1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/acpi.h> 9 #include <linux/console.h> 10 #include <linux/cpu.h> 11 #include <linux/crash_dump.h> 12 #include <linux/dma-map-ops.h> 13 #include <linux/efi.h> 14 #include <linux/hugetlb.h> 15 #include <linux/ima.h> 16 #include <linux/init_ohci1394_dma.h> 17 #include <linux/initrd.h> 18 #include <linux/iscsi_ibft.h> 19 #include <linux/memblock.h> 20 #include <linux/panic_notifier.h> 21 #include <linux/pci.h> 22 #include <linux/random.h> 23 #include <linux/root_dev.h> 24 #include <linux/static_call.h> 25 #include <linux/swiotlb.h> 26 #include <linux/tboot.h> 27 #include <linux/usb/xhci-dbgp.h> 28 #include <linux/vmalloc.h> 29 30 #include <uapi/linux/mount.h> 31 32 #include <xen/xen.h> 33 34 #include <asm/apic.h> 35 #include <asm/bios_ebda.h> 36 #include <asm/bugs.h> 37 #include <asm/cacheinfo.h> 38 #include <asm/coco.h> 39 #include <asm/cpu.h> 40 #include <asm/efi.h> 41 #include <asm/gart.h> 42 #include <asm/hypervisor.h> 43 #include <asm/io_apic.h> 44 #include <asm/kasan.h> 45 #include <asm/kaslr.h> 46 #include <asm/mce.h> 47 #include <asm/memtype.h> 48 #include <asm/mtrr.h> 49 #include <asm/nmi.h> 50 #include <asm/numa.h> 51 #include <asm/olpc_ofw.h> 52 #include <asm/pci-direct.h> 53 #include <asm/prom.h> 54 #include <asm/proto.h> 55 #include <asm/realmode.h> 56 #include <asm/thermal.h> 57 #include <asm/unwind.h> 58 #include <asm/vsyscall.h> 59 60 /* 61 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 62 * max_pfn_mapped: highest directly mapped pfn > 4 GB 63 * 64 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 65 * represented by pfn_mapped[]. 66 */ 67 unsigned long max_low_pfn_mapped; 68 unsigned long max_pfn_mapped; 69 70 #ifdef CONFIG_DMI 71 RESERVE_BRK(dmi_alloc, 65536); 72 #endif 73 74 75 unsigned long _brk_start = (unsigned long)__brk_base; 76 unsigned long _brk_end = (unsigned long)__brk_base; 77 78 struct boot_params boot_params; 79 80 /* 81 * These are the four main kernel memory regions, we put them into 82 * the resource tree so that kdump tools and other debugging tools 83 * recover it: 84 */ 85 86 static struct resource rodata_resource = { 87 .name = "Kernel rodata", 88 .start = 0, 89 .end = 0, 90 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 91 }; 92 93 static struct resource data_resource = { 94 .name = "Kernel data", 95 .start = 0, 96 .end = 0, 97 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 98 }; 99 100 static struct resource code_resource = { 101 .name = "Kernel code", 102 .start = 0, 103 .end = 0, 104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 105 }; 106 107 static struct resource bss_resource = { 108 .name = "Kernel bss", 109 .start = 0, 110 .end = 0, 111 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 112 }; 113 114 115 #ifdef CONFIG_X86_32 116 /* CPU data as detected by the assembly code in head_32.S */ 117 struct cpuinfo_x86 new_cpu_data; 118 119 struct apm_info apm_info; 120 EXPORT_SYMBOL(apm_info); 121 122 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 123 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 124 struct ist_info ist_info; 125 EXPORT_SYMBOL(ist_info); 126 #else 127 struct ist_info ist_info; 128 #endif 129 130 #endif 131 132 struct cpuinfo_x86 boot_cpu_data __read_mostly; 133 EXPORT_SYMBOL(boot_cpu_data); 134 SYM_PIC_ALIAS(boot_cpu_data); 135 136 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 137 __visible unsigned long mmu_cr4_features __ro_after_init; 138 #else 139 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 140 #endif 141 142 #ifdef CONFIG_IMA 143 static phys_addr_t ima_kexec_buffer_phys; 144 static size_t ima_kexec_buffer_size; 145 #endif 146 147 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 148 int bootloader_type, bootloader_version; 149 150 static const struct ctl_table x86_sysctl_table[] = { 151 { 152 .procname = "unknown_nmi_panic", 153 .data = &unknown_nmi_panic, 154 .maxlen = sizeof(int), 155 .mode = 0644, 156 .proc_handler = proc_dointvec, 157 }, 158 { 159 .procname = "panic_on_unrecovered_nmi", 160 .data = &panic_on_unrecovered_nmi, 161 .maxlen = sizeof(int), 162 .mode = 0644, 163 .proc_handler = proc_dointvec, 164 }, 165 { 166 .procname = "panic_on_io_nmi", 167 .data = &panic_on_io_nmi, 168 .maxlen = sizeof(int), 169 .mode = 0644, 170 .proc_handler = proc_dointvec, 171 }, 172 { 173 .procname = "bootloader_type", 174 .data = &bootloader_type, 175 .maxlen = sizeof(int), 176 .mode = 0444, 177 .proc_handler = proc_dointvec, 178 }, 179 { 180 .procname = "bootloader_version", 181 .data = &bootloader_version, 182 .maxlen = sizeof(int), 