
74  *	Pentium
75  *		There is a marginal case where REP MOVS on 100MHz SMP
76  *	machines with B stepping processors can fail. XXX should provide
77  *	an L1cache=Writethrough or L1cache=off option.
78  *
79  *		B stepping CPUs may hang. There are hardware work arounds
80  *	for this. We warn about it in case your board doesn't have the work
81  *	arounds. Basically that's so I can tell anyone with a B stepping
82  *	CPU and SMP problems "tough".
83  *
84  *	Specific items [From Pentium Processor Specification Update]
85  *
86  *	1AP.	Linux doesn't use remote read
87  *	2AP.	Linux doesn't trust APIC errors
88  *	3AP.	We work around this
89  *	4AP.	Linux never generated 3 interrupts of the same priority
90  *		to cause a lost local interrupt.
91  *	5AP.	Remote read is never used
92  *	6AP.	not affected - worked around in hardware
93  *	7AP.	not affected - worked around in hardware
94  *	8AP.	worked around in hardware - we get explicit CS errors if not
95  *	9AP.	only 'noapic' mode affected. Might generate spurious
96  *		interrupts, we log only the first one and count the
97  *		rest silently.
98  *	10AP.	not affected - worked around in hardware
99  *	11AP.	Linux reads the APIC between writes to avoid this, as per
100  *		the documentation. Make sure you preserve this as it affects
101  *		the C stepping chips too.
102  *	12AP.	not affected - worked around in hardware
103  *	13AP.	not affected - worked around in hardware
104  *	14AP.	we always deassert INIT during bootup
105  *	15AP.	not affected - worked around in hardware
106  *	16AP.	not affected - worked around in hardware
107  *	17AP.	not affected - worked around in hardware
108  *	18AP.	not affected - worked around in hardware
109  *	19AP.	not affected - worked around in BIOS
110  *
111  *	If this sounds worrying believe me these bugs are either ___RARE___,
112  *	or are signal timing bugs worked around in hardware and there's
113  *	about nothing of note with C stepping upwards.
114  */
115 
116 static atomic_t stopping_cpu = ATOMIC_INIT(-1);
117 static bool smp_no_nmi_ipi = false;
118 
119 static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
120 {
121 	/* We are registered on stopping cpu too, avoid spurious NMI */
122 	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
123 		return NMI_HANDLED;
124 
125 	cpu_emergency_disable_virtualization();
126 	stop_this_cpu(NULL);
127 
128 	return NMI_HANDLED;
129 }
130 
131 /*
132  * this function calls the 'stop' function on all other CPUs in the system.
133  */
134 DEFINE_IDTENTRY_SYSVEC(sysvec_reboot)
135 {
136 	ack_APIC_irq();
137 	cpu_emergency_disable_virtualization();
138 	stop_this_cpu(NULL);
139 }
140 
141 static int register_stop_handler(void)
142 {
143 	return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
144 				    NMI_FLAG_FIRST, "smp_stop");
145 }
146 
147 static void native_stop_other_cpus(int wait)
148 {
149 	unsigned long flags;
150 	unsigned long timeout;
151 
152 	if (reboot_force)
153 		return;
154 
155 	/*
156 	 * Use an own vector here because smp_call_function
157 	 * does lots of things not suitable in a panic situation.
158 	 */
159 
160 	/*
161 	 * We start by using the REBOOT_VECTOR irq.
162 	 * The irq is treated as a sync point to allow critical
163 	 * regions of code on other cpus to release their spin locks
164 	 * and re-enable irqs.  Jumping straight to an NMI might
165 	 * accidentally cause deadlocks with further shutdown/panic
166 	 * code.  By syncing, we give the cpus up to one second to
167 	 * finish their work before we force them off with the NMI.
168 	 */
169 	if (num_online_cpus() > 1) {
170 		/* did someone beat us here? */
171 		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
172 			return;
173 
174 		/* sync above data before sending IRQ */
175 		wmb();
176 
177 		apic_send_IPI_allbutself(REBOOT_VECTOR);
178 
179 		/*
180 		 * Don't wait longer than a second for IPI completion. The
181 		 * wait request is not checked here because that would
182 		 * prevent an NMI shutdown attempt in case that not all
183 		 * CPUs reach shutdown state.
184 		 */
185 		timeout = USEC_PER_SEC;
186 		while (num_online_cpus() > 1 && timeout--)
187 			udelay(1);
188 	}
189 
190 	/* if the REBOOT_VECTOR didn't work, try with the NMI */
191 	if (num_online_cpus() > 1) {
192 		/*
193 		 * If NMI IPI is enabled, try to register the stop handler
194 		 * and send the IPI. In any case try to wait for the other
195 		 * CPUs to stop.
196 		 */
197 		if (!smp_no_nmi_ipi && !register_stop_handler()) {
198 			/* Sync above data before sending IRQ */
199 			wmb();
200 
201 			pr_emerg("Shutting down cpus with NMI\n");
202 
203 			apic_send_IPI_allbutself(NMI_VECTOR);
204 		}
205 		/*
206 		 * Don't wait longer than 10 ms if the caller didn't
207 		 * request it. If wait is true, the machine hangs here if
208 		 * one or more CPUs do not reach shutdown state.
209 		 */
210 		timeout = USEC_PER_MSEC * 10;
211 		while (num_online_cpus() > 1 && (wait || timeout--))
212 			udelay(1);
213 	}
214 
215 	local_irq_save(flags);
216 	disable_local_APIC();
217 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
218 	local_irq_restore(flags);
219 }
220 
221 /*
222  * Reschedule call back. KVM uses this interrupt to force a cpu out of
223  * guest mode.
224  */
225 DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi)
226 {
227 	ack_APIC_irq();
228 	trace_reschedule_entry(RESCHEDULE_VECTOR);
229 	inc_irq_stat(irq_resched_count);
230 	scheduler_ipi();
231 	trace_reschedule_exit(RESCHEDULE_VECTOR);
232 }
233 
234 DEFINE_IDTENTRY_SYSVEC(sysvec_call_function)
235 {
236 	ack_APIC_irq();
237 	trace_call_function_entry(CALL_FUNCTION_VECTOR);
238 	inc_irq_stat(irq_call_count);
239 	generic_smp_call_function_interrupt();
240 	trace_call_function_exit(CALL_FUNCTION_VECTOR);
241 }
242 
243 DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single)
244 {
245 	ack_APIC_irq();
246 	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
247 	inc_irq_stat(irq_call_count);
248 	generic_smp_call_function_single_interrupt();
249 	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
250 }
251 
252 static int __init nonmi_ipi_setup(char *str)
253 {
254 	smp_no_nmi_ipi = true;
255 	return 1;
256 }
257 
258 __setup("nonmi_ipi", nonmi_ipi_setup);
259 
260 struct smp_ops smp_ops = {
261 	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
262 	.smp_prepare_cpus	= native_smp_prepare_cpus,
263 	.smp_cpus_done		= native_smp_cpus_done,
264 
265 	.stop_other_cpus	= native_stop_other_cpus,
266 #if defined(CONFIG_KEXEC_CORE)
267 	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
268 #endif
269 	.smp_send_reschedule	= native_smp_send_reschedule,
270 
271 	.cpu_up			= native_cpu_up,
272 	.cpu_die		= native_cpu_die,
273 	.cpu_disable		= native_cpu_disable,
274 	.play_dead		= native_play_dead,
275 
276 	.send_call_func_ipi	= native_send_call_func_ipi,
277 	.send_call_func_single_ipi = native_send_call_func_single_ipi,
278 };
279 EXPORT_SYMBOL_GPL(smp_ops);
280