xref: /linux/arch/x86/kernel/setup.c (revision 40840afa53bed05b990b201d749dfee3bd6e7e42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  * This file contains the setup_arch() code, which handles the architecture-dependent
6  * parts of early kernel initialization.
7  */
8 #include <linux/acpi.h>
9 #include <linux/console.h>
10 #include <linux/cpu.h>
11 #include <linux/crash_dump.h>
12 #include <linux/dma-map-ops.h>
13 #include <linux/efi.h>
14 #include <linux/hugetlb.h>
15 #include <linux/ima.h>
16 #include <linux/init_ohci1394_dma.h>
17 #include <linux/initrd.h>
18 #include <linux/iscsi_ibft.h>
19 #include <linux/memblock.h>
20 #include <linux/panic_notifier.h>
21 #include <linux/pci.h>
22 #include <linux/random.h>
23 #include <linux/root_dev.h>
24 #include <linux/static_call.h>
25 #include <linux/swiotlb.h>
26 #include <linux/tboot.h>
27 #include <linux/usb/xhci-dbgp.h>
28 #include <linux/vmalloc.h>
29 
30 #include <uapi/linux/mount.h>
31 
32 #include <xen/xen.h>
33 
34 #include <asm/apic.h>
35 #include <asm/bios_ebda.h>
36 #include <asm/bugs.h>
37 #include <asm/cacheinfo.h>
38 #include <asm/coco.h>
39 #include <asm/cpu.h>
40 #include <asm/efi.h>
41 #include <asm/gart.h>
42 #include <asm/hypervisor.h>
43 #include <asm/io_apic.h>
44 #include <asm/kasan.h>
45 #include <asm/kaslr.h>
46 #include <asm/mce.h>
47 #include <asm/memtype.h>
48 #include <asm/mtrr.h>
49 #include <asm/nmi.h>
50 #include <asm/numa.h>
51 #include <asm/olpc_ofw.h>
52 #include <asm/pci-direct.h>
53 #include <asm/prom.h>
54 #include <asm/proto.h>
55 #include <asm/realmode.h>
56 #include <asm/thermal.h>
57 #include <asm/unwind.h>
58 #include <asm/vsyscall.h>
59 
60 /*
61  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
62  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
63  *
64  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
65  * represented by pfn_mapped[].
66  */
67 unsigned long max_low_pfn_mapped;
68 unsigned long max_pfn_mapped;
69 
70 #ifdef CONFIG_DMI
71 RESERVE_BRK(dmi_alloc, 65536);
72 #endif
73 
74 
75 unsigned long _brk_start = (unsigned long)__brk_base;
76 unsigned long _brk_end   = (unsigned long)__brk_base;
77 
78 struct boot_params boot_params;
79 
80 /*
81  * These are the four main kernel memory regions, we put them into
82  * the resource tree so that kdump tools and other debugging tools
83  * recover it:
84  */
85 
86 static struct resource rodata_resource = {
87 	.name	= "Kernel rodata",
88 	.start	= 0,
89 	.end	= 0,
90 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
91 };
92 
93 static struct resource data_resource = {
94 	.name	= "Kernel data",
95 	.start	= 0,
96 	.end	= 0,
97 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
98 };
99 
100 static struct resource code_resource = {
101 	.name	= "Kernel code",
102 	.start	= 0,
103 	.end	= 0,
104 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
105 };
106 
107 static struct resource bss_resource = {
108 	.name	= "Kernel bss",
109 	.start	= 0,
110 	.end	= 0,
111 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
112 };
113 
114 
115 #ifdef CONFIG_X86_32
116 /* CPU data as detected by the assembly code in head_32.S */
117 struct cpuinfo_x86 new_cpu_data;
118 
119 struct apm_info apm_info;
120 EXPORT_SYMBOL(apm_info);
121 
122 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
123 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
124 struct ist_info ist_info;
125 EXPORT_SYMBOL(ist_info);
126 #else
127 struct ist_info ist_info;
128 #endif
129 
130 #endif
131 
132 struct cpuinfo_x86 boot_cpu_data __read_mostly;
133 EXPORT_SYMBOL(boot_cpu_data);
134 SYM_PIC_ALIAS(boot_cpu_data);
135 
136 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
137 __visible unsigned long mmu_cr4_features __ro_after_init;
138 #else
139 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
140 #endif
141 
142 #ifdef CONFIG_IMA
143 static phys_addr_t ima_kexec_buffer_phys;
144 static size_t ima_kexec_buffer_size;
145 #endif
146 
147 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
148 int bootloader_type, bootloader_version;
149 
150 static const struct ctl_table x86_sysctl_table[] = {
151 	{
152 		.procname       = "unknown_nmi_panic",
153 		.data           = &unknown_nmi_panic,
154 		.maxlen         = sizeof(int),
155 		.mode           = 0644,
156 		.proc_handler   = proc_dointvec,
157 	},
158 	{
159 		.procname	= "panic_on_unrecovered_nmi",
160 		.data		= &panic_on_unrecovered_nmi,
161 		.maxlen		= sizeof(int),
162 		.mode		= 0644,
163 		.proc_handler	= proc_dointvec,