183 .mode = 0444, 184 .proc_handler = proc_dointvec, 185 }, 186 { 187 .procname = "io_delay_type", 188 .data = &io_delay_type, 189 .maxlen = sizeof(int), 190 .mode = 0644, 191 .proc_handler = proc_dointvec, 192 }, 193 #if defined(CONFIG_ACPI_SLEEP) 194 { 195 .procname = "acpi_video_flags", 196 .data = &acpi_realmode_flags, 197 .maxlen = sizeof(unsigned long), 198 .mode = 0644, 199 .proc_handler = proc_doulongvec_minmax, 200 }, 201 #endif 202 }; 203 204 static int __init init_x86_sysctl(void) 205 { 206 register_sysctl_init("kernel", x86_sysctl_table); 207 return 0; 208 } 209 arch_initcall(init_x86_sysctl); 210 211 /* 212 * Setup options 213 */ 214 struct screen_info screen_info; 215 EXPORT_SYMBOL(screen_info); 216 struct edid_info edid_info; 217 EXPORT_SYMBOL_GPL(edid_info); 218 219 extern int root_mountflags; 220 221 unsigned long saved_video_mode; 222 223 #define RAMDISK_IMAGE_START_MASK 0x07FF 224 #define RAMDISK_PROMPT_FLAG 0x8000 225 #define RAMDISK_LOAD_FLAG 0x4000 226 227 static char __initdata command_line[COMMAND_LINE_SIZE]; 228 #ifdef CONFIG_CMDLINE_BOOL 229 char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 230 bool builtin_cmdline_added __ro_after_init; 231 #endif 232 233 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 234 struct edd edd; 235 #ifdef CONFIG_EDD_MODULE 236 EXPORT_SYMBOL(edd); 237 #endif 238 /** 239 * copy_edd() - Copy the BIOS EDD information 240 * from boot_params into a safe place. 241 * 242 */ 243 static inline void __init copy_edd(void) 244 { 245 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 246 sizeof(edd.mbr_signature)); 247 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 248 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 249 edd.edd_info_nr = boot_params.eddbuf_entries; 250 } 251 #else 252 static inline void __init copy_edd(void) 253 { 254 } 255 #endif 256 257 void * __init extend_brk(size_t size, size_t align) 258 { 259 size_t mask = align - 1; 260 void *ret; 261 262 BUG_ON(_brk_start == 0); 263 BUG_ON(align & mask); 264 265 _brk_end = (_brk_end + mask) & ~mask; 266 BUG_ON((char *)(_brk_end + size) > __brk_limit); 267 268 ret = (void *)_brk_end; 269 _brk_end += size; 270 271 memset(ret, 0, size); 272 273 return ret; 274 } 275 276 #ifdef CONFIG_X86_32 277 static void __init cleanup_highmap(void) 278 { 279 } 280 #endif 281 282 static void __init reserve_brk(void) 283 { 284 if (_brk_end > _brk_start) 285 memblock_reserve_kern(__pa_symbol(_brk_start), 286 _brk_end - _brk_start); 287 288 /* Mark brk area as locked down and no longer taking any 289 new allocations */ 290 _brk_start = 0; 291 } 292 293 #ifdef CONFIG_BLK_DEV_INITRD 294 295 static u64 __init get_ramdisk_image(void) 296 { 297 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 298 299 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 300 301 if (ramdisk_image == 0) 302 ramdisk_image = phys_initrd_start; 303 304 return ramdisk_image; 305 } 306 static u64 __init get_ramdisk_size(void) 307 { 308 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 309 310 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 311 312 if (ramdisk_size == 0) 313 ramdisk_size = phys_initrd_size; 314 315 return ramdisk_size; 316 } 317 318 static void __init relocate_initrd(void) 319 { 320 /* Assume only end is not page aligned */ 321 u64 ramdisk_image = get_ramdisk_image(); 322 u64 ramdisk_size = get_ramdisk_size(); 323 u64 area_size = PAGE_ALIGN(ramdisk_size); 324 int ret = 0; 325 326 /* We need to move the initrd down into directly mapped mem */ 327 u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0, 328 PFN_PHYS(max_pfn_mapped)); 329 if (!relocated_ramdisk) 330 panic("Cannot find place for new RAMDISK of size %lld\n", 331 ramdisk_size); 332 333 initrd_start = relocated_ramdisk + PAGE_OFFSET; 334 initrd_end = initrd_start + ramdisk_size; 335 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 336 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 337 338 ret = copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 339 if (ret) 340 panic("Copy RAMDISK failed\n"); 341 342 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 343 " [mem %#010llx-%#010llx]\n", 344 ramdisk_image, ramdisk_image + ramdisk_size - 1, 345 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 346 } 347 348 static void __init early_reserve_initrd(void) 349 { 350 /* Assume only end is not page aligned */ 351 u64 ramdisk_image = get_ramdisk_image(); 352 u64 ramdisk_size = get_ramdisk_size(); 353 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 354 355 if (!boot_params.hdr.type_of_loader || 356 !ramdisk_image || !ramdisk_size) 357 return; /* No initrd provided by bootloader */ 358 359 memblock_reserve_kern(ramdisk_image, ramdisk_end - ramdisk_image); 360 } 361 362 static void __init reserve_initrd(void) 363 { 364 /* Assume only end is not page aligned */ 365 u64 ramdisk_image = get_ramdisk_image(); 366 u64 ramdisk_size = get_ramdisk_size(); 367 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 368 369 if (!boot_params.hdr.type_of_loader || 370 !ramdisk_image || !ramdisk_size) 371 return; /* No initrd provided by bootloader */ 372 373 initrd_start = 0; 374 375 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 376 ramdisk_end - 1); 377 378 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 379 PFN_DOWN(ramdisk_end))) { 380 /* All are mapped, easy case */ 381 initrd_start = ramdisk_image + PAGE_OFFSET; 382 initrd_end = initrd_start + ramdisk_size; 383 return; 384 } 385 386 relocate_initrd(); 387 388 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image); 389 } 390 391 #else 392 static void __init early_reserve_initrd(void) 393 { 394 } 395 static void __init reserve_initrd(void) 396 { 397 } 398 #endif /* CONFIG_BLK_DEV_INITRD */ 399 400 static void __init add_early_ima_buffer(u64 phys_addr) 401 { 402 #ifdef CONFIG_IMA 403 struct ima_setup_data *data; 404 405 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data)); 406 if (!data) { 407 pr_warn("setup: failed to memremap ima_setup_data entry\n"); 408 return; 409 } 410 411 if (data->size) { 412 memblock_reserve_kern(data->addr, data->size); 413 ima_kexec_buffer_phys = data->addr; 414 ima_kexec_buffer_size = data->size; 415 } 416 417 early_memunmap(data, sizeof(*data)); 418 #else 419 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n"); 420 #endif 421 } 422 423 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE) 424 int __init ima_free_kexec_buffer(void) 425 { 426 if (!ima_kexec_buffer_size) 427 return -ENOENT; 428 429 memblock_free_late(ima_kexec_buffer_phys, 430 ima_kexec_buffer_size); 431 432 ima_kexec_buffer_phys = 0; 433 ima_kexec_buffer_size = 0; 434 435 return 0; 436 } 437 438 int __init ima_get_kexec_buffer(void **addr, size_t *size) 439 { 440 if (!ima_kexec_buffer_size) 441 return -ENOENT; 442 443 *addr = __va(ima_kexec_buffer_phys); 444 *size = ima_kexec_buffer_size; 445 446 return 0; 447 } 448 #endif 449 450 static void __init add_kho(u64 phys_addr, u32 data_len) 451 { 452 struct kho_data *kho; 453 u64 addr = phys_addr + sizeof(struct setup_data); 454 u64 size = data_len - sizeof(struct setup_data); 455 456 if (!IS_ENABLED(CONFIG_KEXEC_HANDOVER)) { 457 pr_warn("Passed KHO data, but CONFIG_KEXEC_HANDOVER not set. Ignoring.\n"); 458 return; 459 } 460 461 kho = early_memremap(addr, size); 462 if (!kho) { 463 pr_warn("setup: failed to memremap kho data (0x%llx, 0x%llx)\n", 464 addr, size); 465 return; 466 } 467 468 kho_populate(kho->fdt_addr, kho->fdt_size, kho->scratch_addr, kho->scratch_size); 469 470 early_memunmap(kho, size); 471 } 472 473 static void __init parse_setup_data(void) 474 { 475 struct setup_data *data; 476 u64 pa_data, pa_next; 477 478 pa_data = boot_params.hdr.setup_data; 479 while (pa_data) { 480 u32 data_len, data_type; 481 482 data = early_memremap(pa_data, sizeof(*data)); 483 data_len = data->len + sizeof(struct setup_data); 484 data_type = data->type; 485 pa_next = data->next; 486 early_memunmap(data, sizeof(*data)); 487 488 switch (data_type) { 489 case SETUP_E820_EXT: 490 e820__memory_setup_extended(pa_data, data_len); 491 break; 492 case SETUP_DTB: 493 add_dtb(pa_data); 494 break; 495 case SETUP_EFI: 496 parse_efi_setup(pa_data, data_len); 497 break; 498 case SETUP_IMA: 499 add_early_ima_buffer(pa_data); 500 break; 501 case SETUP_KEXEC_KHO: 502 add_kho(pa_data, data_len); 503 break; 504 case SETUP_RNG_SEED: 505 data = early_memremap(pa_data, data_len); 506 add_bootloader_randomness(data->data, data->len); 507 /* Zero seed for forward secrecy. */ 508 memzero_explicit(data->data, data->len); 509 /* Zero length in case we find ourselves back here by accident. */ 510 memzero_explicit(&data->len, sizeof(data->len)); 511 early_memunmap(data, data_len); 512 break; 513 default: 514 break; 515 } 516 pa_data = pa_next; 517 } 518 } 519 520 /* 521 * Translate the fields of 'struct boot_param' into global variables 522 * representing these parameters. 