xref: /linux/arch/x86/kernel/setup.c (revision 813b46808822db6838c43e92ba21ce013d23fcdc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  * This file contains the setup_arch() code, which handles the architecture-dependent
6  * parts of early kernel initialization.
7  */
8 #include <linux/acpi.h>
9 #include <linux/console.h>
10 #include <linux/cpu.h>
11 #include <linux/crash_dump.h>
12 #include <linux/dma-map-ops.h>
13 #include <linux/efi.h>
14 #include <linux/hugetlb.h>
15 #include <linux/ima.h>
16 #include <linux/init_ohci1394_dma.h>
17 #include <linux/initrd.h>
18 #include <linux/iscsi_ibft.h>
19 #include <linux/memblock.h>
20 #include <linux/panic_notifier.h>
21 #include <linux/pci.h>
22 #include <linux/random.h>
23 #include <linux/root_dev.h>
24 #include <linux/static_call.h>
25 #include <linux/swiotlb.h>
26 #include <linux/tboot.h>
27 #include <linux/usb/xhci-dbgp.h>
28 #include <linux/vmalloc.h>
29 
30 #include <uapi/linux/mount.h>
31 
32 #include <xen/xen.h>
33 
34 #include <asm/apic.h>
35 #include <asm/bios_ebda.h>
36 #include <asm/bugs.h>
37 #include <asm/cacheinfo.h>
38 #include <asm/coco.h>
39 #include <asm/cpu.h>
40 #include <asm/efi.h>
41 #include <asm/gart.h>
42 #include <asm/hypervisor.h>
43 #include <asm/io_apic.h>
44 #include <asm/kasan.h>
45 #include <asm/kaslr.h>
46 #include <asm/mce.h>
47 #include <asm/memtype.h>
48 #include <asm/mtrr.h>
49 #include <asm/nmi.h>
50 #include <asm/numa.h>
51 #include <asm/olpc_ofw.h>
52 #include <asm/pci-direct.h>
53 #include <asm/prom.h>
54 #include <asm/proto.h>
55 #include <asm/realmode.h>
56 #include <asm/thermal.h>
57 #include <asm/unwind.h>
58 #include <asm/vsyscall.h>
59 
60 /*
61  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
62  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
63  *
64  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
65  * represented by pfn_mapped[].
66  */
67 unsigned long max_low_pfn_mapped;
68 unsigned long max_pfn_mapped;
69 
70 #ifdef CONFIG_DMI
71 RESERVE_BRK(dmi_alloc, 65536);
72 #endif
73 
74 
75 unsigned long _brk_start = (unsigned long)__brk_base;
76 unsigned long _brk_end   = (unsigned long)__brk_base;
77 
78 struct boot_params boot_params;
79 
80 /*
81  * These are the four main kernel memory regions, we put them into
82  * the resource tree so that kdump tools and other debugging tools
83  * recover it:
84  */
85 
86 static struct resource rodata_resource = {
87 	.name	= "Kernel rodata",
88 	.start	= 0,
89 	.end	= 0,
90 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
91 };
92 
93 static struct resource data_resource = {
94 	.name	= "Kernel data",
95 	.start	= 0,
96 	.end	= 0,
97 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
98 };
99 
100 static struct resource code_resource = {
101 	.name	= "Kernel code",
102 	.start	= 0,
103 	.end	= 0,
104 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
105 };
106 
107 static struct resource bss_resource = {
108 	.name	= "Kernel bss",
109 	.start	= 0,
110 	.end	= 0,
111 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
112 };
113 
114 
115 #ifdef CONFIG_X86_32
116 /* CPU data as detected by the assembly code in head_32.S */
117 struct cpuinfo_x86 new_cpu_data;
118 
119 struct apm_info apm_info;
120 EXPORT_SYMBOL(apm_info);
121 
122 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
123 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
124 struct ist_info ist_info;
125 EXPORT_SYMBOL(ist_info);
126 #else
127 struct ist_info ist_info;
128 #endif
129 
130 #endif
131 
132 struct cpuinfo_x86 boot_cpu_data __read_mostly;
133 EXPORT_SYMBOL(boot_cpu_data);
134 SYM_PIC_ALIAS(boot_cpu_data);
135 
136 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
137 __visible unsigned long mmu_cr4_features __ro_after_init;
138 #else
139 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
140 #endif
141 
142 #ifdef CONFIG_IMA
143 static phys_addr_t ima_kexec_buffer_phys;
144 static size_t ima_kexec_buffer_size;
145 #endif
146 
147 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
148 int bootloader_type, bootloader_version;
149 
150 static const struct ctl_table x86_sysctl_table[] = {
151 	{
152 		.procname       = "unknown_nmi_panic",
153 		.data           = &unknown_nmi_panic,
154 		.maxlen         = sizeof(int),
155 		.mode           = 0644,
156 		.proc_handler   = proc_dointvec,
157 	},
158 	{
159 		.procname	= "panic_on_unrecovered_nmi",
160 		.data		= &panic_on_unrecovered_nmi,
161 		.maxlen		= sizeof(int),
162 		.mode		= 0644,
163 		.proc_handler	= proc_dointvec,
164 	},
165 	{
166 		.procname	= "panic_on_io_nmi",
167 		.data		= &panic_on_io_nmi,
168 		.maxlen		= sizeof(int),
169 		.mode		= 0644,
170 		.proc_handler	= proc_dointvec,
171 	},
172 	{
173 		.procname	= "bootloader_type",
174 		.data		= &bootloader_type,