164 	},
165 	{
166 		.procname	= "panic_on_io_nmi",
167 		.data		= &panic_on_io_nmi,
168 		.maxlen		= sizeof(int),
169 		.mode		= 0644,
170 		.proc_handler	= proc_dointvec,
171 	},
172 	{
173 		.procname	= "bootloader_type",
174 		.data		= &bootloader_type,
175 		.maxlen		= sizeof(int),
176 		.mode		= 0444,
177 		.proc_handler	= proc_dointvec,
178 	},
179 	{
180 		.procname	= "bootloader_version",
181 		.data		= &bootloader_version,
182 		.maxlen		= sizeof(int),
183 		.mode		= 0444,
184 		.proc_handler	= proc_dointvec,
185 	},
186 	{
187 		.procname	= "io_delay_type",
188 		.data		= &io_delay_type,
189 		.maxlen		= sizeof(int),
190 		.mode		= 0644,
191 		.proc_handler	= proc_dointvec,
192 	},
193 #if defined(CONFIG_ACPI_SLEEP)
194 	{
195 		.procname	= "acpi_video_flags",
196 		.data		= &acpi_realmode_flags,
197 		.maxlen		= sizeof(unsigned long),
198 		.mode		= 0644,
199 		.proc_handler	= proc_doulongvec_minmax,
200 	},
201 #endif
202 };
203 
204 static int __init init_x86_sysctl(void)
205 {
206 	register_sysctl_init("kernel", x86_sysctl_table);
207 	return 0;
208 }
209 arch_initcall(init_x86_sysctl);
210 
211 /*
212  * Setup options
213  */
214 struct screen_info screen_info;
215 EXPORT_SYMBOL(screen_info);
216 struct edid_info edid_info;
217 EXPORT_SYMBOL_GPL(edid_info);
218 
219 extern int root_mountflags;
220 
221 unsigned long saved_video_mode;
222 
223 #define RAMDISK_IMAGE_START_MASK	0x07FF
224 #define RAMDISK_PROMPT_FLAG		0x8000
225 #define RAMDISK_LOAD_FLAG		0x4000
226 
227 static char __initdata command_line[COMMAND_LINE_SIZE];
228 #ifdef CONFIG_CMDLINE_BOOL
229 char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
230 bool builtin_cmdline_added __ro_after_init;
231 #endif
232 
233 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
234 struct edd edd;
235 #ifdef CONFIG_EDD_MODULE
236 EXPORT_SYMBOL(edd);
237 #endif
238 /**
239  * copy_edd() - Copy the BIOS EDD information
240  *              from boot_params into a safe place.
241  *
242  */
243 static inline void __init copy_edd(void)
244 {
245      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
246 	    sizeof(edd.mbr_signature));
247      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
248      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
249      edd.edd_info_nr = boot_params.eddbuf_entries;
250 }
251 #else
252 static inline void __init copy_edd(void)
253 {
254 }
255 #endif
256 
257 void * __init extend_brk(size_t size, size_t align)
258 {
259 	size_t mask = align - 1;
260 	void *ret;
261 
262 	BUG_ON(_brk_start == 0);
263 	BUG_ON(align & mask);
264 
265 	_brk_end = (_brk_end + mask) & ~mask;
266 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
267 
268 	ret = (void *)_brk_end;
269 	_brk_end += size;
270 
271 	memset(ret, 0, size);
272 
273 	return ret;
274 }
275 
276 #ifdef CONFIG_X86_32
277 static void __init cleanup_highmap(void)
278 {
279 }
280 #endif
281 
282 static void __init reserve_brk(void)
283 {
284 	if (_brk_end > _brk_start)
285 		memblock_reserve(__pa_symbol(_brk_start),
286 				 _brk_end - _brk_start);
287 
288 	/* Mark brk area as locked down and no longer taking any
289 	   new allocations */
290 	_brk_start = 0;
291 }
292 
293 #ifdef CONFIG_BLK_DEV_INITRD
294 
295 static u64 __init get_ramdisk_image(void)
296 {
297 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
298 
299 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
300 
301 	if (ramdisk_image == 0)
302 		ramdisk_image = phys_initrd_start;
303 
304 	return ramdisk_image;
305 }
306 static u64 __init get_ramdisk_size(void)
307 {
308 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
309 
310 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
311 
312 	if (ramdisk_size == 0)
313 		ramdisk_size = phys_initrd_size;
314 
315 	return ramdisk_size;
316 }
317 
318 static void __init relocate_initrd(void)
319 {
320 	/* Assume only end is not page aligned */
321 	u64 ramdisk_image = get_ramdisk_image();
322 	u64 ramdisk_size  = get_ramdisk_size();
323 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
324 	int ret = 0;
325 
326 	/* We need to move the initrd down into directly mapped mem */
327 	u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
328 						      PFN_PHYS(max_pfn_mapped));
329 	if (!relocated_ramdisk)
330 		panic("Cannot find place for new RAMDISK of size %lld\n",
331 		      ramdisk_size);
332 
333 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
334 	initrd_end   = initrd_start + ramdisk_size;
335 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
