1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/console.h> 9 #include <linux/crash_dump.h> 10 #include <linux/dmi.h> 11 #include <linux/efi.h> 12 #include <linux/init_ohci1394_dma.h> 13 #include <linux/initrd.h> 14 #include <linux/iscsi_ibft.h> 15 #include <linux/memblock.h> 16 #include <linux/pci.h> 17 #include <linux/root_dev.h> 18 #include <linux/sfi.h> 19 #include <linux/hugetlb.h> 20 #include <linux/tboot.h> 21 #include <linux/usb/xhci-dbgp.h> 22 #include <linux/static_call.h> 23 24 #include <uapi/linux/mount.h> 25 26 #include <xen/xen.h> 27 28 #include <asm/apic.h> 29 #include <asm/numa.h> 30 #include <asm/bios_ebda.h> 31 #include <asm/bugs.h> 32 #include <asm/cpu.h> 33 #include <asm/efi.h> 34 #include <asm/gart.h> 35 #include <asm/hypervisor.h> 36 #include <asm/io_apic.h> 37 #include <asm/kasan.h> 38 #include <asm/kaslr.h> 39 #include <asm/mce.h> 40 #include <asm/mtrr.h> 41 #include <asm/realmode.h> 42 #include <asm/olpc_ofw.h> 43 #include <asm/pci-direct.h> 44 #include <asm/prom.h> 45 #include <asm/proto.h> 46 #include <asm/unwind.h> 47 #include <asm/vsyscall.h> 48 #include <linux/vmalloc.h> 49 50 /* 51 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 52 * max_pfn_mapped: highest directly mapped pfn > 4 GB 53 * 54 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 55 * represented by pfn_mapped[]. 56 */ 57 unsigned long max_low_pfn_mapped; 58 unsigned long max_pfn_mapped; 59 60 #ifdef CONFIG_DMI 61 RESERVE_BRK(dmi_alloc, 65536); 62 #endif 63 64 65 /* 66 * Range of the BSS area. The size of the BSS area is determined 67 * at link time, with RESERVE_BRK*() facility reserving additional 68 * chunks. 69 */ 70 unsigned long _brk_start = (unsigned long)__brk_base; 71 unsigned long _brk_end = (unsigned long)__brk_base; 72 73 struct boot_params boot_params; 74 75 /* 76 * These are the four main kernel memory regions, we put them into 77 * the resource tree so that kdump tools and other debugging tools 78 * recover it: 79 */ 80 81 static struct resource rodata_resource = { 82 .name = "Kernel rodata", 83 .start = 0, 84 .end = 0, 85 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 86 }; 87 88 static struct resource data_resource = { 89 .name = "Kernel data", 90 .start = 0, 91 .end = 0, 92 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 93 }; 94 95 static struct resource code_resource = { 96 .name = "Kernel code", 97 .start = 0, 98 .end = 0, 99 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 100 }; 101 102 static struct resource bss_resource = { 103 .name = "Kernel bss", 104 .start = 0, 105 .end = 0, 106 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 107 }; 108 109 110 #ifdef CONFIG_X86_32 111 /* CPU data as detected by the assembly code in head_32.S */ 112 struct cpuinfo_x86 new_cpu_data; 113 114 /* Common CPU data for all CPUs */ 115 struct cpuinfo_x86 boot_cpu_data __read_mostly; 116 EXPORT_SYMBOL(boot_cpu_data); 117 118 unsigned int def_to_bigsmp; 119 120 /* For MCA, but anyone else can use it if they want */ 121 unsigned int machine_id; 122 unsigned int machine_submodel_id; 123 unsigned int BIOS_revision; 124 125 struct apm_info apm_info; 126 EXPORT_SYMBOL(apm_info); 127 128 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 129 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 130 struct ist_info ist_info; 131 EXPORT_SYMBOL(ist_info); 132 #else 133 struct ist_info ist_info; 134 #endif 135 136 #else 137 struct cpuinfo_x86 boot_cpu_data __read_mostly; 138 EXPORT_SYMBOL(boot_cpu_data); 139 #endif 140 141 142 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 143 __visible unsigned long mmu_cr4_features __ro_after_init; 144 #else 145 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 146 #endif 147 148 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 149 int bootloader_type, bootloader_version; 150 151 /* 152 * Setup options 153 */ 154 struct screen_info screen_info; 155 EXPORT_SYMBOL(screen_info); 156 struct edid_info edid_info; 157 EXPORT_SYMBOL_GPL(edid_info); 158 159 extern int root_mountflags; 160 161 unsigned long saved_video_mode; 162 163 #define RAMDISK_IMAGE_START_MASK 0x07FF 164 #define RAMDISK_PROMPT_FLAG 0x8000 165 #define RAMDISK_LOAD_FLAG 0x4000 166 167 static char __initdata command_line[COMMAND_LINE_SIZE]; 168 #ifdef CONFIG_CMDLINE_BOOL 169 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 170 #endif 171 172 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 173 struct edd edd; 174 #ifdef CONFIG_EDD_MODULE 175 EXPORT_SYMBOL(edd); 176 #endif 177 /** 178 * copy_edd() - Copy the BIOS EDD information 179 * from boot_params into a safe place. 