175 		.maxlen		= sizeof(int),
176 		.mode		= 0444,
177 		.proc_handler	= proc_dointvec,
178 	},
179 	{
180 		.procname	= "bootloader_version",
181 		.data		= &bootloader_version,
182 		.maxlen		= sizeof(int),
183 		.mode		= 0444,
184 		.proc_handler	= proc_dointvec,
185 	},
186 	{
187 		.procname	= "io_delay_type",
188 		.data		= &io_delay_type,
189 		.maxlen		= sizeof(int),
190 		.mode		= 0644,
191 		.proc_handler	= proc_dointvec,
192 	},
193 #if defined(CONFIG_ACPI_SLEEP)
194 	{
195 		.procname	= "acpi_video_flags",
196 		.data		= &acpi_realmode_flags,
197 		.maxlen		= sizeof(unsigned long),
198 		.mode		= 0644,
199 		.proc_handler	= proc_doulongvec_minmax,
200 	},
201 #endif
202 };
203 
204 static int __init init_x86_sysctl(void)
205 {
206 	register_sysctl_init("kernel", x86_sysctl_table);
207 	return 0;
208 }
209 arch_initcall(init_x86_sysctl);
210 
211 /*
212  * Setup options
213  */
214 struct screen_info screen_info;
215 EXPORT_SYMBOL(screen_info);
216 struct edid_info edid_info;
217 EXPORT_SYMBOL_GPL(edid_info);
218 
219 extern int root_mountflags;
220 
221 unsigned long saved_video_mode;
222 
223 #define RAMDISK_IMAGE_START_MASK	0x07FF
224 #define RAMDISK_PROMPT_FLAG		0x8000
225 #define RAMDISK_LOAD_FLAG		0x4000
226 
227 static char __initdata command_line[COMMAND_LINE_SIZE];
228 #ifdef CONFIG_CMDLINE_BOOL
229 char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
230 bool builtin_cmdline_added __ro_after_init;
231 #endif
232 
233 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
234 struct edd edd;
235 #ifdef CONFIG_EDD_MODULE
236 EXPORT_SYMBOL(edd);
237 #endif
238 /**
239  * copy_edd() - Copy the BIOS EDD information
240  *              from boot_params into a safe place.
241  *
242  */
243 static inline void __init copy_edd(void)
244 {
245      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
246 	    sizeof(edd.mbr_signature));
247      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
248      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
249      edd.edd_info_nr = boot_params.eddbuf_entries;
250 }
251 #else
252 static inline void __init copy_edd(void)
253 {
254 }
255 #endif
256 
257 void * __init extend_brk(size_t size, size_t align)
258 {
259 	size_t mask = align - 1;
260 	void *ret;
261 
262 	BUG_ON(_brk_start == 0);
263 	BUG_ON(align & mask);
264 
265 	_brk_end = (_brk_end + mask) & ~mask;
266 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
267 
268 	ret = (void *)_brk_end;
269 	_brk_end += size;
270 
271 	memset(ret, 0, size);
272 
273 	return ret;
274 }
275 
276 #ifdef CONFIG_X86_32
277 static void __init cleanup_highmap(void)
278 {
279 }
280 #endif
281 
282 static void __init reserve_brk(void)
283 {
284 	if (_brk_end > _brk_start)
285 		memblock_reserve_kern(__pa_symbol(_brk_start),
286 				      _brk_end - _brk_start);
287 
288 	/* Mark brk area as locked down and no longer taking any
289 	   new allocations */
290 	_brk_start = 0;
291 }
292 
293 #ifdef CONFIG_BLK_DEV_INITRD
294 
295 static u64 __init get_ramdisk_image(void)
296 {
297 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
298 
299 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
300 
301 	if (ramdisk_image == 0)
302 		ramdisk_image = phys_initrd_start;
303 
304 	return ramdisk_image;
305 }
306 static u64 __init get_ramdisk_size(void)
307 {
308 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
309 
310 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
311 
312 	if (ramdisk_size == 0)
313 		ramdisk_size = phys_initrd_size;
314 
315 	return ramdisk_size;
316 }
317 
318 static void __init relocate_initrd(void)
319 {
320 	/* Assume only end is not page aligned */
321 	u64 ramdisk_image = get_ramdisk_image();
322 	u64 ramdisk_size  = get_ramdisk_size();
323 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
324 	int ret = 0;
325 
326 	/* We need to move the initrd down into directly mapped mem */
327 	u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
328 						      PFN_PHYS(max_pfn_mapped));
329 	if (!relocated_ramdisk)
330 		panic("Cannot find place for new RAMDISK of size %lld\n",
331 		      ramdisk_size);
332 
333 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
334 	initrd_end   = initrd_start + ramdisk_size;
335 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
336 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
337 
338 	ret = copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
339 	if (ret)
340 		panic("Copy RAMDISK failed\n");
341 
342 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
343 		" [mem %#010llx-%#010llx]\n",
344 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
345 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
346 }
347 
348 static void __init early_reserve_initrd(void)
349 {