336 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
337 
338 	ret = copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
339 	if (ret)
340 		panic("Copy RAMDISK failed\n");
341 
342 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
343 		" [mem %#010llx-%#010llx]\n",
344 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
345 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
346 }
347 
348 static void __init early_reserve_initrd(void)
349 {
350 	/* Assume only end is not page aligned */
351 	u64 ramdisk_image = get_ramdisk_image();
352 	u64 ramdisk_size  = get_ramdisk_size();
353 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
354 
355 	if (!boot_params.hdr.type_of_loader ||
356 	    !ramdisk_image || !ramdisk_size)
357 		return;		/* No initrd provided by bootloader */
358 
359 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
360 }
361 
362 static void __init reserve_initrd(void)
363 {
364 	/* Assume only end is not page aligned */
365 	u64 ramdisk_image = get_ramdisk_image();
366 	u64 ramdisk_size  = get_ramdisk_size();
367 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
368 
369 	if (!boot_params.hdr.type_of_loader ||
370 	    !ramdisk_image || !ramdisk_size)
371 		return;		/* No initrd provided by bootloader */
372 
373 	initrd_start = 0;
374 
375 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
376 			ramdisk_end - 1);
377 
378 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
379 				PFN_DOWN(ramdisk_end))) {
380 		/* All are mapped, easy case */
381 		initrd_start = ramdisk_image + PAGE_OFFSET;
382 		initrd_end = initrd_start + ramdisk_size;
383 		return;
384 	}
385 
386 	relocate_initrd();
387 
388 	memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
389 }
390 
391 #else
392 static void __init early_reserve_initrd(void)
393 {
394 }
395 static void __init reserve_initrd(void)
396 {
397 }
398 #endif /* CONFIG_BLK_DEV_INITRD */
399 
400 static void __init add_early_ima_buffer(u64 phys_addr)
401 {
402 #ifdef CONFIG_IMA
403 	struct ima_setup_data *data;
404 
405 	data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
406 	if (!data) {
407 		pr_warn("setup: failed to memremap ima_setup_data entry\n");
408 		return;
409 	}
410 
411 	if (data->size) {
412 		memblock_reserve(data->addr, data->size);
413 		ima_kexec_buffer_phys = data->addr;
414 		ima_kexec_buffer_size = data->size;
415 	}
416 
417 	early_memunmap(data, sizeof(*data));
418 #else
419 	pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
420 #endif
421 }
422 
423 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
424 int __init ima_free_kexec_buffer(void)
425 {
426 	if (!ima_kexec_buffer_size)
427 		return -ENOENT;
428 
429 	memblock_free_late(ima_kexec_buffer_phys,
430 			   ima_kexec_buffer_size);
431 
432 	ima_kexec_buffer_phys = 0;
433 	ima_kexec_buffer_size = 0;
434 
435 	return 0;
436 }
437 
438 int __init ima_get_kexec_buffer(void **addr, size_t *size)
439 {
440 	if (!ima_kexec_buffer_size)
441 		return -ENOENT;
442 
443 	*addr = __va(ima_kexec_buffer_phys);
444 	*size = ima_kexec_buffer_size;
445 
446 	return 0;
447 }
448 #endif
449 
450 static void __init parse_setup_data(void)
451 {
452 	struct setup_data *data;
453 	u64 pa_data, pa_next;
454 
455 	pa_data = boot_params.hdr.setup_data;
456 	while (pa_data) {
457 		u32 data_len, data_type;
458 
459 		data = early_memremap(pa_data, sizeof(*data));
460 		data_len = data->len + sizeof(struct setup_data);
461 		data_type = data->type;
462 		pa_next = data->next;
463 		early_memunmap(data, sizeof(*data));
464 
465 		switch (data_type) {
466 		case SETUP_E820_EXT:
467 			e820__memory_setup_extended(pa_data, data_len);
468 			break;
469 		case SETUP_DTB:
470 			add_dtb(pa_data);
471 			break;
472 		case SETUP_EFI:
473 			parse_efi_setup(pa_data, data_len);
474 			break;
475 		case SETUP_IMA:
476 			add_early_ima_buffer(pa_data);
477 			break;
478 		case SETUP_RNG_SEED:
479 			data = early_memremap(pa_data, data_len);
480 			add_bootloader_randomness(data->data, data->len);
481 			/* Zero seed for forward secrecy. */
482 			memzero_explicit(data->data, data->len);
483 			/* Zero length in case we find ourselves back here by accident. */
484 			memzero_explicit(&data->len, sizeof(data->len));
485 			early_memunmap(data, data_len);
486 			break;
487 		default:
488 			break;
489 		}
490 		pa_data = pa_next;
491 	}
492 }
493 
494 /*
495  * Translate the fields of 'struct boot_param' into global variables
496  * representing these parameters.