180 * 181 */ 182 static inline void __init copy_edd(void) 183 { 184 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 185 sizeof(edd.mbr_signature)); 186 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 187 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 188 edd.edd_info_nr = boot_params.eddbuf_entries; 189 } 190 #else 191 static inline void __init copy_edd(void) 192 { 193 } 194 #endif 195 196 void * __init extend_brk(size_t size, size_t align) 197 { 198 size_t mask = align - 1; 199 void *ret; 200 201 BUG_ON(_brk_start == 0); 202 BUG_ON(align & mask); 203 204 _brk_end = (_brk_end + mask) & ~mask; 205 BUG_ON((char *)(_brk_end + size) > __brk_limit); 206 207 ret = (void *)_brk_end; 208 _brk_end += size; 209 210 memset(ret, 0, size); 211 212 return ret; 213 } 214 215 #ifdef CONFIG_X86_32 216 static void __init cleanup_highmap(void) 217 { 218 } 219 #endif 220 221 static void __init reserve_brk(void) 222 { 223 if (_brk_end > _brk_start) 224 memblock_reserve(__pa_symbol(_brk_start), 225 _brk_end - _brk_start); 226 227 /* Mark brk area as locked down and no longer taking any 228 new allocations */ 229 _brk_start = 0; 230 } 231 232 u64 relocated_ramdisk; 233 234 #ifdef CONFIG_BLK_DEV_INITRD 235 236 static u64 __init get_ramdisk_image(void) 237 { 238 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 239 240 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 241 242 if (ramdisk_image == 0) 243 ramdisk_image = phys_initrd_start; 244 245 return ramdisk_image; 246 } 247 static u64 __init get_ramdisk_size(void) 248 { 249 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 250 251 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 252 253 if (ramdisk_size == 0) 254 ramdisk_size = phys_initrd_size; 255 256 return ramdisk_size; 257 } 258 259 static void __init relocate_initrd(void) 260 { 261 /* Assume only end is not page aligned */ 262 u64 ramdisk_image = get_ramdisk_image(); 263 u64 ramdisk_size = get_ramdisk_size(); 264 u64 area_size = PAGE_ALIGN(ramdisk_size); 265 266 /* We need to move the initrd down into directly mapped mem */ 267 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), 268 area_size, PAGE_SIZE); 269 270 if (!relocated_ramdisk) 271 panic("Cannot find place for new RAMDISK of size %lld\n", 272 ramdisk_size); 273 274 /* Note: this includes all the mem currently occupied by 275 the initrd, we rely on that fact to keep the data intact. */ 276 memblock_reserve(relocated_ramdisk, area_size); 277 initrd_start = relocated_ramdisk + PAGE_OFFSET; 278 initrd_end = initrd_start + ramdisk_size; 279 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 280 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 281 282 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 283 284 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 285 " [mem %#010llx-%#010llx]\n", 286 ramdisk_image, ramdisk_image + ramdisk_size - 1, 287 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 288 } 289 290 static void __init early_reserve_initrd(void) 291 { 292 /* Assume only end is not page aligned */ 293 u64 ramdisk_image = get_ramdisk_image(); 294 u64 ramdisk_size = get_ramdisk_size(); 295 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 296 297 if (!boot_params.hdr.type_of_loader || 298 !ramdisk_image || !ramdisk_size) 299 return; /* No initrd provided by bootloader */ 300 301 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 302 } 303 static void __init reserve_initrd(void) 304 { 305 /* Assume only end is not page aligned */ 306 u64 ramdisk_image = get_ramdisk_image(); 307 u64 ramdisk_size = get_ramdisk_size(); 308 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 309 u64 mapped_size; 310 311 if (!boot_params.hdr.type_of_loader || 312 !ramdisk_image || !ramdisk_size) 313 return; /* No initrd provided by bootloader */ 314 315 initrd_start = 0; 316 317 mapped_size = memblock_mem_size(max_pfn_mapped); 318 if (ramdisk_size >= (mapped_size>>1)) 319 panic("initrd too large to handle, " 320 "disabling initrd (%lld needed, %lld available)\n", 321 ramdisk_size, mapped_size>>1); 322 323 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 324 ramdisk_end - 1); 325 326 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 327 PFN_DOWN(ramdisk_end))) { 328 /* All are mapped, easy case */ 329 initrd_start = ramdisk_image + PAGE_OFFSET; 330 initrd_end = initrd_start + ramdisk_size; 331 return; 332 } 333 334 relocate_initrd(); 335 336 