350 	/* Assume only end is not page aligned */
351 	u64 ramdisk_image = get_ramdisk_image();
352 	u64 ramdisk_size  = get_ramdisk_size();
353 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
354 
355 	if (!boot_params.hdr.type_of_loader ||
356 	    !ramdisk_image || !ramdisk_size)
357 		return;		/* No initrd provided by bootloader */
358 
359 	memblock_reserve_kern(ramdisk_image, ramdisk_end - ramdisk_image);
360 }
361 
362 static void __init reserve_initrd(void)
363 {
364 	/* Assume only end is not page aligned */
365 	u64 ramdisk_image = get_ramdisk_image();
366 	u64 ramdisk_size  = get_ramdisk_size();
367 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
368 
369 	if (!boot_params.hdr.type_of_loader ||
370 	    !ramdisk_image || !ramdisk_size)
371 		return;		/* No initrd provided by bootloader */
372 
373 	initrd_start = 0;
374 
375 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
376 			ramdisk_end - 1);
377 
378 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
379 				PFN_DOWN(ramdisk_end))) {
380 		/* All are mapped, easy case */
381 		initrd_start = ramdisk_image + PAGE_OFFSET;
382 		initrd_end = initrd_start + ramdisk_size;
383 		return;
384 	}
385 
386 	relocate_initrd();
387 
388 	memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
389 }
390 
391 #else
392 static void __init early_reserve_initrd(void)
393 {
394 }
395 static void __init reserve_initrd(void)
396 {
397 }
398 #endif /* CONFIG_BLK_DEV_INITRD */
399 
400 static void __init add_early_ima_buffer(u64 phys_addr)
401 {
402 #ifdef CONFIG_IMA
403 	struct ima_setup_data *data;
404 
405 	data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
406 	if (!data) {
407 		pr_warn("setup: failed to memremap ima_setup_data entry\n");
408 		return;
409 	}
410 
411 	if (data->size) {
412 		memblock_reserve_kern(data->addr, data->size);
413 		ima_kexec_buffer_phys = data->addr;
414 		ima_kexec_buffer_size = data->size;
415 	}
416 
417 	early_memunmap(data, sizeof(*data));
418 #else
419 	pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
420 #endif
421 }
422 
423 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
424 int __init ima_free_kexec_buffer(void)
425 {
426 	if (!ima_kexec_buffer_size)
427 		return -ENOENT;
428 
429 	memblock_free_late(ima_kexec_buffer_phys,
430 			   ima_kexec_buffer_size);
431 
432 	ima_kexec_buffer_phys = 0;
433 	ima_kexec_buffer_size = 0;
434 
435 	return 0;
436 }
437 
438 int __init ima_get_kexec_buffer(void **addr, size_t *size)
439 {
440 	if (!ima_kexec_buffer_size)
441 		return -ENOENT;
442 
443 	*addr = __va(ima_kexec_buffer_phys);
444 	*size = ima_kexec_buffer_size;
445 
446 	return 0;
447 }
448 #endif
449 
450 static void __init add_kho(u64 phys_addr, u32 data_len)
451 {
452 	struct kho_data *kho;
453 	u64 addr = phys_addr + sizeof(struct setup_data);
454 	u64 size = data_len - sizeof(struct setup_data);
455 
456 	if (!IS_ENABLED(CONFIG_KEXEC_HANDOVER)) {
457 		pr_warn("Passed KHO data, but CONFIG_KEXEC_HANDOVER not set. Ignoring.\n");
458 		return;
459 	}
460 
461 	kho = early_memremap(addr, size);
462 	if (!kho) {
463 		pr_warn("setup: failed to memremap kho data (0x%llx, 0x%llx)\n",
464 			addr, size);
465 		return;
466 	}
467 
468 	kho_populate(kho->fdt_addr, kho->fdt_size, kho->scratch_addr, kho->scratch_size);
469 
470 	early_memunmap(kho, size);
471 }
472 
473 static void __init parse_setup_data(void)
474 {
475 	struct setup_data *data;
476 	u64 pa_data, pa_next;
477 
478 	pa_data = boot_params.hdr.setup_data;
479 	while (pa_data) {
480 		u32 data_len, data_type;
481 
482 		data = early_memremap(pa_data, sizeof(*data));
483 		data_len = data->len + sizeof(struct setup_data);
484 		data_type = data->type;
485 		pa_next = data->next;
486 		early_memunmap(data, sizeof(*data));
487 
488 		switch (data_type) {
489 		case SETUP_E820_EXT:
490 			e820__memory_setup_extended(pa_data, data_len);
491 			break;
492 		case SETUP_DTB:
493 			add_dtb(pa_data);
494 			break;
495 		case SETUP_EFI:
496 			parse_efi_setup(pa_data, data_len);
497 			break;
498 		case SETUP_IMA:
499 			add_early_ima_buffer(pa_data);
500 			break;
501 		case SETUP_KEXEC_KHO:
502 			add_kho(pa_data, data_len);
503 			break;
504 		case SETUP_RNG_SEED:
505 			data = early_memremap(pa_data, data_len);
506 			add_bootloader_randomness(data->data, data->len);
507 			/* Zero seed for forward secrecy. */
508 			memzero_explicit(data->data, data->len);
509 			/* Zero length in case we find ourselves back here by accident. */
510 			memzero_explicit(&data->len, sizeof(data->len));
511 			early_memunmap(data, data_len);
512 			break;
513 		default:
514 			break;
515 		}
516 		pa_data = pa_next;
517 	}
518 }
519 
520 /*
521  * Translate the fields of 'struct boot_param' into global variables
522  * representing these parameters.