523 */ 524 static void __init parse_boot_params(void) 525 { 526 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 527 screen_info = boot_params.screen_info; 528 edid_info = boot_params.edid_info; 529 #ifdef CONFIG_X86_32 530 apm_info.bios = boot_params.apm_bios_info; 531 ist_info = boot_params.ist_info; 532 #endif 533 saved_video_mode = boot_params.hdr.vid_mode; 534 bootloader_type = boot_params.hdr.type_of_loader; 535 if ((bootloader_type >> 4) == 0xe) { 536 bootloader_type &= 0xf; 537 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 538 } 539 bootloader_version = bootloader_type & 0xf; 540 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 541 542 #ifdef CONFIG_BLK_DEV_RAM 543 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 544 #endif 545 #ifdef CONFIG_EFI 546 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 547 EFI32_LOADER_SIGNATURE, 4)) { 548 set_bit(EFI_BOOT, &efi.flags); 549 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 550 EFI64_LOADER_SIGNATURE, 4)) { 551 set_bit(EFI_BOOT, &efi.flags); 552 set_bit(EFI_64BIT, &efi.flags); 553 } 554 #endif 555 556 if (!boot_params.hdr.root_flags) 557 root_mountflags &= ~MS_RDONLY; 558 } 559 560 static void __init memblock_x86_reserve_range_setup_data(void) 561 { 562 struct setup_indirect *indirect; 563 struct setup_data *data; 564 u64 pa_data, pa_next; 565 u32 len; 566 567 pa_data = boot_params.hdr.setup_data; 568 while (pa_data) { 569 data = early_memremap(pa_data, sizeof(*data)); 570 if (!data) { 571 pr_warn("setup: failed to memremap setup_data entry\n"); 572 return; 573 } 574 575 len = sizeof(*data); 576 pa_next = data->next; 577 578 memblock_reserve_kern(pa_data, sizeof(*data) + data->len); 579 580 if (data->type == SETUP_INDIRECT) { 581 len += data->len; 582 early_memunmap(data, sizeof(*data)); 583 data = early_memremap(pa_data, len); 584 if (!data) { 585 pr_warn("setup: failed to memremap indirect setup_data\n"); 586 return; 587 } 588 589 indirect = (struct setup_indirect *)data->data; 590 591 if (indirect->type != SETUP_INDIRECT) 592 memblock_reserve_kern(indirect->addr, indirect->len); 593 } 594 595 pa_data = pa_next; 596 early_memunmap(data, len); 597 } 598 } 599 600 static void __init arch_reserve_crashkernel(void) 601 { 602 unsigned long long crash_base, crash_size, low_size = 0, cma_size = 0; 603 bool high = false; 604 int ret; 605 606 if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) 607 return; 608 609 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 610 &crash_size, &crash_base, 611 &low_size, &cma_size, &high); 612 if (ret) 613 return; 614 615 if (xen_pv_domain()) { 616 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 617 return; 618 } 619 620 reserve_crashkernel_generic(crash_size, crash_base, low_size, high); 621 reserve_crashkernel_cma(cma_size); 622 } 623 624 static struct resource standard_io_resources[] = { 625 { .name = "dma1", .start = 0x00, .end = 0x1f, 626 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 627 { .name = "pic1", .start = 0x20, .end = 0x21, 628 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 629 { .name = "timer0", .start = 0x40, .end = 0x43, 630 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 631 { .name = "timer1", .start = 0x50, .end = 0x53, 632 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 633 { .name = "keyboard", .start = 0x60, .end = 0x60, 634 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 635 { .name = "keyboard", .start = 0x64, .end = 0x64, 636 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 637 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 638 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 639 { .name = "pic2", .start = 0xa0, .end = 0xa1, 640 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 641 { .name = "dma2", .start = 0xc0, .end = 0xdf, 642 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 643 { .name = "fpu", .start = 0xf0, .end = 0xff, 644 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 645 }; 646 647 void __init reserve_standard_io_resources(void) 648 { 649 int i; 650 651 /* request I/O space for devices used on all i[345]86 PCs */ 652 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 653 request_resource(&ioport_resource, &standard_io_resources[i]); 654 655 } 656 657 static void __init setup_kernel_resources(void) 658 { 659 code_resource.start = __pa_symbol(_text); 660 code_resource.end = __pa_symbol(_etext)-1; 661 rodata_resource.start = __pa_symbol(__start_rodata); 662 rodata_resource.end = __pa_symbol(__end_rodata)-1; 663 data_resource.start = __pa_symbol(_sdata); 664 data_resource.end = __pa_symbol(_edata)-1; 665 bss_resource.start = __pa_symbol(__bss_start); 666 bss_resource.end = __pa_symbol(__bss_stop)-1; 667 668 insert_resource(&iomem_resource, &code_resource); 669 insert_resource(&iomem_resource, &rodata_resource); 670 insert_resource(&iomem_resource, &data_resource); 