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image); 337 } 338 339 #else 340 static void __init early_reserve_initrd(void) 341 { 342 } 343 static void __init reserve_initrd(void) 344 { 345 } 346 #endif /* CONFIG_BLK_DEV_INITRD */ 347 348 static void __init parse_setup_data(void) 349 { 350 struct setup_data *data; 351 u64 pa_data, pa_next; 352 353 pa_data = boot_params.hdr.setup_data; 354 while (pa_data) { 355 u32 data_len, data_type; 356 357 data = early_memremap(pa_data, sizeof(*data)); 358 data_len = data->len + sizeof(struct setup_data); 359 data_type = data->type; 360 pa_next = data->next; 361 early_memunmap(data, sizeof(*data)); 362 363 switch (data_type) { 364 case SETUP_E820_EXT: 365 e820__memory_setup_extended(pa_data, data_len); 366 break; 367 case SETUP_DTB: 368 add_dtb(pa_data); 369 break; 370 case SETUP_EFI: 371 parse_efi_setup(pa_data, data_len); 372 break; 373 default: 374 break; 375 } 376 pa_data = pa_next; 377 } 378 } 379 380 static void __init memblock_x86_reserve_range_setup_data(void) 381 { 382 struct setup_data *data; 383 u64 pa_data; 384 385 pa_data = boot_params.hdr.setup_data; 386 while (pa_data) { 387 data = early_memremap(pa_data, sizeof(*data)); 388 memblock_reserve(pa_data, sizeof(*data) + data->len); 389 390 if (data->type == SETUP_INDIRECT && 391 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) 392 memblock_reserve(((struct setup_indirect *)data->data)->addr, 393 ((struct setup_indirect *)data->data)->len); 394 395 pa_data = data->next; 396 early_memunmap(data, sizeof(*data)); 397 } 398 } 399 400 /* 401 * --------- Crashkernel reservation ------------------------------ 402 */ 403 404 #ifdef CONFIG_KEXEC_CORE 405 406 /* 16M alignment for crash kernel regions */ 407 #define CRASH_ALIGN SZ_16M 408 409 /* 410 * Keep the crash kernel below this limit. 411 * 412 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range 413 * due to mapping restrictions. 414 * 415 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is 416 * the upper limit of system RAM in 4-level paging mode. Since the kdump 417 * jump could be from 5-level paging to 4-level paging, the jump will fail if 418 * the kernel is put above 64 TB, and during the 1st kernel bootup there's 419 * no good way to detect the paging mode of the target kernel which will be 420 * loaded for dumping. 421 */ 422 #ifdef CONFIG_X86_32 423 # define CRASH_ADDR_LOW_MAX SZ_512M 424 # define CRASH_ADDR_HIGH_MAX SZ_512M 425 #else 426 # define CRASH_ADDR_LOW_MAX SZ_4G 427 # define CRASH_ADDR_HIGH_MAX SZ_64T 428 #endif 429 430 static int __init reserve_crashkernel_low(void) 431 { 432 #ifdef CONFIG_X86_64 433 unsigned long long base, low_base = 0, low_size = 0; 434 unsigned long total_low_mem; 435 int ret; 436 437 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT)); 438 439 /* crashkernel=Y,low */ 440 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base); 441 if (ret) { 442 /* 443 * two parts from kernel/dma/swiotlb.c: 444 * -swiotlb size: user-specified with swiotlb= or default. 445 * 446 * -swiotlb overflow buffer: now hardcoded to 32k. We round it 447 * to 8M for other buffers that may need to stay low too. Also 448 * make sure we allocate enough extra low memory so that we 449 * don't run out of DMA buffers for 32-bit devices. 450 */ 451 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); 452 } else { 453 /* passed with crashkernel=0,low ? */ 454 if (!low_size) 455 return 0; 456 } 457 458 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN); 459 if (!low_base) { 460 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", 461 (unsigned long)(low_size >> 20)); 462 return -ENOMEM; 463 } 464 465 ret = memblock_reserve(low_base, low_size); 466 if (ret) { 467 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__); 468 return ret; 469 } 470 471 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n", 472 (unsigned long)(low_size >> 20), 473 (unsigned long)(low_base >> 20), 474 (unsigned long)(total_low_mem >> 20)); 475 476 crashk_low_res.start = low_base; 477 crashk_low_res.end = low_base + low_size - 1; 478 insert_resource(&iomem_resource, &crashk_low_res); 479 #endif 480 return 0; 481 } 482 483 static void __init reserve_crashkernel(void) 484 { 485 unsigned long long crash_size, crash_base, total_mem; 486 bool high = false; 487 int ret; 488 489 total_mem = memblock_phys_mem_size(); 490 491 /* crashkernel=XM */ 492 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); 493 if (ret != 0 || crash_size <= 0) { 494 /* crashkernel=X,high */ 495 ret = parse_crashkernel_high(boot_command_line, total_mem, 496 &crash_size, &crash_base); 497 if (ret != 0 || crash_size <= 0) 498 return; 499 high = true; 500 } 501 502 if (xen_pv_domain()) { 503 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 504 return; 505 } 506 507 /* 0 means: find the address automatically */ 508 if (!crash_base) { 509 /* 510 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, 511 * crashkernel=x,high reserves memory over 4G, also allocates 512 * 256M extra low memory for DMA buffers and swiotlb. 