497  */
498 static void __init parse_boot_params(void)
499 {
500 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
501 	screen_info = boot_params.screen_info;
502 	edid_info = boot_params.edid_info;
503 #ifdef CONFIG_X86_32
504 	apm_info.bios = boot_params.apm_bios_info;
505 	ist_info = boot_params.ist_info;
506 #endif
507 	saved_video_mode = boot_params.hdr.vid_mode;
508 	bootloader_type = boot_params.hdr.type_of_loader;
509 	if ((bootloader_type >> 4) == 0xe) {
510 		bootloader_type &= 0xf;
511 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
512 	}
513 	bootloader_version  = bootloader_type & 0xf;
514 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
515 
516 #ifdef CONFIG_BLK_DEV_RAM
517 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
518 #endif
519 #ifdef CONFIG_EFI
520 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
521 		     EFI32_LOADER_SIGNATURE, 4)) {
522 		set_bit(EFI_BOOT, &efi.flags);
523 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
524 		     EFI64_LOADER_SIGNATURE, 4)) {
525 		set_bit(EFI_BOOT, &efi.flags);
526 		set_bit(EFI_64BIT, &efi.flags);
527 	}
528 #endif
529 
530 	if (!boot_params.hdr.root_flags)
531 		root_mountflags &= ~MS_RDONLY;
532 }
533 
534 static void __init memblock_x86_reserve_range_setup_data(void)
535 {
536 	struct setup_indirect *indirect;
537 	struct setup_data *data;
538 	u64 pa_data, pa_next;
539 	u32 len;
540 
541 	pa_data = boot_params.hdr.setup_data;
542 	while (pa_data) {
543 		data = early_memremap(pa_data, sizeof(*data));
544 		if (!data) {
545 			pr_warn("setup: failed to memremap setup_data entry\n");
546 			return;
547 		}
548 
549 		len = sizeof(*data);
550 		pa_next = data->next;
551 
552 		memblock_reserve(pa_data, sizeof(*data) + data->len);
553 
554 		if (data->type == SETUP_INDIRECT) {
555 			len += data->len;
556 			early_memunmap(data, sizeof(*data));
557 			data = early_memremap(pa_data, len);
558 			if (!data) {
559 				pr_warn("setup: failed to memremap indirect setup_data\n");
560 				return;
561 			}
562 
563 			indirect = (struct setup_indirect *)data->data;
564 
565 			if (indirect->type != SETUP_INDIRECT)
566 				memblock_reserve(indirect->addr, indirect->len);
567 		}
568 
569 		pa_data = pa_next;
570 		early_memunmap(data, len);
571 	}
572 }
573 
574 static void __init arch_reserve_crashkernel(void)
575 {
576 	unsigned long long crash_base, crash_size, low_size = 0;
577 	bool high = false;
578 	int ret;
579 
580 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
581 		return;
582 
583 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
584 				&crash_size, &crash_base,
585 				&low_size, &high);
586 	if (ret)
587 		return;
588 
589 	if (xen_pv_domain()) {
590 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
591 		return;
592 	}
593 
594 	reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
595 }
596 
597 static struct resource standard_io_resources[] = {
598 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
599 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
600 	{ .name = "pic1", .start = 0x20, .end = 0x21,
601 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
602 	{ .name = "timer0", .start = 0x40, .end = 0x43,
603 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
604 	{ .name = "timer1", .start = 0x50, .end = 0x53,
605 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
606 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
607 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
608 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
609 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
610 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
611 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
612 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
613 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
614 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
615 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
616 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
617 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
618 };
619 
620 void __init reserve_standard_io_resources(void)
621 {
622 	int i;
623 
624 	/* request I/O space for devices used on all i[345]86 PCs */
625 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
626 		request_resource(&ioport_resource, &standard_io_resources[i]);
627 
628 }
629 
630 static void __init setup_kernel_resources(void)
631 {
632 	code_resource.start = __pa_symbol(_text);
633 	code_resource.end = __pa_symbol(_etext)-1;
634 	rodata_resource.start = __pa_symbol(__start_rodata);
635 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
636 	data_resource.start = __pa_symbol(_sdata);
637 	data_resource.end = __pa_symbol(_edata)-1;
638 	bss_resource.start = __pa_symbol(__bss_start);
639 	bss_resource.end = __pa_symbol(__bss_stop)-1;
640 
641 	insert_resource(&iomem_resource, &code_resource);
642 	insert_resource(&iomem_resource, &rodata_resource);
643 	insert_resource(&iomem_resource, &data_resource);
644 	insert_resource(&iomem_resource, &bss_resource);
645 }
646 
647 static bool __init snb_gfx_workaround_needed(void)
648 {
649 #ifdef CONFIG_PCI
650 	int i;
651 	u16 vendor, devid;
652 	static const __initconst u16 snb_ids[] = {
653 		0x0102,
654 		0x0112,
655 		0x0122,
656 		0x0106,
657 		0x0116,
658 		0x0126,
659 		0x010a,
660 	};
661 
662 	/* Assume no if something weird is going on with PCI */
663 	if (!early_pci_allowed())
664 		return false;
665 
666 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
667 	if (vendor != 0x8086)
668 		return false;
669 
670 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
671 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
672 		if (devid == snb_ids[i])
673 			return true;
674 #endif
675 
676 	return false;
677 }
678 
679 /*
680  * Sandy Bridge graphics has trouble with certain ranges, exclude
681  * them from allocation.
