xref: /linux/arch/x86/kernel/smp.c (revision 8a79db5e83a5d52c74e6f3c40d6f312cf899213e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Intel SMP support routines.
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *      (c) 2002,2003 Andi Kleen, SuSE Labs.
8  *
9  *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
10  */
11 
12 #include <linux/init.h>
13 
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/export.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/cache.h>
21 #include <linux/interrupt.h>
22 #include <linux/cpu.h>
23 #include <linux/gfp.h>
24 
25 #include <asm/mtrr.h>
26 #include <asm/tlbflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/proto.h>
29 #include <asm/apic.h>
30 #include <asm/nmi.h>
31 #include <asm/mce.h>
32 #include <asm/trace/irq_vectors.h>
33 #include <asm/kexec.h>
34 #include <asm/virtext.h>
35 
36 /*
37  *	Some notes on x86 processor bugs affecting SMP operation:
38  *
39  *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
40  *	The Linux implications for SMP are handled as follows:
41  *
42  *	Pentium III / [Xeon]
43  *		None of the E1AP-E3AP errata are visible to the user.
44  *
45  *	E1AP.	see PII A1AP
46  *	E2AP.	see PII A2AP
47  *	E3AP.	see PII A3AP
48  *
49  *	Pentium II / [Xeon]
50  *		None of the A1AP-A3AP errata are visible to the user.
51  *
52  *	A1AP.	see PPro 1AP
53  *	A2AP.	see PPro 2AP
54  *	A3AP.	see PPro 7AP
55  *
56  *	Pentium Pro
57  *		None of 1AP-9AP errata are visible to the normal user,
58  *	except occasional delivery of 'spurious interrupt' as trap #15.
59  *	This is very rare and a non-problem.
60  *
61  *	1AP.	Linux maps APIC as non-cacheable
62  *	2AP.	worked around in hardware
63  *	3AP.	fixed in C0 and above steppings microcode update.
64  *		Linux does not use excessive STARTUP_IPIs.
65  *	4AP.	worked around in hardware
66  *	5AP.	symmetric IO mode (normal Linux operation) not affected.
67  *		'noapic' mode has vector 0xf filled out properly.
68  *	6AP.	'noapic' mode might be affected - fixed in later steppings
69  *	7AP.	We do not assume writes to the LVT deassering IRQs
70  *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
71  *	9AP.	We do not use mixed mode
72  *
73  *	Pentium
74  *		There is a marginal case where REP MOVS on 100MHz SMP
75  *	machines with B stepping processors can fail. XXX should provide
76  *	an L1cache=Writethrough or L1cache=off option.
77  *
78  *		B stepping CPUs may hang. There are hardware work arounds
79  *	for this. We warn about it in case your board doesn't have the work
80  *	arounds. Basically that's so I can tell anyone with a B stepping
81  *	CPU and SMP problems "tough".
82  *
83  *	Specific items [From Pentium Processor Specification Update]
84  *
85  *	1AP.	Linux doesn't use remote read
86  *	2AP.	Linux doesn't trust APIC errors
87  *	3AP.	We work around this
88  *	4AP.	Linux never generated 3 interrupts of the same priority
89  *		to cause a lost local interrupt.
90  *	5AP.	Remote read is never used
91  *	6AP.	not affected - worked around in hardware
92  *	7AP.	not affected - worked around in hardware
93  *	8AP.	worked around in hardware - we get explicit CS errors if not
94  *	9AP.	only 'noapic' mode affected. Might generate spurious
95  *		interrupts, we log only the first one and count the
96  *		rest silently.
97  *	10AP.	not affected - worked around in hardware
98  *	11AP.	Linux reads the APIC between writes to avoid this, as per
99  *		the documentation. Make sure you preserve this as it affects
100  *		the C stepping chips too.
101  *	12AP.	not affected - worked around in hardware
102  *	13AP.	not affected - worked around in hardware
103  *	14AP.	we always deassert INIT during bootup
104  *	15AP.	not affected - worked around in hardware
105  *	16AP.	not affected - worked around in hardware
106  *	17AP.	not affected - worked around in hardware
107  *	18AP.	not affected - worked around in hardware
108  *	19AP.	not affected - worked around in BIOS
109  *
110  *	If this sounds worrying believe me these bugs are either ___RARE___,
111  *	or are signal timing bugs worked around in hardware and there's
112  *	about nothing of note with C stepping upwards.
113  */
114 
115 static atomic_t stopping_cpu = ATOMIC_INIT(-1);
116 static bool smp_no_nmi_ipi = false;
117 
118 static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
119 {
120 	/* We are registered on stopping cpu too, avoid spurious NMI */
121 	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
122 		return NMI_HANDLED;
123 
124 	cpu_emergency_vmxoff();
125 	stop_this_cpu(NULL);
126 
127 	return NMI_HANDLED;
128 }
129 
130 /*
131  * this function calls the 'stop' function on all other CPUs in the system.
132  */
133 
134 asmlinkage __visible void smp_reboot_interrupt(void)
135 {
136 	ipi_entering_ack_irq();
137 	cpu_emergency_vmxoff();
138 	stop_this_cpu(NULL);
139 	irq_exit();
140 }
141 
142 static int register_stop_handler(void)
143 {
144 	return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
145 				    NMI_FLAG_FIRST, "smp_stop");
146 }
147 
148 static void native_stop_other_cpus(int wait)
149 {
150 	unsigned long flags;
151 	unsigned long timeout;
152 
153 	if (reboot_force)
154 		return;
155 
156 	/*
157 	 * Use an own vector here because smp_call_function
158 	 * does lots of things not suitable in a panic situation.
