1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/acpi.h> 9 #include <linux/console.h> 10 #include <linux/crash_dump.h> 11 #include <linux/dma-map-ops.h> 12 #include <linux/dmi.h> 13 #include <linux/efi.h> 14 #include <linux/ima.h> 15 #include <linux/init_ohci1394_dma.h> 16 #include <linux/initrd.h> 17 #include <linux/iscsi_ibft.h> 18 #include <linux/memblock.h> 19 #include <linux/panic_notifier.h> 20 #include <linux/pci.h> 21 #include <linux/root_dev.h> 22 #include <linux/hugetlb.h> 23 #include <linux/tboot.h> 24 #include <linux/usb/xhci-dbgp.h> 25 #include <linux/static_call.h> 26 #include <linux/swiotlb.h> 27 #include <linux/random.h> 28 29 #include <uapi/linux/mount.h> 30 31 #include <xen/xen.h> 32 33 #include <asm/apic.h> 34 #include <asm/efi.h> 35 #include <asm/numa.h> 36 #include <asm/bios_ebda.h> 37 #include <asm/bugs.h> 38 #include <asm/cacheinfo.h> 39 #include <asm/cpu.h> 40 #include <asm/efi.h> 41 #include <asm/gart.h> 42 #include <asm/hypervisor.h> 43 #include <asm/io_apic.h> 44 #include <asm/kasan.h> 45 #include <asm/kaslr.h> 46 #include <asm/mce.h> 47 #include <asm/memtype.h> 48 #include <asm/mtrr.h> 49 #include <asm/realmode.h> 50 #include <asm/olpc_ofw.h> 51 #include <asm/pci-direct.h> 52 #include <asm/prom.h> 53 #include <asm/proto.h> 54 #include <asm/thermal.h> 55 #include <asm/unwind.h> 56 #include <asm/vsyscall.h> 57 #include <linux/vmalloc.h> 58 59 /* 60 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 61 * max_pfn_mapped: highest directly mapped pfn > 4 GB 62 * 63 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 64 * represented by pfn_mapped[]. 65 */ 66 unsigned long max_low_pfn_mapped; 67 unsigned long max_pfn_mapped; 68 69 #ifdef CONFIG_DMI 70 RESERVE_BRK(dmi_alloc, 65536); 71 #endif 72 73 74 unsigned long _brk_start = (unsigned long)__brk_base; 75 unsigned long _brk_end = (unsigned long)__brk_base; 76 77 struct boot_params boot_params; 78 79 /* 80 * These are the four main kernel memory regions, we put them into 81 * the resource tree so that kdump tools and other debugging tools 82 * recover it: 83 */ 84 85 static struct resource rodata_resource = { 86 .name = "Kernel rodata", 87 .start = 0, 88 .end = 0, 89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 90 }; 91 92 static struct resource data_resource = { 93 .name = "Kernel data", 94 .start = 0, 95 .end = 0, 96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 97 }; 98 99 static struct resource code_resource = { 100 .name = "Kernel code", 101 .start = 0, 102 .end = 0, 103 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 104 }; 105 106 static struct resource bss_resource = { 107 .name = "Kernel bss", 108 .start = 0, 109 .end = 0, 110 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 111 }; 112 113 114 #ifdef CONFIG_X86_32 115 /* CPU data as detected by the assembly code in head_32.S */ 116 struct cpuinfo_x86 new_cpu_data; 117 118 struct apm_info apm_info; 119 EXPORT_SYMBOL(apm_info); 120 121 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 122 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 123 struct ist_info ist_info; 124 EXPORT_SYMBOL(ist_info); 125 #else 126 struct ist_info ist_info; 127 #endif 128 129 #endif 130 131 struct cpuinfo_x86 boot_cpu_data __read_mostly; 132 EXPORT_SYMBOL(boot_cpu_data); 133 134 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 135 __visible unsigned long mmu_cr4_features __ro_after_init; 136 #else 137 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 138 #endif 139 140 #ifdef CONFIG_IMA 141 static phys_addr_t ima_kexec_buffer_phys; 142 static size_t ima_kexec_buffer_size; 143 #endif 144 145 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 146 int bootloader_type, bootloader_version; 147 148 /* 149 * Setup options 150 */ 151 struct screen_info screen_info; 152 EXPORT_SYMBOL(screen_info); 153 struct edid_info edid_info; 154 EXPORT_SYMBOL_GPL(edid_info); 155 156 extern int root_mountflags; 157 158 unsigned long saved_video_mode; 159 160 #define RAMDISK_IMAGE_START_MASK 0x07FF 161 #define RAMDISK_PROMPT_FLAG 0x8000 162 #define RAMDISK_LOAD_FLAG 0x4000 163 164 static char __initdata command_line[COMMAND_LINE_SIZE]; 165 #ifdef CONFIG_CMDLINE_BOOL 166 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 167 #endif 168 169 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 170 struct edd edd; 171 #ifdef CONFIG_EDD_MODULE 172 EXPORT_SYMBOL(edd); 173 #endif 174 /** 175 * copy_edd() - Copy the BIOS EDD information 176 * from boot_params into a safe place. 