682  */
683 static void __init trim_snb_memory(void)
684 {
685 	static const __initconst unsigned long bad_pages[] = {
686 		0x20050000,
687 		0x20110000,
688 		0x20130000,
689 		0x20138000,
690 		0x40004000,
691 	};
692 	int i;
693 
694 	if (!snb_gfx_workaround_needed())
695 		return;
696 
697 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
698 
699 	/*
700 	 * SandyBridge integrated graphics devices have a bug that prevents
701 	 * them from accessing certain memory ranges, namely anything below
702 	 * 1M and in the pages listed in bad_pages[] above.
703 	 *
704 	 * To avoid these pages being ever accessed by SNB gfx devices reserve
705 	 * bad_pages that have not already been reserved at boot time.
706 	 * All memory below the 1 MB mark is anyway reserved later during
707 	 * setup_arch(), so there is no need to reserve it here.
708 	 */
709 
710 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
711 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
712 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
713 			       bad_pages[i]);
714 	}
715 }
716 
717 static void __init trim_bios_range(void)
718 {
719 	/*
720 	 * A special case is the first 4Kb of memory;
721 	 * This is a BIOS owned area, not kernel ram, but generally
722 	 * not listed as such in the E820 table.
723 	 *
724 	 * This typically reserves additional memory (64KiB by default)
725 	 * since some BIOSes are known to corrupt low memory.  See the
726 	 * Kconfig help text for X86_RESERVE_LOW.
727 	 */
728 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
729 
730 	/*
731 	 * special case: Some BIOSes report the PC BIOS
732 	 * area (640Kb -> 1Mb) as RAM even though it is not.
733 	 * take them out.
734 	 */
735 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
736 
737 	e820__update_table(e820_table);
738 }
739 
740 /* called before trim_bios_range() to spare extra sanitize */
741 static void __init e820_add_kernel_range(void)
742 {
743 	u64 start = __pa_symbol(_text);
744 	u64 size = __pa_symbol(_end) - start;
745 
746 	/*
747 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
748 	 * attempt to fix it by adding the range. We may have a confused BIOS,
749 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
750 	 * exclude kernel range. If we really are running on top non-RAM,
751 	 * we will crash later anyways.
752 	 */
753 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
754 		return;
755 
756 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
757 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
758 	e820__range_add(start, size, E820_TYPE_RAM);
759 }
760 
761 static void __init early_reserve_memory(void)
762 {
763 	/*
764 	 * Reserve the memory occupied by the kernel between _text and
765 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
766 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
767 	 * separate memblock_reserve() or they will be discarded.
768 	 */
769 	memblock_reserve(__pa_symbol(_text),
770 			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
771 
772 	/*
773 	 * The first 4Kb of memory is a BIOS owned area, but generally it is
774 	 * not listed as such in the E820 table.
775 	 *
776 	 * Reserve the first 64K of memory since some BIOSes are known to
777 	 * corrupt low memory. After the real mode trampoline is allocated the
778 	 * rest of the memory below 640k is reserved.
779 	 *
780 	 * In addition, make sure page 0 is always reserved because on
781 	 * systems with L1TF its contents can be leaked to user processes.
782 	 */
783 	memblock_reserve(0, SZ_64K);
784 
785 	early_reserve_initrd();
786 
787 	memblock_x86_reserve_range_setup_data();
788 
789 	reserve_bios_regions();
790 	trim_snb_memory();
791 }
792 
793 /*
794  * Dump out kernel offset information on panic.