159 	 */
160 
161 	/*
162 	 * We start by using the REBOOT_VECTOR irq.
163 	 * The irq is treated as a sync point to allow critical
164 	 * regions of code on other cpus to release their spin locks
165 	 * and re-enable irqs.  Jumping straight to an NMI might
166 	 * accidentally cause deadlocks with further shutdown/panic
167 	 * code.  By syncing, we give the cpus up to one second to
168 	 * finish their work before we force them off with the NMI.
169 	 */
170 	if (num_online_cpus() > 1) {
171 		/* did someone beat us here? */
172 		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
173 			return;
174 
175 		/* sync above data before sending IRQ */
176 		wmb();
177 
178 		apic_send_IPI_allbutself(REBOOT_VECTOR);
179 
180 		/*
181 		 * Don't wait longer than a second for IPI completion. The
182 		 * wait request is not checked here because that would
183 		 * prevent an NMI shutdown attempt in case that not all
184 		 * CPUs reach shutdown state.
185 		 */
186 		timeout = USEC_PER_SEC;
187 		while (num_online_cpus() > 1 && timeout--)
188 			udelay(1);
189 	}
190 
191 	/* if the REBOOT_VECTOR didn't work, try with the NMI */
192 	if (num_online_cpus() > 1) {
193 		/*
194 		 * If NMI IPI is enabled, try to register the stop handler
195 		 * and send the IPI. In any case try to wait for the other
196 		 * CPUs to stop.
197 		 */
198 		if (!smp_no_nmi_ipi && !register_stop_handler()) {
199 			/* Sync above data before sending IRQ */
200 			wmb();
201 
202 			pr_emerg("Shutting down cpus with NMI\n");
203 
204 			apic_send_IPI_allbutself(NMI_VECTOR);
205 		}
206 		/*
207 		 * Don't wait longer than 10 ms if the caller didn't
208 		 * reqeust it. If wait is true, the machine hangs here if
209 		 * one or more CPUs do not reach shutdown state.
210 		 */
211 		timeout = USEC_PER_MSEC * 10;
212 		while (num_online_cpus() > 1 && (wait || timeout--))
213 			udelay(1);
214 	}
215 
216 	local_irq_save(flags);
217 	disable_local_APIC();
218 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
219 	local_irq_restore(flags);
220 }
221 
222 /*
223  * Reschedule call back. KVM uses this interrupt to force a cpu out of
224  * guest mode
225  */
226 __visible void __irq_entry smp_reschedule_interrupt(struct pt_regs *regs)
227 {
228 	ack_APIC_irq();
229 	inc_irq_stat(irq_resched_count);
230 	kvm_set_cpu_l1tf_flush_l1d();
231 
232 	if (trace_resched_ipi_enabled()) {
233 		/*
234 		 * scheduler_ipi() might call irq_enter() as well, but
235 		 * nested calls are fine.
236 		 */
237 		irq_enter();
238 		trace_reschedule_entry(RESCHEDULE_VECTOR);
239 		scheduler_ipi();
240 		trace_reschedule_exit(RESCHEDULE_VECTOR);
241 		irq_exit();
242 		return;
243 	}
244 	scheduler_ipi();
245 }
246 
247 __visible void __irq_entry smp_call_function_interrupt(struct pt_regs *regs)
248 {
249 	ipi_entering_ack_irq();
250 	trace_call_function_entry(CALL_FUNCTION_VECTOR);
251 	inc_irq_stat(irq_call_count);
252 	generic_smp_call_function_interrupt();
253 	trace_call_function_exit(CALL_FUNCTION_VECTOR);
254 	exiting_irq();
255 }
256 
257 __visible void __irq_entry smp_call_function_single_interrupt(struct pt_regs *r)
258 {
259 	ipi_entering_ack_irq();
260 	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
261 	inc_irq_stat(irq_call_count);
262 	generic_smp_call_function_single_interrupt();
263 	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
264 	exiting_irq();
265 }
266 
267 static int __init nonmi_ipi_setup(char *str)
268 {
269 	smp_no_nmi_ipi = true;
270 	return 1;
271 }
272 
273 __setup("nonmi_ipi", nonmi_ipi_setup);
274 
275 struct smp_ops smp_ops = {
276 	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
277 	.smp_prepare_cpus	= native_smp_prepare_cpus,
278 	.smp_cpus_done		= native_smp_cpus_done,
279 
280 	.stop_other_cpus	= native_stop_other_cpus,
281 #if defined(CONFIG_KEXEC_CORE)
282 	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
283 #endif
284 	.smp_send_reschedule	= native_smp_send_reschedule,
285 
286 	.cpu_up			= native_cpu_up,
287 	.cpu_die		= native_cpu_die,
288 	.cpu_disable		= native_cpu_disable,
289 	.play_dead		= native_play_dead,
290 
291 	.send_call_func_ipi	= native_send_call_func_ipi,
292 	.send_call_func_single_ipi = native_send_call_func_single_ipi,
293 };
294 EXPORT_SYMBOL_GPL(smp_ops);
295