177 * 178 */ 179 static inline void __init copy_edd(void) 180 { 181 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 182 sizeof(edd.mbr_signature)); 183 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 184 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 185 edd.edd_info_nr = boot_params.eddbuf_entries; 186 } 187 #else 188 static inline void __init copy_edd(void) 189 { 190 } 191 #endif 192 193 void * __init extend_brk(size_t size, size_t align) 194 { 195 size_t mask = align - 1; 196 void *ret; 197 198 BUG_ON(_brk_start == 0); 199 BUG_ON(align & mask); 200 201 _brk_end = (_brk_end + mask) & ~mask; 202 BUG_ON((char *)(_brk_end + size) > __brk_limit); 203 204 ret = (void *)_brk_end; 205 _brk_end += size; 206 207 memset(ret, 0, size); 208 209 return ret; 210 } 211 212 #ifdef CONFIG_X86_32 213 static void __init cleanup_highmap(void) 214 { 215 } 216 #endif 217 218 static void __init reserve_brk(void) 219 { 220 if (_brk_end > _brk_start) 221 memblock_reserve(__pa_symbol(_brk_start), 222 _brk_end - _brk_start); 223 224 /* Mark brk area as locked down and no longer taking any 225 new allocations */ 226 _brk_start = 0; 227 } 228 229 u64 relocated_ramdisk; 230 231 #ifdef CONFIG_BLK_DEV_INITRD 232 233 static u64 __init get_ramdisk_image(void) 234 { 235 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 236 237 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 238 239 if (ramdisk_image == 0) 240 ramdisk_image = phys_initrd_start; 241 242 return ramdisk_image; 243 } 244 static u64 __init get_ramdisk_size(void) 245 { 246 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 247 248 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 249 250 if (ramdisk_size == 0) 251 ramdisk_size = phys_initrd_size; 252 253 return ramdisk_size; 254 } 255 256 static void __init relocate_initrd(void) 257 { 258 /* Assume only end is not page aligned */ 259 u64 ramdisk_image = get_ramdisk_image(); 260 u64 ramdisk_size = get_ramdisk_size(); 261 u64 area_size = PAGE_ALIGN(ramdisk_size); 262 263 /* We need to move the initrd down into directly mapped mem */ 264 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0, 265 PFN_PHYS(max_pfn_mapped)); 266 if (!relocated_ramdisk) 267 panic("Cannot find place for new RAMDISK of size %lld\n", 268 ramdisk_size); 269 270 initrd_start = relocated_ramdisk + PAGE_OFFSET; 271 initrd_end = initrd_start + ramdisk_size; 272 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 273 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 274 275 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 276 277 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 278 " [mem %#010llx-%#010llx]\n", 279 ramdisk_image, ramdisk_image + ramdisk_size - 1, 280 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 281 } 282 283 static void __init early_reserve_initrd(void) 284 { 285 /* Assume only end is not page aligned */ 286 u64 ramdisk_image = get_ramdisk_image(); 287 u64 ramdisk_size = get_ramdisk_size(); 288 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 289 290 if (!boot_params.hdr.type_of_loader || 291 !ramdisk_image || !ramdisk_size) 292 return; /* No initrd provided by bootloader */ 293 294 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 295 } 296 297 static void __init reserve_initrd(void) 298 { 299 /* Assume only end is not page aligned */ 300 u64 ramdisk_image = get_ramdisk_image(); 301 u64 ramdisk_size = get_ramdisk_size(); 302 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 303 304 if (!boot_params.hdr.type_of_loader || 305 !ramdisk_image || !ramdisk_size) 306 return; /* No initrd provided by bootloader */ 307 308 initrd_start = 0; 309 310 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 311 ramdisk_end - 1); 312 313 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 314 PFN_DOWN(ramdisk_end))) { 315 /* All are mapped, easy case */ 316 initrd_start = ramdisk_image + PAGE_OFFSET; 317 initrd_end = initrd_start + ramdisk_size; 318 return; 319 } 320 321 relocate_initrd(); 322 323 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image); 324 } 325 326 #else 327 static void __init early_reserve_initrd(void) 328 { 329 } 