671 insert_resource(&iomem_resource, &bss_resource); 672 } 673 674 static bool __init snb_gfx_workaround_needed(void) 675 { 676 #ifdef CONFIG_PCI 677 int i; 678 u16 vendor, devid; 679 static const __initconst u16 snb_ids[] = { 680 0x0102, 681 0x0112, 682 0x0122, 683 0x0106, 684 0x0116, 685 0x0126, 686 0x010a, 687 }; 688 689 /* Assume no if something weird is going on with PCI */ 690 if (!early_pci_allowed()) 691 return false; 692 693 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 694 if (vendor != 0x8086) 695 return false; 696 697 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 698 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 699 if (devid == snb_ids[i]) 700 return true; 701 #endif 702 703 return false; 704 } 705 706 /* 707 * Sandy Bridge graphics has trouble with certain ranges, exclude 708 * them from allocation. 709 */ 710 static void __init trim_snb_memory(void) 711 { 712 static const __initconst unsigned long bad_pages[] = { 713 0x20050000, 714 0x20110000, 715 0x20130000, 716 0x20138000, 717 0x40004000, 718 }; 719 int i; 720 721 if (!snb_gfx_workaround_needed()) 722 return; 723 724 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 725 726 /* 727 * SandyBridge integrated graphics devices have a bug that prevents 728 * them from accessing certain memory ranges, namely anything below 729 * 1M and in the pages listed in bad_pages[] above. 730 * 731 * To avoid these pages being ever accessed by SNB gfx devices reserve 732 * bad_pages that have not already been reserved at boot time. 733 * All memory below the 1 MB mark is anyway reserved later during 734 * setup_arch(), so there is no need to reserve it here. 735 */ 736 737 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 738 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 739 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 740 bad_pages[i]); 741 } 742 } 743 744 static void __init trim_bios_range(void) 745 { 746 /* 747 * A special case is the first 4Kb of memory; 748 * This is a BIOS owned area, not kernel ram, but generally 749 * not listed as such in the E820 table. 750 * 751 * This typically reserves additional memory (64KiB by default) 752 * since some BIOSes are known to corrupt low memory. See the 753 * Kconfig help text for X86_RESERVE_LOW. 754 */ 755 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 756 757 /* 758 * special case: Some BIOSes report the PC BIOS 759 * area (640Kb -> 1Mb) as RAM even though it is not. 760 * take them out. 761 */ 762 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 763 764 e820__update_table(e820_table); 765 } 766 767 /* called before trim_bios_range() to spare extra sanitize */ 768 static void __init e820_add_kernel_range(void) 769 { 770 u64 start = __pa_symbol(_text); 771 u64 size = __pa_symbol(_end) - start; 772 773 /* 774 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 775 * attempt to fix it by adding the range. We may have a confused BIOS, 776 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 777 * exclude kernel range. If we really are running on top non-RAM, 778 * we will crash later anyways. 779 */ 780 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 781 return; 782 783 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 784 e820__range_remove(start, size, E820_TYPE_RAM, 0); 785 e820__range_add(start, size, E820_TYPE_RAM); 786 } 787 788 static void __init early_reserve_memory(void) 789 { 790 /* 791 * Reserve the memory occupied by the kernel between _text and 792 * __end_of_kernel_reserve symbols. Any kernel sections after the 793 * __end_of_kernel_reserve symbol must be explicitly reserved with a 794 * separate memblock_reserve() or they will be discarded. 795 */ 796 memblock_reserve_kern(__pa_symbol(_text), 797 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 798 799 /* 800 * The first 4Kb of memory is a BIOS owned area, but generally it is 801 * not listed as such in the E820 table. 802 * 803 * Reserve the first 64K of memory since some BIOSes are known to 804 * corrupt low memory. After the real mode trampoline is allocated the 805 * rest of the memory below 640k is reserved. 806 * 807 * In addition, make sure page 0 is always reserved because on 808 * systems with L1TF its contents can be leaked to user processes. 809 */ 810 memblock_reserve(0, SZ_64K); 811 812 early_reserve_initrd(); 813 814 memblock_x86_reserve_range_setup_data(); 815 816 reserve_bios_regions(); 817 trim_snb_memory(); 818 } 819 820 /* 821 * Dump out kernel offset information on panic. 