523  */
524 static void __init parse_boot_params(void)
525 {
526 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
527 	screen_info = boot_params.screen_info;
528 	edid_info = boot_params.edid_info;
529 #ifdef CONFIG_X86_32
530 	apm_info.bios = boot_params.apm_bios_info;
531 	ist_info = boot_params.ist_info;
532 #endif
533 	saved_video_mode = boot_params.hdr.vid_mode;
534 	bootloader_type = boot_params.hdr.type_of_loader;
535 	if ((bootloader_type >> 4) == 0xe) {
536 		bootloader_type &= 0xf;
537 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
538 	}
539 	bootloader_version  = bootloader_type & 0xf;
540 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
541 
542 #ifdef CONFIG_BLK_DEV_RAM
543 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
544 #endif
545 #ifdef CONFIG_EFI
546 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
547 		     EFI32_LOADER_SIGNATURE, 4)) {
548 		set_bit(EFI_BOOT, &efi.flags);
549 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
550 		     EFI64_LOADER_SIGNATURE, 4)) {
551 		set_bit(EFI_BOOT, &efi.flags);
552 		set_bit(EFI_64BIT, &efi.flags);
553 	}
554 #endif
555 
556 	if (!boot_params.hdr.root_flags)
557 		root_mountflags &= ~MS_RDONLY;
558 }
559 
560 static void __init memblock_x86_reserve_range_setup_data(void)
561 {
562 	struct setup_indirect *indirect;
563 	struct setup_data *data;
564 	u64 pa_data, pa_next;
565 	u32 len;
566 
567 	pa_data = boot_params.hdr.setup_data;
568 	while (pa_data) {
569 		data = early_memremap(pa_data, sizeof(*data));
570 		if (!data) {
571 			pr_warn("setup: failed to memremap setup_data entry\n");
572 			return;
573 		}
574 
575 		len = sizeof(*data);
576 		pa_next = data->next;
577 
578 		memblock_reserve_kern(pa_data, sizeof(*data) + data->len);
579 
580 		if (data->type == SETUP_INDIRECT) {
581 			len += data->len;
582 			early_memunmap(data, sizeof(*data));
583 			data = early_memremap(pa_data, len);
584 			if (!data) {
585 				pr_warn("setup: failed to memremap indirect setup_data\n");
586 				return;
587 			}
588 
589 			indirect = (struct setup_indirect *)data->data;
590 
591 			if (indirect->type != SETUP_INDIRECT)
592 				memblock_reserve_kern(indirect->addr, indirect->len);
593 		}
594 
595 		pa_data = pa_next;
596 		early_memunmap(data, len);
597 	}
598 }
599 
600 static void __init arch_reserve_crashkernel(void)
601 {
602 	unsigned long long crash_base, crash_size, low_size = 0, cma_size = 0;
603 	bool high = false;
604 	int ret;
605 
606 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
607 		return;
608 
609 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
610 				&crash_size, &crash_base,
611 				&low_size, &cma_size, &high);
612 	if (ret)
613 		return;
614 
615 	if (xen_pv_domain()) {
616 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
617 		return;
618 	}
619 
620 	reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
621 	reserve_crashkernel_cma(cma_size);
622 }
623 
624 static struct resource standard_io_resources[] = {
625 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
626 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
627 	{ .name = "pic1", .start = 0x20, .end = 0x21,
628 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
629 	{ .name = "timer0", .start = 0x40, .end = 0x43,
630 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 	{ .name = "timer1", .start = 0x50, .end = 0x53,
632 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
633 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
634 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
636 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
638 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
640 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
642 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
644 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
645 };
646 
647 void __init reserve_standard_io_resources(void)
648 {
649 	int i;
650 
651 	/* request I/O space for devices used on all i[345]86 PCs */
652 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
653 		request_resource(&ioport_resource, &standard_io_resources[i]);
654 
655 }
656 
657 static void __init setup_kernel_resources(void)
658 {
659 	code_resource.start = __pa_symbol(_text);
660 	code_resource.end = __pa_symbol(_etext)-1;
661 	rodata_resource.start = __pa_symbol(__start_rodata);
662 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
663 	data_resource.start = __pa_symbol(_sdata);
664 	data_resource.end = __pa_symbol(_edata)-1;
665 	bss_resource.start = __pa_symbol(__bss_start);
666 	bss_resource.end = __pa_symbol(__bss_stop)-1;
667 
668 	insert_resource(&iomem_resource, &code_resource);
669 	insert_resource(&iomem_resource, &rodata_resource);
670 	insert_resource(&iomem_resource, &data_resource);
671 	insert_resource(&iomem_resource, &bss_resource);
672 }
673 
674 static bool __init snb_gfx_workaround_needed(void)
675 {
676 #ifdef CONFIG_PCI
677 	int i;
678 	u16 vendor, devid;
679 	static const __initconst u16 snb_ids[] = {
680 		0x0102,
681 		0x0112,
682 		0x0122,
683 		0x0106,
684 		0x0116,
685 		0x0126,
686 		0x010a,
687 	};
688 
689 	/* Assume no if something weird is going on with PCI */
690 	if (!early_pci_allowed())
691 		return false;
692 
693 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
694 	if (vendor != 0x8086)
695 		return false;
696 
697 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
698 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
699 		if (devid == snb_ids[i])
700 			return true;
701 #endif
702 
703 	return false;
704 }
705 
706 /*
707  * Sandy Bridge graphics has trouble with certain ranges, exclude
708  * them from allocation.