330 static void __init reserve_initrd(void) 331 { 332 } 333 #endif /* CONFIG_BLK_DEV_INITRD */ 334 335 static void __init add_early_ima_buffer(u64 phys_addr) 336 { 337 #ifdef CONFIG_IMA 338 struct ima_setup_data *data; 339 340 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data)); 341 if (!data) { 342 pr_warn("setup: failed to memremap ima_setup_data entry\n"); 343 return; 344 } 345 346 if (data->size) { 347 memblock_reserve(data->addr, data->size); 348 ima_kexec_buffer_phys = data->addr; 349 ima_kexec_buffer_size = data->size; 350 } 351 352 early_memunmap(data, sizeof(*data)); 353 #else 354 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n"); 355 #endif 356 } 357 358 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE) 359 int __init ima_free_kexec_buffer(void) 360 { 361 if (!ima_kexec_buffer_size) 362 return -ENOENT; 363 364 memblock_free_late(ima_kexec_buffer_phys, 365 ima_kexec_buffer_size); 366 367 ima_kexec_buffer_phys = 0; 368 ima_kexec_buffer_size = 0; 369 370 return 0; 371 } 372 373 int __init ima_get_kexec_buffer(void **addr, size_t *size) 374 { 375 if (!ima_kexec_buffer_size) 376 return -ENOENT; 377 378 *addr = __va(ima_kexec_buffer_phys); 379 *size = ima_kexec_buffer_size; 380 381 return 0; 382 } 383 #endif 384 385 static void __init parse_setup_data(void) 386 { 387 struct setup_data *data; 388 u64 pa_data, pa_next; 389 390 pa_data = boot_params.hdr.setup_data; 391 while (pa_data) { 392 u32 data_len, data_type; 393 394 data = early_memremap(pa_data, sizeof(*data)); 395 data_len = data->len + sizeof(struct setup_data); 396 data_type = data->type; 397 pa_next = data->next; 398 early_memunmap(data, sizeof(*data)); 399 400 switch (data_type) { 401 case SETUP_E820_EXT: 402 e820__memory_setup_extended(pa_data, data_len); 403 break; 404 case SETUP_DTB: 405 add_dtb(pa_data); 406 break; 407 case SETUP_EFI: 408 parse_efi_setup(pa_data, data_len); 409 break; 410 case SETUP_IMA: 411 add_early_ima_buffer(pa_data); 412 break; 413 case SETUP_RNG_SEED: 414 data = early_memremap(pa_data, data_len); 415 add_bootloader_randomness(data->data, data->len); 416 /* Zero seed for forward secrecy. */ 417 memzero_explicit(data->data, data->len); 418 /* Zero length in case we find ourselves back here by accident. */ 419 memzero_explicit(&data->len, sizeof(data->len)); 420 early_memunmap(data, data_len); 421 break; 422 default: 423 break; 424 } 425 pa_data = pa_next; 426 } 427 } 428 429 static void __init memblock_x86_reserve_range_setup_data(void) 430 { 431 struct setup_indirect *indirect; 432 struct setup_data *data; 433 u64 pa_data, pa_next; 434 u32 len; 435 436 pa_data = boot_params.hdr.setup_data; 437 while (pa_data) { 438 data = early_memremap(pa_data, sizeof(*data)); 439 if (!data) { 440 pr_warn("setup: failed to memremap setup_data entry\n"); 441 return; 442 } 443 444 len = sizeof(*data); 445 pa_next = data->next; 446 447 memblock_reserve(pa_data, sizeof(*data) + data->len); 448 449 if (data->type == SETUP_INDIRECT) { 450 len += data->len; 451 early_memunmap(data, sizeof(*data)); 452 data = early_memremap(pa_data, len); 453 if (!data) { 454 pr_warn("setup: failed to memremap indirect setup_data\n"); 455 return; 456 } 457 458 indirect = (struct setup_indirect *)data->data; 459 460 if (indirect->type != SETUP_INDIRECT) 461 memblock_reserve(indirect->addr, indirect->len); 462 } 463 464 pa_data = pa_next; 465 early_memunmap(data, len); 466 } 467 } 468 469 static void __init arch_reserve_crashkernel(void) 470 { 471 unsigned long long crash_base, crash_size, low_size = 0; 472 char *cmdline = boot_command_line; 473 bool high = false; 474 int ret; 475 476 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 477 return; 478 479 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(), 480 &crash_size, &crash_base, 481 &low_size, &high); 482 if (ret) 483 return; 484 485 if (xen_pv_domain()) { 486 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 487 return; 488 } 489 490 reserve_crashkernel_generic(cmdline, crash_size, crash_base, 491 low_size, high); 492 } 493 494 static struct resource standard_io_resources[] = { 495 { .name = "dma1", .start = 0x00, .end = 0x1f, 496 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 497 { .name = "pic1", .start = 0x20, .end = 0x21, 498 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 499 { .name = "timer0", .start = 0x40, .end = 0x43, 500 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 501 { .name = "timer1", .start = 0x50, .end = 0x53, 502 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 503 { .name = "keyboard", .start = 0x60, .end = 0x60, 504 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 505 { .name = "keyboard", .start = 0x64, .end = 0x64, 506 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 507 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 508 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 509 { .name = "pic2", .start = 0xa0, .end = 0xa1, 510 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 511 { .name = "dma2", .start = 0xc0, .end = 0xdf, 512 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 513 { .name = "fpu", .start = 0xf0, .end = 0xff, 514 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 515 }; 516 517 void __init reserve_standard_io_resources(void) 518 { 519 int i; 520 521 /* request I/O space for devices used on all i[345]86 PCs */ 522 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 523 request_resource(&ioport_resource, &standard_io_resources[i]); 524 525 } 526 527 static bool __init snb_gfx_workaround_needed(void) 528 { 529 #ifdef CONFIG_PCI 530 int i; 531 u16 vendor, devid; 532 static const __initconst u16 snb_ids[] = { 533 0x0102, 534 0x0112, 535 0x0122, 536 0x0106, 537 0x0116, 538 0x0126, 539 0x010a, 540 }; 541 542 /* Assume no if something weird is going on with PCI */ 543 if (!early_pci_allowed()) 544 return false; 545 546 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 547 if (vendor != 0x8086) 548 return false; 549 550 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 551 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 552 if (devid == snb_ids[i]) 553 return true; 554 #endif 555 556 return false; 557 } 558 559 /* 560 * Sandy Bridge graphics has trouble with certain ranges, exclude 561 * them from allocation. 562 */ 563 static void __init trim_snb_memory(void) 564 { 565 static const __initconst unsigned long bad_pages[] = { 566 0x20050000, 567 0x20110000, 568 0x20130000, 569 0x20138000, 570 0x40004000, 571 }; 572 int i; 573 574 if (!snb_gfx_workaround_needed()) 575 return; 576 577 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 578 579 /* 580 * SandyBridge integrated graphics devices have a bug that prevents 581 * them from accessing certain memory ranges, namely anything below 582 * 1M and in the pages listed in bad_pages[] above. 583 * 584 * To avoid these pages being ever accessed by SNB gfx devices reserve 585 * bad_pages that have not already been reserved at boot time. 586 * All memory below the 1 MB mark is anyway reserved later during 587 * setup_arch(), so there is no need to reserve it here. 588 */ 589 590 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 591 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 592 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 593 bad_pages[i]); 594 } 595 } 596 597 static void __init trim_bios_range(void) 598 { 599 /* 600 * A special case is the first 4Kb of memory; 601 * This is a BIOS owned area, not kernel ram, but generally 602 * not listed as such in the E820 table. 603 * 604 * This typically reserves additional memory (64KiB by default) 605 * since some BIOSes are known to corrupt low memory. See the 606 * Kconfig help text for X86_RESERVE_LOW. 607 */ 608 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 609 610 /* 611 * special case: Some BIOSes report the PC BIOS 612 * area (640Kb -> 1Mb) as RAM even though it is not. 613 * take them out. 614 */ 615 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 616 617 e820__update_table(e820_table); 618 } 619 620 /* called before trim_bios_range() to spare extra sanitize */ 621 static void __init e820_add_kernel_range(void) 622 { 623 u64 start = __pa_symbol(_text); 624 u64 size = __pa_symbol(_end) - start; 625 626 /* 627 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 628 * attempt to fix it by adding the range. We may have a confused BIOS, 629 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 630 * exclude kernel range. If we really are running on top non-RAM, 631 * we will crash later anyways. 