513 * But the extra memory is not required for all machines. 514 * So try low memory first and fall back to high memory 515 * unless "crashkernel=size[KMG],high" is specified. 516 */ 517 if (!high) 518 crash_base = memblock_find_in_range(CRASH_ALIGN, 519 CRASH_ADDR_LOW_MAX, 520 crash_size, CRASH_ALIGN); 521 if (!crash_base) 522 crash_base = memblock_find_in_range(CRASH_ALIGN, 523 CRASH_ADDR_HIGH_MAX, 524 crash_size, CRASH_ALIGN); 525 if (!crash_base) { 526 pr_info("crashkernel reservation failed - No suitable area found.\n"); 527 return; 528 } 529 } else { 530 unsigned long long start; 531 532 start = memblock_find_in_range(crash_base, 533 crash_base + crash_size, 534 crash_size, 1 << 20); 535 if (start != crash_base) { 536 pr_info("crashkernel reservation failed - memory is in use.\n"); 537 return; 538 } 539 } 540 ret = memblock_reserve(crash_base, crash_size); 541 if (ret) { 542 pr_err("%s: Error reserving crashkernel memblock.\n", __func__); 543 return; 544 } 545 546 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { 547 memblock_free(crash_base, crash_size); 548 return; 549 } 550 551 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 552 (unsigned long)(crash_size >> 20), 553 (unsigned long)(crash_base >> 20), 554 (unsigned long)(total_mem >> 20)); 555 556 crashk_res.start = crash_base; 557 crashk_res.end = crash_base + crash_size - 1; 558 insert_resource(&iomem_resource, &crashk_res); 559 } 560 #else 561 static void __init reserve_crashkernel(void) 562 { 563 } 564 #endif 565 566 static struct resource standard_io_resources[] = { 567 { .name = "dma1", .start = 0x00, .end = 0x1f, 568 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 569 { .name = "pic1", .start = 0x20, .end = 0x21, 570 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 571 { .name = "timer0", .start = 0x40, .end = 0x43, 572 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 573 { .name = "timer1", .start = 0x50, .end = 0x53, 574 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 575 { .name = "keyboard", .start = 0x60, .end = 0x60, 576 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 577 { .name = "keyboard", .start = 0x64, .end = 0x64, 578 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 579 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 580 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 581 { .name = "pic2", .start = 0xa0, .end = 0xa1, 582 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 583 { .name = "dma2", .start = 0xc0, .end = 0xdf, 584 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 585 { .name = "fpu", .start = 0xf0, .end = 0xff, 586 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 587 }; 588 589 void __init reserve_standard_io_resources(void) 590 { 591 int i; 592 593 /* request I/O space for devices used on all i[345]86 PCs */ 594 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 595 request_resource(&ioport_resource, &standard_io_resources[i]); 596 597 } 598 599 static __init void reserve_ibft_region(void) 600 { 601 unsigned long addr, size = 0; 602 603 addr = find_ibft_region(&size); 604 605 if (size) 606 memblock_reserve(addr, size); 607 } 608 609 static bool __init snb_gfx_workaround_needed(void) 610 { 611 #ifdef CONFIG_PCI 612 int i; 613 u16 vendor, devid; 614 static const __initconst u16 snb_ids[] = { 615 0x0102, 616 0x0112, 617 0x0122, 618 0x0106, 619 0x0116, 620 0x0126, 621 0x010a, 622 }; 623 624 /* Assume no if something weird is going on with PCI */ 625 if (!early_pci_allowed()) 626 return false; 627 628 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 629 if (vendor != 0x8086) 630 return false; 631 632 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 633 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 634 if (devid == snb_ids[i]) 635 return true; 636 #endif 637 638 return false; 639 } 640 641 /* 642 * Sandy Bridge graphics has trouble with certain ranges, exclude 643 * them from allocation. 