709  */
710 static void __init trim_snb_memory(void)
711 {
712 	static const __initconst unsigned long bad_pages[] = {
713 		0x20050000,
714 		0x20110000,
715 		0x20130000,
716 		0x20138000,
717 		0x40004000,
718 	};
719 	int i;
720 
721 	if (!snb_gfx_workaround_needed())
722 		return;
723 
724 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
725 
726 	/*
727 	 * SandyBridge integrated graphics devices have a bug that prevents
728 	 * them from accessing certain memory ranges, namely anything below
729 	 * 1M and in the pages listed in bad_pages[] above.
730 	 *
731 	 * To avoid these pages being ever accessed by SNB gfx devices reserve
732 	 * bad_pages that have not already been reserved at boot time.
733 	 * All memory below the 1 MB mark is anyway reserved later during
734 	 * setup_arch(), so there is no need to reserve it here.
735 	 */
736 
737 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
738 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
739 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
740 			       bad_pages[i]);
741 	}
742 }
743 
744 static void __init trim_bios_range(void)
745 {
746 	/*
747 	 * A special case is the first 4Kb of memory;
748 	 * This is a BIOS owned area, not kernel ram, but generally
749 	 * not listed as such in the E820 table.
750 	 *
751 	 * This typically reserves additional memory (64KiB by default)
752 	 * since some BIOSes are known to corrupt low memory.  See the
753 	 * Kconfig help text for X86_RESERVE_LOW.
754 	 */
755 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
756 
757 	/*
758 	 * special case: Some BIOSes report the PC BIOS
759 	 * area (640Kb -> 1Mb) as RAM even though it is not.
760 	 * take them out.
761 	 */
762 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
763 
764 	e820__update_table(e820_table);
765 }
766 
767 /* called before trim_bios_range() to spare extra sanitize */
768 static void __init e820_add_kernel_range(void)
769 {
770 	u64 start = __pa_symbol(_text);
771 	u64 size = __pa_symbol(_end) - start;
772 
773 	/*
774 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
775 	 * attempt to fix it by adding the range. We may have a confused BIOS,
776 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
777 	 * exclude kernel range. If we really are running on top non-RAM,
778 	 * we will crash later anyways.
779 	 */
780 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
781 		return;
782 
783 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
784 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
785 	e820__range_add(start, size, E820_TYPE_RAM);
786 }
787 
788 static void __init early_reserve_memory(void)
789 {
790 	/*
791 	 * Reserve the memory occupied by the kernel between _text and
792 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
793 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
794 	 * separate memblock_reserve() or they will be discarded.
795 	 */
796 	memblock_reserve_kern(__pa_symbol(_text),
797 			      (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
798 
799 	/*
800 	 * The first 4Kb of memory is a BIOS owned area, but generally it is
801 	 * not listed as such in the E820 table.
802 	 *
803 	 * Reserve the first 64K of memory since some BIOSes are known to
804 	 * corrupt low memory. After the real mode trampoline is allocated the
805 	 * rest of the memory below 640k is reserved.
806 	 *
807 	 * In addition, make sure page 0 is always reserved because on
808 	 * systems with L1TF its contents can be leaked to user processes.
809 	 */
810 	memblock_reserve(0, SZ_64K);
811 
812 	early_reserve_initrd();
813 
814 	memblock_x86_reserve_range_setup_data();
815 
816 	reserve_bios_regions();
817 	trim_snb_memory();
818 }
819 
820 /*
821  * Dump out kernel offset information on panic.