632 */ 633 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 634 return; 635 636 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 637 e820__range_remove(start, size, E820_TYPE_RAM, 0); 638 e820__range_add(start, size, E820_TYPE_RAM); 639 } 640 641 static void __init early_reserve_memory(void) 642 { 643 /* 644 * Reserve the memory occupied by the kernel between _text and 645 * __end_of_kernel_reserve symbols. Any kernel sections after the 646 * __end_of_kernel_reserve symbol must be explicitly reserved with a 647 * separate memblock_reserve() or they will be discarded. 648 */ 649 memblock_reserve(__pa_symbol(_text), 650 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 651 652 /* 653 * The first 4Kb of memory is a BIOS owned area, but generally it is 654 * not listed as such in the E820 table. 655 * 656 * Reserve the first 64K of memory since some BIOSes are known to 657 * corrupt low memory. After the real mode trampoline is allocated the 658 * rest of the memory below 640k is reserved. 659 * 660 * In addition, make sure page 0 is always reserved because on 661 * systems with L1TF its contents can be leaked to user processes. 662 */ 663 memblock_reserve(0, SZ_64K); 664 665 early_reserve_initrd(); 666 667 memblock_x86_reserve_range_setup_data(); 668 669 reserve_bios_regions(); 670 trim_snb_memory(); 671 } 672 673 /* 674 * Dump out kernel offset information on panic. 675 */ 676 static int 677 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 678 { 679 if (kaslr_enabled()) { 680 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 681 kaslr_offset(), 682 __START_KERNEL, 683 __START_KERNEL_map, 684 MODULES_VADDR-1); 685 } else { 686 pr_emerg("Kernel Offset: disabled\n"); 687 } 688 689 return 0; 690 } 691 692 void x86_configure_nx(void) 693 { 694 if (boot_cpu_has(X86_FEATURE_NX)) 695 __supported_pte_mask |= _PAGE_NX; 696 else 697 __supported_pte_mask &= ~_PAGE_NX; 698 } 699 700 static void __init x86_report_nx(void) 701 { 702 if (!boot_cpu_has(X86_FEATURE_NX)) { 703 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 704 "missing in CPU!\n"); 705 } else { 706 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 707 printk(KERN_INFO "NX (Execute Disable) protection: active\n"); 708 #else 709 /* 32bit non-PAE kernel, NX cannot be used */ 710 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 711 "cannot be enabled: non-PAE kernel!\n"); 712 #endif 713 } 714 } 715 716 /* 717 * Determine if we were loaded by an EFI loader. If so, then we have also been 718 * passed the efi memmap, systab, etc., so we should use these data structures 719 * for initialization. Note, the efi init code path is determined by the 720 * global efi_enabled. This allows the same kernel image to be used on existing 721 * systems (with a traditional BIOS) as well as on EFI systems. 722 */ 723 /* 724 * setup_arch - architecture-specific boot-time initializations 725 * 726 * Note: On x86_64, fixmaps are ready for use even before this is called. 727 */ 728 729 void __init setup_arch(char **cmdline_p) 730 { 731 #ifdef CONFIG_X86_32 732 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 733 734 /* 735 * copy kernel address range established so far and switch 736 * to the proper swapper page table 737 */ 738 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 739 initial_page_table + KERNEL_PGD_BOUNDARY, 740 KERNEL_PGD_PTRS); 741 742 load_cr3(swapper_pg_dir); 743 /* 744 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 745 * a cr3 based tlb flush, so the following __flush_tlb_all() 746 * will not flush anything because the CPU quirk which clears 747 * X86_FEATURE_PGE has not been invoked yet. Though due to the 748 * load_cr3() above the TLB has been flushed already. The 749 * quirk is invoked before subsequent calls to __flush_tlb_all() 750 * so proper operation is guaranteed. 