795  */
796 static int
797 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
798 {
799 	if (kaslr_enabled()) {
800 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
801 			 kaslr_offset(),
802 			 __START_KERNEL,
803 			 __START_KERNEL_map,
804 			 MODULES_VADDR-1);
805 	} else {
806 		pr_emerg("Kernel Offset: disabled\n");
807 	}
808 
809 	return 0;
810 }
811 
812 void x86_configure_nx(void)
813 {
814 	if (boot_cpu_has(X86_FEATURE_NX))
815 		__supported_pte_mask |= _PAGE_NX;
816 	else
817 		__supported_pte_mask &= ~_PAGE_NX;
818 }
819 
820 static void __init x86_report_nx(void)
821 {
822 	if (!boot_cpu_has(X86_FEATURE_NX)) {
823 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
824 		       "missing in CPU!\n");
825 	} else {
826 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
827 		printk(KERN_INFO "NX (Execute Disable) protection: active\n");
828 #else
829 		/* 32bit non-PAE kernel, NX cannot be used */
830 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
831 		       "cannot be enabled: non-PAE kernel!\n");
832 #endif
833 	}
834 }
835 
836 /*
837  * Determine if we were loaded by an EFI loader.  If so, then we have also been
838  * passed the efi memmap, systab, etc., so we should use these data structures
839  * for initialization.  Note, the efi init code path is determined by the
840  * global efi_enabled. This allows the same kernel image to be used on existing
841  * systems (with a traditional BIOS) as well as on EFI systems.
842  */
843 /*
844  * setup_arch - architecture-specific boot-time initializations
845  *
846  * Note: On x86_64, fixmaps are ready for use even before this is called.
847  */
848 
849 void __init setup_arch(char **cmdline_p)
850 {
851 #ifdef CONFIG_X86_32
852 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
853 
854 	/*
855 	 * copy kernel address range established so far and switch
856 	 * to the proper swapper page table
857 	 */
858 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
859 			initial_page_table + KERNEL_PGD_BOUNDARY,
860 			KERNEL_PGD_PTRS);
861 
862 	load_cr3(swapper_pg_dir);
863 	/*
864 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
865 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
866 	 * will not flush anything because the CPU quirk which clears
867 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
868 	 * load_cr3() above the TLB has been flushed already. The
869 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
870 	 * so proper operation is guaranteed.
871 	 */
872 	__flush_tlb_all();
873 #else
874 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
875 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
876 #endif
877 
878 #ifdef CONFIG_CMDLINE_BOOL
879 #ifdef CONFIG_CMDLINE_OVERRIDE
880 	strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
881 #else
882 	if (builtin_cmdline[0]) {
883 		/* append boot loader cmdline to builtin */
884 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
885 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
886 		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
887 	}
888 #endif
889 	builtin_cmdline_added = true;
890 #endif
891 
892 	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
893 	*cmdline_p = command_line;
894 
895 	/*
896 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
897 	 * reserve_top(), so do this before touching the ioremap area.
898 	 */
899 	olpc_ofw_detect();
900 
901 	idt_setup_early_traps();
902 	early_cpu_init();
903 	jump_label_init();
904 	static_call_init();
905 	early_ioremap_init();
906 
907 	setup_olpc_ofw_pgd();
908 
909 	parse_boot_params();
910 
911 	x86_init.oem.arch_setup();
912 
913 	/*
914 	 * Do some memory reservations *before* memory is added to memblock, so
915 	 * memblock allocations won't overwrite it.
916 	 *
917 	 * After this point, everything still needed from the boot loader or
918 	 * firmware or kernel text should be early reserved or marked not RAM in
919 	 * e820. All other memory is free game.
920 	 *
921 	 * This call needs to happen before e820__memory_setup() which calls the
922 	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
923 	 * early reservations have happened already.
924 	 */
925 	early_reserve_memory();
926 
927 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
928 	e820__memory_setup();
929 	parse_setup_data();
930 
931 	copy_edd();
932 
933 	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
934 
935 	/*
936 	 * x86_configure_nx() is called before parse_early_param() to detect
937 	 * whether hardware doesn't support NX (so that the early EHCI debug
938 	 * console setup can safely call set_fixmap()).
939 	 */
940 	x86_configure_nx();
941 
942 	parse_early_param();
943 
944 	if (efi_enabled(EFI_BOOT))
945 		efi_memblock_x86_reserve_range();
946 
947 	x86_report_nx();
948 
949 	apic_setup_apic_calls();
950 
951 	if (acpi_mps_check()) {
952 #ifdef CONFIG_X86_LOCAL_APIC
953 		apic_is_disabled = true;
954 #endif
955 		setup_clear_cpu_cap(X86_FEATURE_APIC);
956 	}
957 
958 	e820__finish_early_params();
959 
960 	if (efi_enabled(EFI_BOOT))
961 		efi_init();
962 
963 	reserve_ibft_region();
964 	x86_init.resources.dmi_setup();
965 
966 	/*
967 	 * VMware detection requires dmi to be available, so this
968 	 * needs to be done after dmi_setup(), for the boot CPU.
969 	 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
970 	 * called before cache_bp_init() for setting up MTRR state.
971 	 */
972 	init_hypervisor_platform();
973 
974 	tsc_early_init();
975 	x86_init.resources.probe_roms();
976 
977 	/*
978 	 * Add resources for kernel text and data to the iomem_resource.
979 	 * Do it after parse_early_param, so it can be debugged.