822  */
823 static int
824 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
825 {
826 	if (kaslr_enabled()) {
827 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
828 			 kaslr_offset(),
829 			 __START_KERNEL,
830 			 __START_KERNEL_map,
831 			 MODULES_VADDR-1);
832 	} else {
833 		pr_emerg("Kernel Offset: disabled\n");
834 	}
835 
836 	return 0;
837 }
838 
839 void x86_configure_nx(void)
840 {
841 	if (boot_cpu_has(X86_FEATURE_NX))
842 		__supported_pte_mask |= _PAGE_NX;
843 	else
844 		__supported_pte_mask &= ~_PAGE_NX;
845 }
846 
847 static void __init x86_report_nx(void)
848 {
849 	if (!boot_cpu_has(X86_FEATURE_NX)) {
850 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
851 		       "missing in CPU!\n");
852 	} else {
853 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
854 		printk(KERN_INFO "NX (Execute Disable) protection: active\n");
855 #else
856 		/* 32bit non-PAE kernel, NX cannot be used */
857 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
858 		       "cannot be enabled: non-PAE kernel!\n");
859 #endif
860 	}
861 }
862 
863 /*
864  * Determine if we were loaded by an EFI loader.  If so, then we have also been
865  * passed the efi memmap, systab, etc., so we should use these data structures
866  * for initialization.  Note, the efi init code path is determined by the
867  * global efi_enabled. This allows the same kernel image to be used on existing
868  * systems (with a traditional BIOS) as well as on EFI systems.
869  */
870 /*
871  * setup_arch - architecture-specific boot-time initializations
872  *
873  * Note: On x86_64, fixmaps are ready for use even before this is called.
874  */
875 
876 void __init setup_arch(char **cmdline_p)
877 {
878 #ifdef CONFIG_X86_32
879 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
880 
881 	/*
882 	 * copy kernel address range established so far and switch
883 	 * to the proper swapper page table
884 	 */
885 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
886 			initial_page_table + KERNEL_PGD_BOUNDARY,
887 			KERNEL_PGD_PTRS);
888 
889 	load_cr3(swapper_pg_dir);
890 	/*
891 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
892 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
893 	 * will not flush anything because the CPU quirk which clears
894 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
895 	 * load_cr3() above the TLB has been flushed already. The
896 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
897 	 * so proper operation is guaranteed.
898 	 */
899 	__flush_tlb_all();
900 #else
901 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
902 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
903 #endif
904 
905 #ifdef CONFIG_CMDLINE_BOOL
906 #ifdef CONFIG_CMDLINE_OVERRIDE
907 	strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
908 #else
909 	if (builtin_cmdline[0]) {
910 		/* append boot loader cmdline to builtin */
911 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
912 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
913 		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
914 	}
915 #endif
916 	builtin_cmdline_added = true;
917 #endif
918 
919 	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
920 	*cmdline_p = command_line;
921 
922 	/*
923 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
924 	 * reserve_top(), so do this before touching the ioremap area.
925 	 */
926 	olpc_ofw_detect();
927 
928 	idt_setup_early_traps();
929 	early_cpu_init();
930 	jump_label_init();
931 	static_call_init();
932 	early_ioremap_init();
933 
934 	setup_olpc_ofw_pgd();
935 
936 	parse_boot_params();
937 
938 	x86_init.oem.arch_setup();
939 
940 	/*
941 	 * Do some memory reservations *before* memory is added to memblock, so
942 	 * memblock allocations won't overwrite it.
943 	 *
944 	 * After this point, everything still needed from the boot loader or
945 	 * firmware or kernel text should be early reserved or marked not RAM in
946 	 * e820. All other memory is free game.
947 	 *
948 	 * This call needs to happen before e820__memory_setup() which calls the
949 	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
950 	 * early reservations have happened already.
951 	 */
952 	early_reserve_memory();
953 
954 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
955 	e820__memory_setup();
956 	parse_setup_data();
957 
958 	copy_edd();
959 
960 	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
961 
962 	/*
963 	 * x86_configure_nx() is called before parse_early_param() to detect
964 	 * whether hardware doesn't support NX (so that the early EHCI debug
965 	 * console setup can safely call set_fixmap()).
966 	 */
967 	x86_configure_nx();
968 
969 	parse_early_param();
970 
971 	if (efi_enabled(EFI_BOOT))
972 		efi_memblock_x86_reserve_range();
973 
974 	x86_report_nx();
975 
976 	apic_setup_apic_calls();
977 
978 	if (acpi_mps_check()) {
979 #ifdef CONFIG_X86_LOCAL_APIC
980 		apic_is_disabled = true;
981 #endif
982 		setup_clear_cpu_cap(X86_FEATURE_APIC);
983 	}
984 
985 	e820__finish_early_params();
986 
987 	if (efi_enabled(EFI_BOOT))
988 		efi_init();
989 
990 	reserve_ibft_region();
991 	x86_init.resources.dmi_setup();
992 
993 	/*
994 	 * VMware detection requires dmi to be available, so this
995 	 * needs to be done after dmi_setup(), for the boot CPU.
996 	 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
997 	 * called before cache_bp_init() for setting up MTRR state.
998 	 */
999 	init_hypervisor_platform();
1000 
1001 	tsc_early_init();
1002 	x86_init.resources.probe_roms();
1003 
1004 	/*
1005 	 * Add resources for kernel text and data to the iomem_resource.