751 */ 752 __flush_tlb_all(); 753 #else 754 printk(KERN_INFO "Command line: %s\n", boot_command_line); 755 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 756 #endif 757 758 /* 759 * If we have OLPC OFW, we might end up relocating the fixmap due to 760 * reserve_top(), so do this before touching the ioremap area. 761 */ 762 olpc_ofw_detect(); 763 764 idt_setup_early_traps(); 765 early_cpu_init(); 766 jump_label_init(); 767 static_call_init(); 768 early_ioremap_init(); 769 770 setup_olpc_ofw_pgd(); 771 772 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 773 screen_info = boot_params.screen_info; 774 edid_info = boot_params.edid_info; 775 #ifdef CONFIG_X86_32 776 apm_info.bios = boot_params.apm_bios_info; 777 ist_info = boot_params.ist_info; 778 #endif 779 saved_video_mode = boot_params.hdr.vid_mode; 780 bootloader_type = boot_params.hdr.type_of_loader; 781 if ((bootloader_type >> 4) == 0xe) { 782 bootloader_type &= 0xf; 783 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 784 } 785 bootloader_version = bootloader_type & 0xf; 786 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 787 788 #ifdef CONFIG_BLK_DEV_RAM 789 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 790 #endif 791 #ifdef CONFIG_EFI 792 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 793 EFI32_LOADER_SIGNATURE, 4)) { 794 set_bit(EFI_BOOT, &efi.flags); 795 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 796 EFI64_LOADER_SIGNATURE, 4)) { 797 set_bit(EFI_BOOT, &efi.flags); 798 set_bit(EFI_64BIT, &efi.flags); 799 } 800 #endif 801 802 x86_init.oem.arch_setup(); 803 804 /* 805 * Do some memory reservations *before* memory is added to memblock, so 806 * memblock allocations won't overwrite it. 807 * 808 * After this point, everything still needed from the boot loader or 809 * firmware or kernel text should be early reserved or marked not RAM in 810 * e820. All other memory is free game. 811 * 812 * This call needs to happen before e820__memory_setup() which calls the 813 * xen_memory_setup() on Xen dom0 which relies on the fact that those 814 * early reservations have happened already. 815 */ 816 early_reserve_memory(); 817 818 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 819 e820__memory_setup(); 820 parse_setup_data(); 821 822 copy_edd(); 823 824 if (!boot_params.hdr.root_flags) 825 root_mountflags &= ~MS_RDONLY; 826 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end); 827 828 code_resource.start = __pa_symbol(_text); 829 code_resource.end = __pa_symbol(_etext)-1; 830 rodata_resource.start = __pa_symbol(__start_rodata); 831 rodata_resource.end = __pa_symbol(__end_rodata)-1; 832 data_resource.start = __pa_symbol(_sdata); 833 data_resource.end = __pa_symbol(_edata)-1; 834 bss_resource.start = __pa_symbol(__bss_start); 835 bss_resource.end = __pa_symbol(__bss_stop)-1; 836 837 #ifdef CONFIG_CMDLINE_BOOL 838 #ifdef CONFIG_CMDLINE_OVERRIDE 839 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 840 #else 841 if (builtin_cmdline[0]) { 842 /* append boot loader cmdline to builtin */ 843 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 844 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 845 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 846 } 847 #endif 848 #endif 849 850 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 851 *cmdline_p = command_line; 852 853 /* 854 * x86_configure_nx() is called before parse_early_param() to detect 855 * whether hardware doesn't support NX (so that the early EHCI debug 856 * console setup can safely call set_fixmap()). 857 */ 858 x86_configure_nx(); 859 860 parse_early_param(); 861 862 if (efi_enabled(EFI_BOOT)) 863 efi_memblock_x86_reserve_range(); 864 865 #ifdef CONFIG_MEMORY_HOTPLUG 866 /* 867 * Memory used by the kernel cannot be hot-removed because Linux 868 * cannot migrate the kernel pages. When memory hotplug is 869 * enabled, we should prevent memblock from allocating memory 870 * for the kernel. 871 * 872 * ACPI SRAT records all hotpluggable memory ranges. But before 873 * SRAT is parsed, we don't know about it. 874 * 875 * The kernel image is loaded into memory at very early time. We 876 * cannot prevent this anyway. So on NUMA system, we set any 877 * node the kernel resides in as un-hotpluggable. 878 * 879 * Since on modern servers, one node could have double-digit 880 * gigabytes memory, we can assume the memory around the kernel 881 * image is also un-hotpluggable. So before SRAT is parsed, just 882 * allocate memory near the kernel image to try the best to keep 883 * the kernel away from hotpluggable memory. 