644 */ 645 static void __init trim_snb_memory(void) 646 { 647 static const __initconst unsigned long bad_pages[] = { 648 0x20050000, 649 0x20110000, 650 0x20130000, 651 0x20138000, 652 0x40004000, 653 }; 654 int i; 655 656 if (!snb_gfx_workaround_needed()) 657 return; 658 659 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 660 661 /* 662 * Reserve all memory below the 1 MB mark that has not 663 * already been reserved. 664 */ 665 memblock_reserve(0, 1<<20); 666 667 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 668 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 669 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 670 bad_pages[i]); 671 } 672 } 673 674 /* 675 * Here we put platform-specific memory range workarounds, i.e. 676 * memory known to be corrupt or otherwise in need to be reserved on 677 * specific platforms. 678 * 679 * If this gets used more widely it could use a real dispatch mechanism. 680 */ 681 static void __init trim_platform_memory_ranges(void) 682 { 683 trim_snb_memory(); 684 } 685 686 static void __init trim_bios_range(void) 687 { 688 /* 689 * A special case is the first 4Kb of memory; 690 * This is a BIOS owned area, not kernel ram, but generally 691 * not listed as such in the E820 table. 692 * 693 * This typically reserves additional memory (64KiB by default) 694 * since some BIOSes are known to corrupt low memory. See the 695 * Kconfig help text for X86_RESERVE_LOW. 696 */ 697 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 698 699 /* 700 * special case: Some BIOSes report the PC BIOS 701 * area (640Kb -> 1Mb) as RAM even though it is not. 702 * take them out. 703 */ 704 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 705 706 e820__update_table(e820_table); 707 } 708 709 /* called before trim_bios_range() to spare extra sanitize */ 710 static void __init e820_add_kernel_range(void) 711 { 712 u64 start = __pa_symbol(_text); 713 u64 size = __pa_symbol(_end) - start; 714 715 /* 716 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 717 * attempt to fix it by adding the range. We may have a confused BIOS, 718 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 719 * exclude kernel range. If we really are running on top non-RAM, 720 * we will crash later anyways. 721 */ 722 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 723 return; 724 725 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 726 e820__range_remove(start, size, E820_TYPE_RAM, 0); 727 e820__range_add(start, size, E820_TYPE_RAM); 728 } 729 730 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10; 731 732 static int __init parse_reservelow(char *p) 733 { 734 unsigned long long size; 735 736 if (!p) 737 return -EINVAL; 738 739 size = memparse(p, &p); 740 741 if (size < 4096) 742 size = 4096; 743 744 if (size > 640*1024) 745 size = 640*1024; 746 747 reserve_low = size; 748 749 return 0; 750 } 751 752 early_param("reservelow", parse_reservelow); 753 754 static void __init trim_low_memory_range(void) 755 { 756 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE)); 757 } 758 759 /* 760 * Dump out kernel offset information on panic. 761 */ 762 static int 763 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 764 { 765 if (kaslr_enabled()) { 766 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 767 kaslr_offset(), 768 __START_KERNEL, 769 __START_KERNEL_map, 770 MODULES_VADDR-1); 771 } else { 772 pr_emerg("Kernel Offset: disabled\n"); 773 } 774 775 return 0; 776 } 777 778 /* 779 * Determine if we were loaded by an EFI loader. If so, then we have also been 780 * passed the efi memmap, systab, etc., so we should use these data structures 781 * for initialization. Note, the efi init code path is determined by the 782 * global efi_enabled. This allows the same kernel image to be used on existing 783 * systems (with a traditional BIOS) as well as on EFI systems. 784 */ 785 /* 786 * setup_arch - architecture-specific boot-time initializations 787 * 788 * Note: On x86_64, fixmaps are ready for use even before this is called. 789 */ 790 791 void __init setup_arch(char **cmdline_p) 792 { 793 /* 794 * Reserve the memory occupied by the kernel between _text and 795 * __end_of_kernel_reserve symbols. Any kernel sections after the 796 * __end_of_kernel_reserve symbol must be explicitly reserved with a 797 * separate memblock_reserve() or they will be discarded. 798 */ 799 memblock_reserve(__pa_symbol(_text), 800 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 801 802 /* 803 * Make sure page 0 is always reserved because on systems with 804 * L1TF its contents can be leaked to user processes. 