1006 	 * Do it after parse_early_param, so it can be debugged.
1007 	 */
1008 	setup_kernel_resources();
1009 
1010 	e820_add_kernel_range();
1011 	trim_bios_range();
1012 #ifdef CONFIG_X86_32
1013 	if (ppro_with_ram_bug()) {
1014 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1015 				  E820_TYPE_RESERVED);
1016 		e820__update_table(e820_table);
1017 		printk(KERN_INFO "fixed physical RAM map:\n");
1018 		e820__print_table("bad_ppro");
1019 	}
1020 #else
1021 	early_gart_iommu_check();
1022 #endif
1023 
1024 	/*
1025 	 * partially used pages are not usable - thus
1026 	 * we are rounding upwards:
1027 	 */
1028 	max_pfn = e820__end_of_ram_pfn();
1029 
1030 	/* update e820 for memory not covered by WB MTRRs */
1031 	cache_bp_init();
1032 	if (mtrr_trim_uncached_memory(max_pfn))
1033 		max_pfn = e820__end_of_ram_pfn();
1034 
1035 	max_possible_pfn = max_pfn;
1036 
1037 	/*
1038 	 * Define random base addresses for memory sections after max_pfn is
1039 	 * defined and before each memory section base is used.
1040 	 */
1041 	kernel_randomize_memory();
1042 
1043 #ifdef CONFIG_X86_32
1044 	/* max_low_pfn get updated here */
1045 	find_low_pfn_range();
1046 #else
1047 	check_x2apic();
1048 
1049 	/* How many end-of-memory variables you have, grandma! */
1050 	/* need this before calling reserve_initrd */
1051 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1052 		max_low_pfn = e820__end_of_low_ram_pfn();
1053 	else
1054 		max_low_pfn = max_pfn;
1055 #endif
1056 
1057 	/* Find and reserve MPTABLE area */
1058 	x86_init.mpparse.find_mptable();
1059 
1060 	early_alloc_pgt_buf();
1061 
1062 	/*
1063 	 * Need to conclude brk, before e820__memblock_setup()
1064 	 * it could use memblock_find_in_range, could overlap with
1065 	 * brk area.
1066 	 */
1067 	reserve_brk();
1068 
1069 	cleanup_highmap();
1070 
1071 	e820__memblock_setup();
1072 
1073 	/*
1074 	 * Needs to run after memblock setup because it needs the physical
1075 	 * memory size.
1076 	 */
1077 	mem_encrypt_setup_arch();
1078 	cc_random_init();
1079 
1080 	efi_find_mirror();
1081 	efi_esrt_init();
1082 	efi_mokvar_table_init();
1083 
1084 	/*
1085 	 * The EFI specification says that boot service code won't be
1086 	 * called after ExitBootServices(). This is, in fact, a lie.
1087 	 */
1088 	efi_reserve_boot_services();
1089 
1090 	/* preallocate 4k for mptable mpc */
1091 	e820__memblock_alloc_reserved_mpc_new();
1092 
1093 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1094 	setup_bios_corruption_check();
1095 #endif
1096 
1097 #ifdef CONFIG_X86_32
1098 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1099 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1100 #endif
1101 
1102 	/*
1103 	 * Find free memory for the real mode trampoline and place it there. If
1104 	 * there is not enough free memory under 1M, on EFI-enabled systems
1105 	 * there will be additional attempt to reclaim the memory for the real
1106 	 * mode trampoline at efi_free_boot_services().
1107 	 *
1108 	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1109 	 * are known to corrupt low memory and several hundred kilobytes are not
1110 	 * worth complex detection what memory gets clobbered. Windows does the
1111 	 * same thing for very similar reasons.
1112 	 *
1113 	 * Moreover, on machines with SandyBridge graphics or in setups that use
1114 	 * crashkernel the entire 1M is reserved anyway.
1115 	 *
1116 	 * Note the host kernel TDX also requires the first 1MB being reserved.
1117 	 */
1118 	x86_platform.realmode_reserve();
1119 
1120 	init_mem_mapping();
1121 
1122 	/*
1123 	 * init_mem_mapping() relies on the early IDT page fault handling.
1124 	 * Now either enable FRED or install the real page fault handler
1125 	 * for 64-bit in the IDT.
1126 	 */
1127 	cpu_init_replace_early_idt();
1128 
1129 	/*
1130 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1131 	 * with the current CR4 value.  This may not be necessary, but
1132 	 * auditing all the early-boot CR4 manipulation would be needed to
1133 	 * rule it out.
1134 	 *
1135 	 * Mask off features that don't work outside long mode (just
1136 	 * PCIDE for now).