884 */ 885 if (movable_node_is_enabled()) 886 memblock_set_bottom_up(true); 887 #endif 888 889 x86_report_nx(); 890 891 apic_setup_apic_calls(); 892 893 if (acpi_mps_check()) { 894 #ifdef CONFIG_X86_LOCAL_APIC 895 apic_is_disabled = true; 896 #endif 897 setup_clear_cpu_cap(X86_FEATURE_APIC); 898 } 899 900 e820__reserve_setup_data(); 901 e820__finish_early_params(); 902 903 if (efi_enabled(EFI_BOOT)) 904 efi_init(); 905 906 reserve_ibft_region(); 907 dmi_setup(); 908 909 /* 910 * VMware detection requires dmi to be available, so this 911 * needs to be done after dmi_setup(), for the boot CPU. 912 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be 913 * called before cache_bp_init() for setting up MTRR state. 914 */ 915 init_hypervisor_platform(); 916 917 tsc_early_init(); 918 x86_init.resources.probe_roms(); 919 920 /* after parse_early_param, so could debug it */ 921 insert_resource(&iomem_resource, &code_resource); 922 insert_resource(&iomem_resource, &rodata_resource); 923 insert_resource(&iomem_resource, &data_resource); 924 insert_resource(&iomem_resource, &bss_resource); 925 926 e820_add_kernel_range(); 927 trim_bios_range(); 928 #ifdef CONFIG_X86_32 929 if (ppro_with_ram_bug()) { 930 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 931 E820_TYPE_RESERVED); 932 e820__update_table(e820_table); 933 printk(KERN_INFO "fixed physical RAM map:\n"); 934 e820__print_table("bad_ppro"); 935 } 936 #else 937 early_gart_iommu_check(); 938 #endif 939 940 /* 941 * partially used pages are not usable - thus 942 * we are rounding upwards: 943 */ 944 max_pfn = e820__end_of_ram_pfn(); 945 946 /* update e820 for memory not covered by WB MTRRs */ 947 cache_bp_init(); 948 if (mtrr_trim_uncached_memory(max_pfn)) 949 max_pfn = e820__end_of_ram_pfn(); 950 951 max_possible_pfn = max_pfn; 952 953 /* 954 * Define random base addresses for memory sections after max_pfn is 955 * defined and before each memory section base is used. 956 */ 957 kernel_randomize_memory(); 958 959 #ifdef CONFIG_X86_32 960 /* max_low_pfn get updated here */ 961 find_low_pfn_range(); 962 #else 963 check_x2apic(); 964 965 /* How many end-of-memory variables you have, grandma! */ 966 /* need this before calling reserve_initrd */ 967 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 968 max_low_pfn = e820__end_of_low_ram_pfn(); 969 else 970 max_low_pfn = max_pfn; 971 972 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 973 #endif 974 975 /* 976 * Find and reserve possible boot-time SMP configuration: 977 */ 978 find_smp_config(); 979 980 early_alloc_pgt_buf(); 981 982 /* 983 * Need to conclude brk, before e820__memblock_setup() 984 * it could use memblock_find_in_range, could overlap with 985 * brk area. 986 */ 987 reserve_brk(); 988 989 cleanup_highmap(); 990 991 memblock_set_current_limit(ISA_END_ADDRESS); 992 e820__memblock_setup(); 993 994 /* 995 * Needs to run after memblock setup because it needs the physical 996 * memory size. 997 */ 998 mem_encrypt_setup_arch(); 999 1000 efi_fake_memmap(); 1001 efi_find_mirror(); 1002 efi_esrt_init(); 1003 efi_mokvar_table_init(); 1004 1005 /* 1006 * The EFI specification says that boot service code won't be 1007 * called after ExitBootServices(). This is, in fact, a lie. 1008 */ 1009 efi_reserve_boot_services(); 1010 1011 /* preallocate 4k for mptable mpc */ 1012 e820__memblock_alloc_reserved_mpc_new(); 1013 1014 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1015 setup_bios_corruption_check(); 1016 #endif 1017 1018 #ifdef CONFIG_X86_32 1019 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1020 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1021 #endif 1022 1023 /* 1024 * Find free memory for the real mode trampoline and place it there. If 1025 * there is not enough free memory under 1M, on EFI-enabled systems 1026 * there will be additional attempt to reclaim the memory for the real 1027 * mode trampoline at efi_free_boot_services(). 1028 * 1029 * Unconditionally reserve the entire first 1M of RAM because BIOSes 1030 * are known to corrupt low memory and several hundred kilobytes are not 1031 * worth complex detection what memory gets clobbered. Windows does the 1032 * same thing for very similar reasons. 1033 * 1034 * Moreover, on machines with SandyBridge graphics or in setups that use 1035 * crashkernel the entire 1M is reserved anyway. 1036 */ 1037 x86_platform.realmode_reserve(); 1038 1039 init_mem_mapping(); 1040 1041 idt_setup_early_pf(); 1042 1043 /* 1044 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1045 * with the current CR4 value. This may not be necessary, but 1046 * auditing all the early-boot CR4 manipulation would be needed to 1047 * rule it out. 1048 * 1049 * Mask off features that don't work outside long mode (just 1050 * PCIDE for now). 