805 */ 806 memblock_reserve(0, PAGE_SIZE); 807 808 early_reserve_initrd(); 809 810 /* 811 * At this point everything still needed from the boot loader 812 * or BIOS or kernel text should be early reserved or marked not 813 * RAM in e820. All other memory is free game. 814 */ 815 816 #ifdef CONFIG_X86_32 817 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 818 819 /* 820 * copy kernel address range established so far and switch 821 * to the proper swapper page table 822 */ 823 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 824 initial_page_table + KERNEL_PGD_BOUNDARY, 825 KERNEL_PGD_PTRS); 826 827 load_cr3(swapper_pg_dir); 828 /* 829 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 830 * a cr3 based tlb flush, so the following __flush_tlb_all() 831 * will not flush anything because the CPU quirk which clears 832 * X86_FEATURE_PGE has not been invoked yet. Though due to the 833 * load_cr3() above the TLB has been flushed already. The 834 * quirk is invoked before subsequent calls to __flush_tlb_all() 835 * so proper operation is guaranteed. 836 */ 837 __flush_tlb_all(); 838 #else 839 printk(KERN_INFO "Command line: %s\n", boot_command_line); 840 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 841 #endif 842 843 /* 844 * If we have OLPC OFW, we might end up relocating the fixmap due to 845 * reserve_top(), so do this before touching the ioremap area. 846 */ 847 olpc_ofw_detect(); 848 849 idt_setup_early_traps(); 850 early_cpu_init(); 851 arch_init_ideal_nops(); 852 jump_label_init(); 853 static_call_init(); 854 early_ioremap_init(); 855 856 setup_olpc_ofw_pgd(); 857 858 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 859 screen_info = boot_params.screen_info; 860 edid_info = boot_params.edid_info; 861 #ifdef CONFIG_X86_32 862 apm_info.bios = boot_params.apm_bios_info; 863 ist_info = boot_params.ist_info; 864 #endif 865 saved_video_mode = boot_params.hdr.vid_mode; 866 bootloader_type = boot_params.hdr.type_of_loader; 867 if ((bootloader_type >> 4) == 0xe) { 868 bootloader_type &= 0xf; 869 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 870 } 871 bootloader_version = bootloader_type & 0xf; 872 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 873 874 #ifdef CONFIG_BLK_DEV_RAM 875 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 876 #endif 877 #ifdef CONFIG_EFI 878 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 879 EFI32_LOADER_SIGNATURE, 4)) { 880 set_bit(EFI_BOOT, &efi.flags); 881 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 882 EFI64_LOADER_SIGNATURE, 4)) { 883 set_bit(EFI_BOOT, &efi.flags); 884 set_bit(EFI_64BIT, &efi.flags); 885 } 886 #endif 887 888 x86_init.oem.arch_setup(); 889 890 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 891 e820__memory_setup(); 892 parse_setup_data(); 893 894 copy_edd(); 895 896 if (!boot_params.hdr.root_flags) 897 root_mountflags &= ~MS_RDONLY; 898 init_mm.start_code = (unsigned long) _text; 899 init_mm.end_code = (unsigned long) _etext; 900 init_mm.end_data = (unsigned long) _edata; 901 init_mm.brk = _brk_end; 902 903 code_resource.start = __pa_symbol(_text); 904 code_resource.end = __pa_symbol(_etext)-1; 905 rodata_resource.start = __pa_symbol(__start_rodata); 906 rodata_resource.end = __pa_symbol(__end_rodata)-1; 907 data_resource.start = __pa_symbol(_sdata); 908 data_resource.end = __pa_symbol(_edata)-1; 909 bss_resource.start = __pa_symbol(__bss_start); 910 bss_resource.end = __pa_symbol(__bss_stop)-1; 911 912 #ifdef CONFIG_CMDLINE_BOOL 913 #ifdef CONFIG_CMDLINE_OVERRIDE 914 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 915 #else 916 if (builtin_cmdline[0]) { 917 /* append boot loader cmdline to builtin */ 918 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 919 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 920 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 921 } 922 #endif 923 #endif 924 925 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 926 *cmdline_p = command_line; 927 928 /* 929 * x86_configure_nx() is called before parse_early_param() to detect 930 * whether hardware doesn't support NX (so that the early EHCI debug 931 * console setup can safely call set_fixmap()). It may then be called 932 * again from within noexec_setup() during parsing early parameters 933 * to honor the respective command line option. 