1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/acpi.h> 9 #include <linux/console.h> 10 #include <linux/crash_dump.h> 11 #include <linux/dma-map-ops.h> 12 #include <linux/dmi.h> 13 #include <linux/efi.h> 14 #include <linux/ima.h> 15 #include <linux/init_ohci1394_dma.h> 16 #include <linux/initrd.h> 17 #include <linux/iscsi_ibft.h> 18 #include <linux/memblock.h> 19 #include <linux/panic_notifier.h> 20 #include <linux/pci.h> 21 #include <linux/root_dev.h> 22 #include <linux/hugetlb.h> 23 #include <linux/tboot.h> 24 #include <linux/usb/xhci-dbgp.h> 25 #include <linux/static_call.h> 26 #include <linux/swiotlb.h> 27 #include <linux/random.h> 28 29 #include <uapi/linux/mount.h> 30 31 #include <xen/xen.h> 32 33 #include <asm/apic.h> 34 #include <asm/efi.h> 35 #include <asm/numa.h> 36 #include <asm/bios_ebda.h> 37 #include <asm/bugs.h> 38 #include <asm/cacheinfo.h> 39 #include <asm/cpu.h> 40 #include <asm/efi.h> 41 #include <asm/gart.h> 42 #include <asm/hypervisor.h> 43 #include <asm/io_apic.h> 44 #include <asm/kasan.h> 45 #include <asm/kaslr.h> 46 #include <asm/mce.h> 47 #include <asm/memtype.h> 48 #include <asm/mtrr.h> 49 #include <asm/realmode.h> 50 #include <asm/olpc_ofw.h> 51 #include <asm/pci-direct.h> 52 #include <asm/prom.h> 53 #include <asm/proto.h> 54 #include <asm/thermal.h> 55 #include <asm/unwind.h> 56 #include <asm/vsyscall.h> 57 #include <linux/vmalloc.h> 58 59 /* 60 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 61 * max_pfn_mapped: highest directly mapped pfn > 4 GB 62 * 63 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 64 * represented by pfn_mapped[]. 65 */ 66 unsigned long max_low_pfn_mapped; 67 unsigned long max_pfn_mapped; 68 69 #ifdef CONFIG_DMI 70 RESERVE_BRK(dmi_alloc, 65536); 71 #endif 72 73 74 unsigned long _brk_start = (unsigned long)__brk_base; 75 unsigned long _brk_end = (unsigned long)__brk_base; 76 77 struct boot_params boot_params; 78 79 /* 80 * These are the four main kernel memory regions, we put them into 81 * the resource tree so that kdump tools and other debugging tools 82 * recover it: 83 */ 84 85 static struct resource rodata_resource = { 86 .name = "Kernel rodata", 87 .start = 0, 88 .end = 0, 89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 90 }; 91 92 static struct resource data_resource = { 93 .name = "Kernel data", 94 .start = 0, 95 .end = 0, 96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 97 }; 98 99 static struct resource code_resource = { 100 .name = "Kernel code", 101 .start = 0, 102 .end = 0, 103 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 104 }; 105 106 static struct resource bss_resource = { 107 .name = "Kernel bss", 108 .start = 0, 109 .end = 0, 110 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 111 }; 112 113 114 #ifdef CONFIG_X86_32 115 /* CPU data as detected by the assembly code in head_32.S */ 116 struct cpuinfo_x86 new_cpu_data; 117 118 struct apm_info apm_info; 119 EXPORT_SYMBOL(apm_info); 120 121 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 122 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 123 struct ist_info ist_info; 124 EXPORT_SYMBOL(ist_info); 125 #else 126 struct ist_info ist_info; 127 #endif 128 129 #endif 130 131 struct cpuinfo_x86 boot_cpu_data __read_mostly; 132 EXPORT_SYMBOL(boot_cpu_data); 133 134 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 135 __visible unsigned long mmu_cr4_features __ro_after_init; 136 #else 137 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 138 #endif 139 140 #ifdef CONFIG_IMA 141 static phys_addr_t ima_kexec_buffer_phys; 142 static size_t ima_kexec_buffer_size; 143 #endif 144 145 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 146 int bootloader_type, bootloader_version; 147 148 /* 149 * Setup options 150 */ 151 struct screen_info screen_info; 152 EXPORT_SYMBOL(screen_info); 153 struct edid_info edid_info; 154 EXPORT_SYMBOL_GPL(edid_info); 155 156 extern int root_mountflags; 157 158 unsigned long saved_video_mode; 159 160 #define RAMDISK_IMAGE_START_MASK 0x07FF 161 #define RAMDISK_PROMPT_FLAG 0x8000 162 #define RAMDISK_LOAD_FLAG 0x4000 163 164 static char __initdata command_line[COMMAND_LINE_SIZE]; 165 #ifdef CONFIG_CMDLINE_BOOL 166 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 167 #endif 168 169 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 170 struct edd edd; 171 #ifdef CONFIG_EDD_MODULE 172 EXPORT_SYMBOL(edd); 173 #endif 174 /** 175 * copy_edd() - Copy the BIOS EDD information 176 * from boot_params into a safe place. 