822 */ 823 static int 824 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 825 { 826 if (kaslr_enabled()) { 827 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 828 kaslr_offset(), 829 __START_KERNEL, 830 __START_KERNEL_map, 831 MODULES_VADDR-1); 832 } else { 833 pr_emerg("Kernel Offset: disabled\n"); 834 } 835 836 return 0; 837 } 838 839 void x86_configure_nx(void) 840 { 841 if (boot_cpu_has(X86_FEATURE_NX)) 842 __supported_pte_mask |= _PAGE_NX; 843 else 844 __supported_pte_mask &= ~_PAGE_NX; 845 } 846 847 static void __init x86_report_nx(void) 848 { 849 if (!boot_cpu_has(X86_FEATURE_NX)) { 850 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 851 "missing in CPU!\n"); 852 } else { 853 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 854 printk(KERN_INFO "NX (Execute Disable) protection: active\n"); 855 #else 856 /* 32bit non-PAE kernel, NX cannot be used */ 857 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 858 "cannot be enabled: non-PAE kernel!\n"); 859 #endif 860 } 861 } 862 863 /* 864 * Determine if we were loaded by an EFI loader. If so, then we have also been 865 * passed the efi memmap, systab, etc., so we should use these data structures 866 * for initialization. Note, the efi init code path is determined by the 867 * global efi_enabled. This allows the same kernel image to be used on existing 868 * systems (with a traditional BIOS) as well as on EFI systems. 869 */ 870 /* 871 * setup_arch - architecture-specific boot-time initializations 872 * 873 * Note: On x86_64, fixmaps are ready for use even before this is called. 874 */ 875 876 void __init setup_arch(char **cmdline_p) 877 { 878 #ifdef CONFIG_X86_32 879 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 880 881 /* 882 * copy kernel address range established so far and switch 883 * to the proper swapper page table 884 */ 885 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 886 initial_page_table + KERNEL_PGD_BOUNDARY, 887 KERNEL_PGD_PTRS); 888 889 load_cr3(swapper_pg_dir); 890 /* 891 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 892 * a cr3 based tlb flush, so the following __flush_tlb_all() 893 * will not flush anything because the CPU quirk which clears 894 * X86_FEATURE_PGE has not been invoked yet. Though due to the 895 * load_cr3() above the TLB has been flushed already. The 896 * quirk is invoked before subsequent calls to __flush_tlb_all() 897 * so proper operation is guaranteed. 898 */ 899 __flush_tlb_all(); 900 #else 901 printk(KERN_INFO "Command line: %s\n", boot_command_line); 902 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 903 #endif 904 905 #ifdef CONFIG_CMDLINE_BOOL 906 #ifdef CONFIG_CMDLINE_OVERRIDE 907 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 908 #else 909 if (builtin_cmdline[0]) { 910 /* append boot loader cmdline to builtin */ 911 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 912 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 913 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 914 } 915 #endif 916 builtin_cmdline_added = true; 917 #endif 918 919 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 920 *cmdline_p = command_line; 921 922 /* 923 * If we have OLPC OFW, we might end up relocating the fixmap due to 924 * reserve_top(), so do this before touching the ioremap area. 925 */ 926 olpc_ofw_detect(); 927 928 idt_setup_early_traps(); 929 early_cpu_init(); 930 jump_label_init(); 931 static_call_init(); 932 early_ioremap_init(); 933 934 setup_olpc_ofw_pgd(); 935 936 parse_boot_params(); 937 938 x86_init.oem.arch_setup(); 939 940 /* 941 * Do some memory reservations *before* memory is added to memblock, so 942 * memblock allocations won't overwrite it. 943 * 944 * After this point, everything still needed from the boot loader or 945 * firmware or kernel text should be early reserved or marked not RAM in 946 * e820. All other memory is free game. 947 * 948 * This call needs to happen before e820__memory_setup() which calls the 949 * xen_memory_setup() on Xen dom0 which relies on the fact that those 950 * early reservations have happened already. 951 */ 952 early_reserve_memory(); 953 954 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 955 e820__memory_setup(); 956 parse_setup_data(); 957 958 copy_edd(); 959 960 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end); 961 962 /* 963 * x86_configure_nx() is called before parse_early_param() to detect 964 * whether hardware doesn't support NX (so that the early EHCI debug 965 * console setup can safely call set_fixmap()). 