934 */ 935 x86_configure_nx(); 936 937 parse_early_param(); 938 939 if (efi_enabled(EFI_BOOT)) 940 efi_memblock_x86_reserve_range(); 941 #ifdef CONFIG_MEMORY_HOTPLUG 942 /* 943 * Memory used by the kernel cannot be hot-removed because Linux 944 * cannot migrate the kernel pages. When memory hotplug is 945 * enabled, we should prevent memblock from allocating memory 946 * for the kernel. 947 * 948 * ACPI SRAT records all hotpluggable memory ranges. But before 949 * SRAT is parsed, we don't know about it. 950 * 951 * The kernel image is loaded into memory at very early time. We 952 * cannot prevent this anyway. So on NUMA system, we set any 953 * node the kernel resides in as un-hotpluggable. 954 * 955 * Since on modern servers, one node could have double-digit 956 * gigabytes memory, we can assume the memory around the kernel 957 * image is also un-hotpluggable. So before SRAT is parsed, just 958 * allocate memory near the kernel image to try the best to keep 959 * the kernel away from hotpluggable memory. 960 */ 961 if (movable_node_is_enabled()) 962 memblock_set_bottom_up(true); 963 #endif 964 965 x86_report_nx(); 966 967 /* after early param, so could get panic from serial */ 968 memblock_x86_reserve_range_setup_data(); 969 970 if (acpi_mps_check()) { 971 #ifdef CONFIG_X86_LOCAL_APIC 972 disable_apic = 1; 973 #endif 974 setup_clear_cpu_cap(X86_FEATURE_APIC); 975 } 976 977 e820__reserve_setup_data(); 978 e820__finish_early_params(); 979 980 if (efi_enabled(EFI_BOOT)) 981 efi_init(); 982 983 dmi_setup(); 984 985 /* 986 * VMware detection requires dmi to be available, so this 987 * needs to be done after dmi_setup(), for the boot CPU. 988 */ 989 init_hypervisor_platform(); 990 991 tsc_early_init(); 992 x86_init.resources.probe_roms(); 993 994 /* after parse_early_param, so could debug it */ 995 insert_resource(&iomem_resource, &code_resource); 996 insert_resource(&iomem_resource, &rodata_resource); 997 insert_resource(&iomem_resource, &data_resource); 998 insert_resource(&iomem_resource, &bss_resource); 999 1000 e820_add_kernel_range(); 1001 trim_bios_range(); 1002 #ifdef CONFIG_X86_32 1003 if (ppro_with_ram_bug()) { 1004 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 1005 E820_TYPE_RESERVED); 1006 e820__update_table(e820_table); 1007 printk(KERN_INFO "fixed physical RAM map:\n"); 1008 e820__print_table("bad_ppro"); 1009 } 1010 #else 1011 early_gart_iommu_check(); 1012 #endif 1013 1014 /* 1015 * partially used pages are not usable - thus 1016 * we are rounding upwards: 1017 */ 1018 max_pfn = e820__end_of_ram_pfn(); 1019 1020 /* update e820 for memory not covered by WB MTRRs */ 1021 mtrr_bp_init(); 1022 if (mtrr_trim_uncached_memory(max_pfn)) 1023 max_pfn = e820__end_of_ram_pfn(); 1024 1025 max_possible_pfn = max_pfn; 1026 1027 /* 1028 * This call is required when the CPU does not support PAT. If 1029 * mtrr_bp_init() invoked it already via pat_init() the call has no 1030 * effect. 1031 */ 1032 init_cache_modes(); 1033 1034 /* 1035 * Define random base addresses for memory sections after max_pfn is 1036 * defined and before each memory section base is used. 1037 */ 1038 kernel_randomize_memory(); 1039 1040 #ifdef CONFIG_X86_32 1041 /* max_low_pfn get updated here */ 1042 find_low_pfn_range(); 1043 #else 1044 check_x2apic(); 1045 1046 /* How many end-of-memory variables you have, grandma! */ 1047 /* need this before calling reserve_initrd */ 1048 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1049 max_low_pfn = e820__end_of_low_ram_pfn(); 1050 else 1051 max_low_pfn = max_pfn; 1052 1053 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 1054 #endif 1055 1056 /* 1057 * Find and reserve possible boot-time SMP configuration: 1058 */ 1059 find_smp_config(); 1060 1061 reserve_ibft_region(); 1062 1063 early_alloc_pgt_buf(); 1064 1065 /* 1066 * Need to conclude brk, before e820__memblock_setup() 1067 * it could use memblock_find_in_range, could overlap with 1068 * brk area. 1069 */ 1070 reserve_brk(); 1071 1072 cleanup_highmap(); 1073 1074 memblock_set_current_limit(ISA_END_ADDRESS); 1075 e820__memblock_setup(); 1076 1077 reserve_bios_regions(); 1078 1079 efi_fake_memmap(); 1080 efi_find_mirror(); 1081 efi_esrt_init(); 1082 efi_mokvar_table_init(); 1083 1084 /* 1085 * The EFI specification says that boot service code won't be 1086 * called after ExitBootServices(). This is, in fact, a lie. 1087 */ 1088 efi_reserve_boot_services(); 1089 1090 /* preallocate 4k for mptable mpc */ 1091 e820__memblock_alloc_reserved_mpc_new(); 1092 1093 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1094 setup_bios_corruption_check(); 1095 #endif 1096 1097 #ifdef CONFIG_X86_32 1098 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1099 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1100 #endif 1101 1102 reserve_real_mode(); 1103 1104 trim_platform_memory_ranges(); 1105 trim_low_memory_range(); 1106 1107 init_mem_mapping(); 1108 1109 idt_setup_early_pf(); 1110 1111 /* 1112 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1113 * with the current CR4 value. This may not be necessary, but 1114 * auditing all the early-boot CR4 manipulation would be needed to 1115 * rule it out. 1116 * 1117 * Mask off features that don't work outside long mode (just 1118 * PCIDE for now). 