1137 	 */
1138 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1139 
1140 	memblock_set_current_limit(get_max_mapped());
1141 
1142 	/*
1143 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1144 	 */
1145 
1146 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1147 	if (init_ohci1394_dma_early)
1148 		init_ohci1394_dma_on_all_controllers();
1149 #endif
1150 	/* Allocate bigger log buffer */
1151 	setup_log_buf(1);
1152 
1153 	if (efi_enabled(EFI_BOOT)) {
1154 		switch (boot_params.secure_boot) {
1155 		case efi_secureboot_mode_disabled:
1156 			pr_info("Secure boot disabled\n");
1157 			break;
1158 		case efi_secureboot_mode_enabled:
1159 			pr_info("Secure boot enabled\n");
1160 			break;
1161 		default:
1162 			pr_info("Secure boot could not be determined\n");
1163 			break;
1164 		}
1165 	}
1166 
1167 	reserve_initrd();
1168 
1169 	acpi_table_upgrade();
1170 	/* Look for ACPI tables and reserve memory occupied by them. */
1171 	acpi_boot_table_init();
1172 
1173 	vsmp_init();
1174 
1175 	io_delay_init();
1176 
1177 	early_platform_quirks();
1178 
1179 	/* Some platforms need the APIC registered for NUMA configuration */
1180 	early_acpi_boot_init();
1181 	x86_init.mpparse.early_parse_smp_cfg();
1182 
1183 	x86_flattree_get_config();
1184 
1185 	initmem_init();
1186 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1187 
1188 	if (boot_cpu_has(X86_FEATURE_GBPAGES)) {
1189 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1190 		hugetlb_bootmem_alloc();
1191 	}
1192 
1193 	/*
1194 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1195 	 * won't consume hotpluggable memory.
1196 	 */
1197 	arch_reserve_crashkernel();
1198 
1199 	if (!early_xdbc_setup_hardware())
1200 		early_xdbc_register_console();
1201 
1202 	x86_init.paging.pagetable_init();
1203 
1204 	kasan_init();
1205 
1206 	/*
1207 	 * Sync back kernel address range.
1208 	 *
1209 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1210 	 * this call?
1211 	 */
1212 	sync_initial_page_table();
1213 
1214 	tboot_probe();
1215 
1216 	map_vsyscall();
1217 
1218 	x86_32_probe_apic();
1219 
1220 	early_quirks();
1221 
1222 	topology_apply_cmdline_limits_early();
1223 
1224 	/*
1225 	 * Parse SMP configuration. Try ACPI first and then the platform
1226 	 * specific parser.
1227 	 */
1228 	acpi_boot_init();
1229 	x86_init.mpparse.parse_smp_cfg();
1230 
1231 	/* Last opportunity to detect and map the local APIC */
1232 	init_apic_mappings();
1233 
1234 	topology_init_possible_cpus();
1235 
1236 	init_cpu_to_node();
1237 	init_gi_nodes();
1238 
1239 	io_apic_init_mappings();
1240 
1241 	x86_init.hyper.guest_late_init();
1242 
1243 	e820__reserve_resources();
1244 	e820__register_nosave_regions(max_pfn);
1245 
1246 	x86_init.resources.reserve_resources();
1247 
1248 	e820__setup_pci_gap();
1249 
1250 #ifdef CONFIG_VT
1251 #if defined(CONFIG_VGA_CONSOLE)
1252 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1253 		vgacon_register_screen(&screen_info);
1254 #endif
1255 #endif
1256 	x86_init.oem.banner();
1257 
1258 	x86_init.timers.wallclock_init();
1259 
1260 	/*
1261 	 * This needs to run before setup_local_APIC() which soft-disables the
1262 	 * local APIC temporarily and that masks the thermal LVT interrupt,
1263 	 * leading to softlockups on machines which have configured SMI
1264 	 * interrupt delivery.
1265 	 */
1266 	therm_lvt_init();
1267 
1268 	mcheck_init();
1269 
1270 	register_refined_jiffies(CLOCK_TICK_RATE);
1271 
1272 #ifdef CONFIG_EFI
1273 	if (efi_enabled(EFI_BOOT))
1274 		efi_apply_memmap_quirks();
1275 #endif
1276 
1277 	unwind_init();
1278 }
1279 
1280 #ifdef CONFIG_X86_32
1281 
1282 static struct resource video_ram_resource = {
1283 	.name	= "Video RAM area",
1284 	.start	= 0xa0000,
1285 	.end	= 0xbffff,
1286 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1287 };
1288 
1289 void __init i386_reserve_resources(void)
1290 {
1291 	request_resource(&iomem_resource, &video_ram_resource);
1292 	reserve_standard_io_resources();
1293 }
1294 
1295 #endif /* CONFIG_X86_32 */
1296 
1297 static struct notifier_block kernel_offset_notifier = {
1298 	.notifier_call = dump_kernel_offset
1299 };
1300 
1301 static int __init register_kernel_offset_dumper(void)
1302 {
1303 	atomic_notifier_chain_register(&panic_notifier_list,
1304 					&kernel_offset_notifier);
1305 	return 0;
1306 }
1307 __initcall(register_kernel_offset_dumper);
1308 
1309 #ifdef CONFIG_HOTPLUG_CPU
1310 bool arch_cpu_is_hotpluggable(int cpu)
1311 {
1312 	return cpu > 0;
1313 }
1314 #endif /* CONFIG_HOTPLUG_CPU */
1315