966 */ 967 x86_configure_nx(); 968 969 parse_early_param(); 970 971 if (efi_enabled(EFI_BOOT)) 972 efi_memblock_x86_reserve_range(); 973 974 x86_report_nx(); 975 976 apic_setup_apic_calls(); 977 978 if (acpi_mps_check()) { 979 #ifdef CONFIG_X86_LOCAL_APIC 980 apic_is_disabled = true; 981 #endif 982 setup_clear_cpu_cap(X86_FEATURE_APIC); 983 } 984 985 e820__finish_early_params(); 986 987 if (efi_enabled(EFI_BOOT)) 988 efi_init(); 989 990 reserve_ibft_region(); 991 x86_init.resources.dmi_setup(); 992 993 /* 994 * VMware detection requires dmi to be available, so this 995 * needs to be done after dmi_setup(), for the boot CPU. 996 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be 997 * called before cache_bp_init() for setting up MTRR state. 998 */ 999 init_hypervisor_platform(); 1000 1001 tsc_early_init(); 1002 x86_init.resources.probe_roms(); 1003 1004 /* 1005 * Add resources for kernel text and data to the iomem_resource. 1006 * Do it after parse_early_param, so it can be debugged. 1007 */ 1008 setup_kernel_resources(); 1009 1010 e820_add_kernel_range(); 1011 trim_bios_range(); 1012 #ifdef CONFIG_X86_32 1013 if (ppro_with_ram_bug()) { 1014 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 1015 E820_TYPE_RESERVED); 1016 e820__update_table(e820_table); 1017 printk(KERN_INFO "fixed physical RAM map:\n"); 1018 e820__print_table("bad_ppro"); 1019 } 1020 #else 1021 early_gart_iommu_check(); 1022 #endif 1023 1024 /* 1025 * partially used pages are not usable - thus 1026 * we are rounding upwards: 1027 */ 1028 max_pfn = e820__end_of_ram_pfn(); 1029 1030 /* update e820 for memory not covered by WB MTRRs */ 1031 cache_bp_init(); 1032 if (mtrr_trim_uncached_memory(max_pfn)) 1033 max_pfn = e820__end_of_ram_pfn(); 1034 1035 max_possible_pfn = max_pfn; 1036 1037 /* 1038 * Define random base addresses for memory sections after max_pfn is 1039 * defined and before each memory section base is used. 1040 */ 1041 kernel_randomize_memory(); 1042 1043 #ifdef CONFIG_X86_32 1044 /* max_low_pfn get updated here */ 1045 find_low_pfn_range(); 1046 #else 1047 check_x2apic(); 1048 1049 /* How many end-of-memory variables you have, grandma! */ 1050 /* need this before calling reserve_initrd */ 1051 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1052 max_low_pfn = e820__end_of_low_ram_pfn(); 1053 else 1054 max_low_pfn = max_pfn; 1055 #endif 1056 1057 /* Find and reserve MPTABLE area */ 1058 x86_init.mpparse.find_mptable(); 1059 1060 early_alloc_pgt_buf(); 1061 1062 /* 1063 * Need to conclude brk, before e820__memblock_setup() 1064 * it could use memblock_find_in_range, could overlap with 1065 * brk area. 1066 */ 1067 reserve_brk(); 1068 1069 cleanup_highmap(); 1070 1071 e820__memblock_setup(); 1072 1073 /* 1074 * Needs to run after memblock setup because it needs the physical 1075 * memory size. 1076 */ 1077 mem_encrypt_setup_arch(); 1078 cc_random_init(); 1079 1080 efi_find_mirror(); 1081 efi_esrt_init(); 1082 efi_mokvar_table_init(); 1083 1084 /* 1085 * The EFI specification says that boot service code won't be 1086 * called after ExitBootServices(). This is, in fact, a lie. 1087 */ 1088 efi_reserve_boot_services(); 1089 1090 /* preallocate 4k for mptable mpc */ 1091 e820__memblock_alloc_reserved_mpc_new(); 1092 1093 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1094 setup_bios_corruption_check(); 1095 #endif 1096 1097 #ifdef CONFIG_X86_32 1098 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1099 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1100 #endif 1101 1102 /* 1103 * Find free memory for the real mode trampoline and place it there. If 1104 * there is not enough free memory under 1M, on EFI-enabled systems 1105 * there will be additional attempt to reclaim the memory for the real 1106 * mode trampoline at efi_free_boot_services(). 1107 * 1108 * Unconditionally reserve the entire first 1M of RAM because BIOSes 1109 * are known to corrupt low memory and several hundred kilobytes are not 1110 * worth complex detection what memory gets clobbered. Windows does the 1111 * same thing for very similar reasons. 1112 * 1113 * Moreover, on machines with SandyBridge graphics or in setups that use 1114 * crashkernel the entire 1M is reserved anyway. 1115 * 1116 * Note the host kernel TDX also requires the first 1MB being reserved. 1117 */ 1118 x86_platform.realmode_reserve(); 1119 1120 init_mem_mapping(); 1121 1122 /* 1123 * init_mem_mapping() relies on the early IDT page fault handling. 1124 * Now either enable FRED or install the real page fault handler 1125 * for 64-bit in the IDT. 1126 */ 1127 cpu_init_replace_early_idt(); 1128 1129 /* 1130 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1131 * with the current CR4 value. This may not be necessary, but 1132 * auditing all the early-boot CR4 manipulation would be needed to 1133 * rule it out. 1134 * 1135 * Mask off features that don't work outside long mode (just 1136 * PCIDE for now). 