1119 */ 1120 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1121 1122 memblock_set_current_limit(get_max_mapped()); 1123 1124 /* 1125 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1126 */ 1127 1128 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1129 if (init_ohci1394_dma_early) 1130 init_ohci1394_dma_on_all_controllers(); 1131 #endif 1132 /* Allocate bigger log buffer */ 1133 setup_log_buf(1); 1134 1135 if (efi_enabled(EFI_BOOT)) { 1136 switch (boot_params.secure_boot) { 1137 case efi_secureboot_mode_disabled: 1138 pr_info("Secure boot disabled\n"); 1139 break; 1140 case efi_secureboot_mode_enabled: 1141 pr_info("Secure boot enabled\n"); 1142 break; 1143 default: 1144 pr_info("Secure boot could not be determined\n"); 1145 break; 1146 } 1147 } 1148 1149 reserve_initrd(); 1150 1151 acpi_table_upgrade(); 1152 1153 vsmp_init(); 1154 1155 io_delay_init(); 1156 1157 early_platform_quirks(); 1158 1159 /* 1160 * Parse the ACPI tables for possible boot-time SMP configuration. 1161 */ 1162 acpi_boot_table_init(); 1163 1164 early_acpi_boot_init(); 1165 1166 initmem_init(); 1167 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1168 1169 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1170 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1171 1172 /* 1173 * Reserve memory for crash kernel after SRAT is parsed so that it 1174 * won't consume hotpluggable memory. 1175 */ 1176 reserve_crashkernel(); 1177 1178 memblock_find_dma_reserve(); 1179 1180 if (!early_xdbc_setup_hardware()) 1181 early_xdbc_register_console(); 1182 1183 x86_init.paging.pagetable_init(); 1184 1185 kasan_init(); 1186 1187 /* 1188 * Sync back kernel address range. 1189 * 1190 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1191 * this call? 1192 */ 1193 sync_initial_page_table(); 1194 1195 tboot_probe(); 1196 1197 map_vsyscall(); 1198 1199 generic_apic_probe(); 1200 1201 early_quirks(); 1202 1203 /* 1204 * Read APIC and some other early information from ACPI tables. 1205 */ 1206 acpi_boot_init(); 1207 sfi_init(); 1208 x86_dtb_init(); 1209 1210 /* 1211 * get boot-time SMP configuration: 1212 */ 1213 get_smp_config(); 1214 1215 /* 1216 * Systems w/o ACPI and mptables might not have it mapped the local 1217 * APIC yet, but prefill_possible_map() might need to access it. 1218 */ 1219 init_apic_mappings(); 1220 1221 prefill_possible_map(); 1222 1223 init_cpu_to_node(); 1224 1225 io_apic_init_mappings(); 1226 1227 x86_init.hyper.guest_late_init(); 1228 1229 e820__reserve_resources(); 1230 e820__register_nosave_regions(max_pfn); 1231 1232 x86_init.resources.reserve_resources(); 1233 1234 e820__setup_pci_gap(); 1235 1236 #ifdef CONFIG_VT 1237 #if defined(CONFIG_VGA_CONSOLE) 1238 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1239 conswitchp = &vga_con; 1240 #endif 1241 #endif 1242 x86_init.oem.banner(); 1243 1244 x86_init.timers.wallclock_init(); 1245 1246 mcheck_init(); 1247 1248 register_refined_jiffies(CLOCK_TICK_RATE); 1249 1250 #ifdef CONFIG_EFI 1251 if (efi_enabled(EFI_BOOT)) 1252 efi_apply_memmap_quirks(); 1253 #endif 1254 1255 unwind_init(); 1256 } 1257 1258 #ifdef CONFIG_X86_32 1259 1260 static struct resource video_ram_resource = { 1261 .name = "Video RAM area", 1262 .start = 0xa0000, 1263 .end = 0xbffff, 1264 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1265 }; 1266 1267 void __init i386_reserve_resources(void) 1268 { 1269 request_resource(&iomem_resource, &video_ram_resource); 1270 reserve_standard_io_resources(); 1271 } 1272 1273 #endif /* CONFIG_X86_32 */ 1274 1275 static struct notifier_block kernel_offset_notifier = { 1276 .notifier_call = dump_kernel_offset 1277 }; 1278 1279 static int __init register_kernel_offset_dumper(void) 1280 { 1281 atomic_notifier_chain_register(&panic_notifier_list, 1282 &kernel_offset_notifier); 1283 return 0; 1284 } 1285 __initcall(register_kernel_offset_dumper); 1286