980 	 */
981 	setup_kernel_resources();
982 
983 	e820_add_kernel_range();
984 	trim_bios_range();
985 #ifdef CONFIG_X86_32
986 	if (ppro_with_ram_bug()) {
987 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
988 				  E820_TYPE_RESERVED);
989 		e820__update_table(e820_table);
990 		printk(KERN_INFO "fixed physical RAM map:\n");
991 		e820__print_table("bad_ppro");
992 	}
993 #else
994 	early_gart_iommu_check();
995 #endif
996 
997 	/*
998 	 * partially used pages are not usable - thus
999 	 * we are rounding upwards:
1000 	 */
1001 	max_pfn = e820__end_of_ram_pfn();
1002 
1003 	/* update e820 for memory not covered by WB MTRRs */
1004 	cache_bp_init();
1005 	if (mtrr_trim_uncached_memory(max_pfn))
1006 		max_pfn = e820__end_of_ram_pfn();
1007 
1008 	max_possible_pfn = max_pfn;
1009 
1010 	/*
1011 	 * Define random base addresses for memory sections after max_pfn is
1012 	 * defined and before each memory section base is used.
1013 	 */
1014 	kernel_randomize_memory();
1015 
1016 #ifdef CONFIG_X86_32
1017 	/* max_low_pfn get updated here */
1018 	find_low_pfn_range();
1019 #else
1020 	check_x2apic();
1021 
1022 	/* How many end-of-memory variables you have, grandma! */
1023 	/* need this before calling reserve_initrd */
1024 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1025 		max_low_pfn = e820__end_of_low_ram_pfn();
1026 	else
1027 		max_low_pfn = max_pfn;
1028 #endif
1029 
1030 	/* Find and reserve MPTABLE area */
1031 	x86_init.mpparse.find_mptable();
1032 
1033 	early_alloc_pgt_buf();
1034 
1035 	/*
1036 	 * Need to conclude brk, before e820__memblock_setup()
1037 	 * it could use memblock_find_in_range, could overlap with
1038 	 * brk area.
1039 	 */
1040 	reserve_brk();
1041 
1042 	cleanup_highmap();
1043 
1044 	e820__memblock_setup();
1045 
1046 	/*
1047 	 * Needs to run after memblock setup because it needs the physical
1048 	 * memory size.
1049 	 */
1050 	mem_encrypt_setup_arch();
1051 	cc_random_init();
1052 
1053 	efi_find_mirror();
1054 	efi_esrt_init();
1055 	efi_mokvar_table_init();
1056 
1057 	/*
1058 	 * The EFI specification says that boot service code won't be
1059 	 * called after ExitBootServices(). This is, in fact, a lie.
1060 	 */
1061 	efi_reserve_boot_services();
1062 
1063 	/* preallocate 4k for mptable mpc */
1064 	e820__memblock_alloc_reserved_mpc_new();
1065 
1066 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1067 	setup_bios_corruption_check();
1068 #endif
1069 
1070 #ifdef CONFIG_X86_32
1071 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1072 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1073 #endif
1074 
1075 	/*
1076 	 * Find free memory for the real mode trampoline and place it there. If
1077 	 * there is not enough free memory under 1M, on EFI-enabled systems
1078 	 * there will be additional attempt to reclaim the memory for the real
1079 	 * mode trampoline at efi_free_boot_services().
1080 	 *
1081 	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1082 	 * are known to corrupt low memory and several hundred kilobytes are not
1083 	 * worth complex detection what memory gets clobbered. Windows does the
1084 	 * same thing for very similar reasons.
1085 	 *
1086 	 * Moreover, on machines with SandyBridge graphics or in setups that use
1087 	 * crashkernel the entire 1M is reserved anyway.
1088 	 *
1089 	 * Note the host kernel TDX also requires the first 1MB being reserved.
1090 	 */
1091 	x86_platform.realmode_reserve();
1092 
1093 	init_mem_mapping();
1094 
1095 	/*
1096 	 * init_mem_mapping() relies on the early IDT page fault handling.
1097 	 * Now either enable FRED or install the real page fault handler
1098 	 * for 64-bit in the IDT.
1099 	 */
1100 	cpu_init_replace_early_idt();
1101 
1102 	/*
1103 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1104 	 * with the current CR4 value.  This may not be necessary, but
1105 	 * auditing all the early-boot CR4 manipulation would be needed to
1106 	 * rule it out.
1107 	 *
1108 	 * Mask off features that don't work outside long mode (just
1109 	 * PCIDE for now).