1051 */ 1052 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1053 1054 memblock_set_current_limit(get_max_mapped()); 1055 1056 /* 1057 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1058 */ 1059 1060 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1061 if (init_ohci1394_dma_early) 1062 init_ohci1394_dma_on_all_controllers(); 1063 #endif 1064 /* Allocate bigger log buffer */ 1065 setup_log_buf(1); 1066 1067 if (efi_enabled(EFI_BOOT)) { 1068 switch (boot_params.secure_boot) { 1069 case efi_secureboot_mode_disabled: 1070 pr_info("Secure boot disabled\n"); 1071 break; 1072 case efi_secureboot_mode_enabled: 1073 pr_info("Secure boot enabled\n"); 1074 break; 1075 default: 1076 pr_info("Secure boot could not be determined\n"); 1077 break; 1078 } 1079 } 1080 1081 reserve_initrd(); 1082 1083 acpi_table_upgrade(); 1084 /* Look for ACPI tables and reserve memory occupied by them. */ 1085 acpi_boot_table_init(); 1086 1087 vsmp_init(); 1088 1089 io_delay_init(); 1090 1091 early_platform_quirks(); 1092 1093 early_acpi_boot_init(); 1094 1095 x86_flattree_get_config(); 1096 1097 initmem_init(); 1098 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1099 1100 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1101 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1102 1103 /* 1104 * Reserve memory for crash kernel after SRAT is parsed so that it 1105 * won't consume hotpluggable memory. 1106 */ 1107 arch_reserve_crashkernel(); 1108 1109 memblock_find_dma_reserve(); 1110 1111 if (!early_xdbc_setup_hardware()) 1112 early_xdbc_register_console(); 1113 1114 x86_init.paging.pagetable_init(); 1115 1116 kasan_init(); 1117 1118 /* 1119 * Sync back kernel address range. 1120 * 1121 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1122 * this call? 1123 */ 1124 sync_initial_page_table(); 1125 1126 tboot_probe(); 1127 1128 map_vsyscall(); 1129 1130 x86_32_probe_apic(); 1131 1132 early_quirks(); 1133 1134 /* 1135 * Read APIC and some other early information from ACPI tables. 1136 */ 1137 acpi_boot_init(); 1138 x86_dtb_init(); 1139 1140 /* 1141 * get boot-time SMP configuration: 1142 */ 1143 get_smp_config(); 1144 1145 /* 1146 * Systems w/o ACPI and mptables might not have it mapped the local 1147 * APIC yet, but prefill_possible_map() might need to access it. 1148 */ 1149 init_apic_mappings(); 1150 1151 prefill_possible_map(); 1152 1153 init_cpu_to_node(); 1154 init_gi_nodes(); 1155 1156 io_apic_init_mappings(); 1157 1158 x86_init.hyper.guest_late_init(); 1159 1160 e820__reserve_resources(); 1161 e820__register_nosave_regions(max_pfn); 1162 1163 x86_init.resources.reserve_resources(); 1164 1165 e820__setup_pci_gap(); 1166 1167 #ifdef CONFIG_VT 1168 #if defined(CONFIG_VGA_CONSOLE) 1169 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1170 vgacon_register_screen(&screen_info); 1171 #endif 1172 #endif 1173 x86_init.oem.banner(); 1174 1175 x86_init.timers.wallclock_init(); 1176 1177 /* 1178 * This needs to run before setup_local_APIC() which soft-disables the 1179 * local APIC temporarily and that masks the thermal LVT interrupt, 1180 * leading to softlockups on machines which have configured SMI 1181 * interrupt delivery. 1182 */ 1183 therm_lvt_init(); 1184 1185 mcheck_init(); 1186 1187 register_refined_jiffies(CLOCK_TICK_RATE); 1188 1189 #ifdef CONFIG_EFI 1190 if (efi_enabled(EFI_BOOT)) 1191 efi_apply_memmap_quirks(); 1192 #endif 1193 1194 unwind_init(); 1195 } 1196 1197 #ifdef CONFIG_X86_32 1198 1199 static struct resource video_ram_resource = { 1200 .name = "Video RAM area", 1201 .start = 0xa0000, 1202 .end = 0xbffff, 1203 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1204 }; 1205 1206 void __init i386_reserve_resources(void) 1207 { 1208 request_resource(&iomem_resource, &video_ram_resource); 1209 reserve_standard_io_resources(); 1210 } 1211 1212 #endif /* CONFIG_X86_32 */ 1213 1214 static struct notifier_block kernel_offset_notifier = { 1215 .notifier_call = dump_kernel_offset 1216 }; 1217 1218 static int __init register_kernel_offset_dumper(void) 1219 { 1220 atomic_notifier_chain_register(&panic_notifier_list, 1221 &kernel_offset_notifier); 1222 return 0; 1223 } 1224 __initcall(register_kernel_offset_dumper); 1225