1137 */ 1138 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1139 1140 memblock_set_current_limit(get_max_mapped()); 1141 1142 /* 1143 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1144 */ 1145 1146 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1147 if (init_ohci1394_dma_early) 1148 init_ohci1394_dma_on_all_controllers(); 1149 #endif 1150 /* Allocate bigger log buffer */ 1151 setup_log_buf(1); 1152 1153 if (efi_enabled(EFI_BOOT)) { 1154 switch (boot_params.secure_boot) { 1155 case efi_secureboot_mode_disabled: 1156 pr_info("Secure boot disabled\n"); 1157 break; 1158 case efi_secureboot_mode_enabled: 1159 pr_info("Secure boot enabled\n"); 1160 break; 1161 default: 1162 pr_info("Secure boot could not be determined\n"); 1163 break; 1164 } 1165 } 1166 1167 reserve_initrd(); 1168 1169 acpi_table_upgrade(); 1170 /* Look for ACPI tables and reserve memory occupied by them. */ 1171 acpi_boot_table_init(); 1172 1173 vsmp_init(); 1174 1175 io_delay_init(); 1176 1177 early_platform_quirks(); 1178 1179 /* Some platforms need the APIC registered for NUMA configuration */ 1180 early_acpi_boot_init(); 1181 x86_init.mpparse.early_parse_smp_cfg(); 1182 1183 x86_flattree_get_config(); 1184 1185 initmem_init(); 1186 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1187 1188 if (boot_cpu_has(X86_FEATURE_GBPAGES)) { 1189 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1190 hugetlb_bootmem_alloc(); 1191 } 1192 1193 /* 1194 * Reserve memory for crash kernel after SRAT is parsed so that it 1195 * won't consume hotpluggable memory. 1196 */ 1197 arch_reserve_crashkernel(); 1198 1199 if (!early_xdbc_setup_hardware()) 1200 early_xdbc_register_console(); 1201 1202 x86_init.paging.pagetable_init(); 1203 1204 kasan_init(); 1205 1206 /* 1207 * Sync back kernel address range. 1208 * 1209 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1210 * this call? 1211 */ 1212 sync_initial_page_table(); 1213 1214 tboot_probe(); 1215 1216 map_vsyscall(); 1217 1218 x86_32_probe_apic(); 1219 1220 early_quirks(); 1221 1222 topology_apply_cmdline_limits_early(); 1223 1224 /* 1225 * Parse SMP configuration. Try ACPI first and then the platform 1226 * specific parser. 1227 */ 1228 acpi_boot_init(); 1229 x86_init.mpparse.parse_smp_cfg(); 1230 1231 /* Last opportunity to detect and map the local APIC */ 1232 init_apic_mappings(); 1233 1234 topology_init_possible_cpus(); 1235 1236 init_cpu_to_node(); 1237 init_gi_nodes(); 1238 1239 io_apic_init_mappings(); 1240 1241 x86_init.hyper.guest_late_init(); 1242 1243 e820__reserve_resources(); 1244 e820__register_nosave_regions(max_pfn); 1245 1246 x86_init.resources.reserve_resources(); 1247 1248 e820__setup_pci_gap(); 1249 1250 #ifdef CONFIG_VT 1251 #if defined(CONFIG_VGA_CONSOLE) 1252 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1253 vgacon_register_screen(&screen_info); 1254 #endif 1255 #endif 1256 x86_init.oem.banner(); 1257 1258 x86_init.timers.wallclock_init(); 1259 1260 /* 1261 * This needs to run before setup_local_APIC() which soft-disables the 1262 * local APIC temporarily and that masks the thermal LVT interrupt, 1263 * leading to softlockups on machines which have configured SMI 1264 * interrupt delivery. 1265 */ 1266 therm_lvt_init(); 1267 1268 mcheck_init(); 1269 1270 register_refined_jiffies(CLOCK_TICK_RATE); 1271 1272 #ifdef CONFIG_EFI 1273 if (efi_enabled(EFI_BOOT)) 1274 efi_apply_memmap_quirks(); 1275 #endif 1276 1277 unwind_init(); 1278 } 1279 1280 #ifdef CONFIG_X86_32 1281 1282 static struct resource video_ram_resource = { 1283 .name = "Video RAM area", 1284 .start = 0xa0000, 1285 .end = 0xbffff, 1286 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1287 }; 1288 1289 void __init i386_reserve_resources(void) 1290 { 1291 request_resource(&iomem_resource, &video_ram_resource); 1292 reserve_standard_io_resources(); 1293 } 1294 1295 #endif /* CONFIG_X86_32 */ 1296 1297 static struct notifier_block kernel_offset_notifier = { 1298 .notifier_call = dump_kernel_offset 1299 }; 1300 1301 static int __init register_kernel_offset_dumper(void) 1302 { 1303 atomic_notifier_chain_register(&panic_notifier_list, 1304 &kernel_offset_notifier); 1305 return 0; 1306 } 1307 __initcall(register_kernel_offset_dumper); 1308 1309 #ifdef CONFIG_HOTPLUG_CPU 1310 bool arch_cpu_is_hotpluggable(int cpu) 1311 { 1312 return cpu > 0; 1313 } 1314 #endif /* CONFIG_HOTPLUG_CPU */ 1315