1110 	 */
1111 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1112 
1113 	memblock_set_current_limit(get_max_mapped());
1114 
1115 	/*
1116 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1117 	 */
1118 
1119 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1120 	if (init_ohci1394_dma_early)
1121 		init_ohci1394_dma_on_all_controllers();
1122 #endif
1123 	/* Allocate bigger log buffer */
1124 	setup_log_buf(1);
1125 
1126 	if (efi_enabled(EFI_BOOT)) {
1127 		switch (boot_params.secure_boot) {
1128 		case efi_secureboot_mode_disabled:
1129 			pr_info("Secure boot disabled\n");
1130 			break;
1131 		case efi_secureboot_mode_enabled:
1132 			pr_info("Secure boot enabled\n");
1133 			break;
1134 		default:
1135 			pr_info("Secure boot could not be determined\n");
1136 			break;
1137 		}
1138 	}
1139 
1140 	reserve_initrd();
1141 
1142 	acpi_table_upgrade();
1143 	/* Look for ACPI tables and reserve memory occupied by them. */
1144 	acpi_boot_table_init();
1145 
1146 	vsmp_init();
1147 
1148 	io_delay_init();
1149 
1150 	early_platform_quirks();
1151 
1152 	/* Some platforms need the APIC registered for NUMA configuration */
1153 	early_acpi_boot_init();
1154 	x86_init.mpparse.early_parse_smp_cfg();
1155 
1156 	x86_flattree_get_config();
1157 
1158 	initmem_init();
1159 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1160 
1161 	if (boot_cpu_has(X86_FEATURE_GBPAGES)) {
1162 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1163 		hugetlb_bootmem_alloc();
1164 	}
1165 
1166 	/*
1167 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1168 	 * won't consume hotpluggable memory.
1169 	 */
1170 	arch_reserve_crashkernel();
1171 
1172 	if (!early_xdbc_setup_hardware())
1173 		early_xdbc_register_console();
1174 
1175 	x86_init.paging.pagetable_init();
1176 
1177 	kasan_init();
1178 
1179 	/*
1180 	 * Sync back kernel address range.
1181 	 *
1182 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1183 	 * this call?
1184 	 */
1185 	sync_initial_page_table();
1186 
1187 	tboot_probe();
1188 
1189 	map_vsyscall();
1190 
1191 	x86_32_probe_apic();
1192 
1193 	early_quirks();
1194 
1195 	topology_apply_cmdline_limits_early();
1196 
1197 	/*
1198 	 * Parse SMP configuration. Try ACPI first and then the platform
1199 	 * specific parser.
1200 	 */
1201 	acpi_boot_init();
1202 	x86_init.mpparse.parse_smp_cfg();
1203 
1204 	/* Last opportunity to detect and map the local APIC */
1205 	init_apic_mappings();
1206 
1207 	topology_init_possible_cpus();
1208 
1209 	init_cpu_to_node();
1210 	init_gi_nodes();
1211 
1212 	io_apic_init_mappings();
1213 
1214 	x86_init.hyper.guest_late_init();
1215 
1216 	e820__reserve_resources();
1217 	e820__register_nosave_regions(max_pfn);
1218 
1219 	x86_init.resources.reserve_resources();
1220 
1221 	e820__setup_pci_gap();
1222 
1223 #ifdef CONFIG_VT
1224 #if defined(CONFIG_VGA_CONSOLE)
1225 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1226 		vgacon_register_screen(&screen_info);
1227 #endif
1228 #endif
1229 	x86_init.oem.banner();
1230 
1231 	x86_init.timers.wallclock_init();
1232 
1233 	/*
1234 	 * This needs to run before setup_local_APIC() which soft-disables the
1235 	 * local APIC temporarily and that masks the thermal LVT interrupt,
1236 	 * leading to softlockups on machines which have configured SMI
1237 	 * interrupt delivery.
1238 	 */
1239 	therm_lvt_init();
1240 
1241 	mcheck_init();
1242 
1243 	register_refined_jiffies(CLOCK_TICK_RATE);
1244 
1245 #ifdef CONFIG_EFI
1246 	if (efi_enabled(EFI_BOOT))
1247 		efi_apply_memmap_quirks();
1248 #endif
1249 
1250 	unwind_init();
1251 }
1252 
1253 #ifdef CONFIG_X86_32
1254 
1255 static struct resource video_ram_resource = {
1256 	.name	= "Video RAM area",
1257 	.start	= 0xa0000,
1258 	.end	= 0xbffff,
1259 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1260 };
1261 
1262 void __init i386_reserve_resources(void)
1263 {
1264 	request_resource(&iomem_resource, &video_ram_resource);
1265 	reserve_standard_io_resources();
1266 }
1267 
1268 #endif /* CONFIG_X86_32 */
1269 
1270 static struct notifier_block kernel_offset_notifier = {
1271 	.notifier_call = dump_kernel_offset
1272 };
1273 
1274 static int __init register_kernel_offset_dumper(void)
1275 {
1276 	atomic_notifier_chain_register(&panic_notifier_list,
1277 					&kernel_offset_notifier);
1278 	return 0;
1279 }
1280 __initcall(register_kernel_offset_dumper);
1281 
1282 #ifdef CONFIG_HOTPLUG_CPU
1283 bool arch_cpu_is_hotpluggable(int cpu)
1284 {
1285 	return cpu > 0;
1286 }
1287 #endif /* CONFIG_HOTPLUG_CPU */
1288