177 * 178 */ 179 static inline void __init copy_edd(void) 180 { 181 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 182 sizeof(edd.mbr_signature)); 183 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 184 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 185 edd.edd_info_nr = boot_params.eddbuf_entries; 186 } 187 #else 188 static inline void __init copy_edd(void) 189 { 190 } 191 #endif 192 193 void * __init extend_brk(size_t size, size_t align) 194 { 195 size_t mask = align - 1; 196 void *ret; 197 198 BUG_ON(_brk_start == 0); 199 BUG_ON(align & mask); 200 201 _brk_end = (_brk_end + mask) & ~mask; 202 BUG_ON((char *)(_brk_end + size) > __brk_limit); 203 204 ret = (void *)_brk_end; 205 _brk_end += size; 206 207 memset(ret, 0, size); 208 209 return ret; 210 } 211 212 #ifdef CONFIG_X86_32 213 static void __init cleanup_highmap(void) 214 { 215 } 216 #endif 217 218 static void __init reserve_brk(void) 219 { 220 if (_brk_end > _brk_start) 221 memblock_reserve(__pa_symbol(_brk_start), 222 _brk_end - _brk_start); 223 224 /* Mark brk area as locked down and no longer taking any 225 new allocations */ 226 _brk_start = 0; 227 } 228 229 #ifdef CONFIG_BLK_DEV_INITRD 230 231 static u64 __init get_ramdisk_image(void) 232 { 233 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 234 235 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 236 237 if (ramdisk_image == 0) 238 ramdisk_image = phys_initrd_start; 239 240 return ramdisk_image; 241 } 242 static u64 __init get_ramdisk_size(void) 243 { 244 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 245 246 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 247 248 if (ramdisk_size == 0) 249 ramdisk_size = phys_initrd_size; 250 251 return ramdisk_size; 252 } 253 254 static void __init relocate_initrd(void) 255 { 256 /* Assume only end is not page aligned */ 257 u64 ramdisk_image = get_ramdisk_image(); 258 u64 ramdisk_size = get_ramdisk_size(); 259 u64 area_size = PAGE_ALIGN(ramdisk_size); 260 261 /* We need to move the initrd down into directly mapped mem */ 262 u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0, 263 PFN_PHYS(max_pfn_mapped)); 264 if (!relocated_ramdisk) 265 panic("Cannot find place for new RAMDISK of size %lld\n", 266 ramdisk_size); 267 268 initrd_start = relocated_ramdisk + PAGE_OFFSET; 269 initrd_end = initrd_start + ramdisk_size; 270 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 271 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 272 273 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 274 275 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 276 " [mem %#010llx-%#010llx]\n", 277 ramdisk_image, ramdisk_image + ramdisk_size - 1, 278 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 279 } 280 281 static void __init early_reserve_initrd(void) 282 { 283 /* Assume only end is not page aligned */ 284 u64 ramdisk_image = get_ramdisk_image(); 285 u64 ramdisk_size = get_ramdisk_size(); 286 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 287 288 if (!boot_params.hdr.type_of_loader || 289 !ramdisk_image || !ramdisk_size) 290 return; /* No initrd provided by bootloader */ 291 292 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 293 } 294 295 static void __init reserve_initrd(void) 296 { 297 /* Assume only end is not page aligned */ 298 u64 ramdisk_image = get_ramdisk_image(); 299 u64 ramdisk_size = get_ramdisk_size(); 300 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 301 302 if (!boot_params.hdr.type_of_loader || 303 !ramdisk_image || !ramdisk_size) 304 return; /* No initrd provided by bootloader */ 305 306 initrd_start = 0; 307 308 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 309 ramdisk_end - 1); 310 311 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 312 PFN_DOWN(ramdisk_end))) { 313 /* All are mapped, easy case */ 314 initrd_start = ramdisk_image + PAGE_OFFSET; 315 initrd_end = initrd_start + ramdisk_size; 316 return; 317 } 318 319 relocate_initrd(); 320 321 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image); 322 } 323 324 #else 325 static void __init early_reserve_initrd(void) 326 { 327 } 328 static void __init reserve_initrd(void) 329 { 330 } 331 #endif /* CONFIG_BLK_DEV_INITRD */ 332 333 static void __init add_early_ima_buffer(u64 phys_addr) 334 { 335 #ifdef CONFIG_IMA 336 struct ima_setup_data *data; 337 338 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data)); 339 if (!data) { 340 pr_warn("setup: failed to memremap ima_setup_data entry\n"); 341 return; 342 } 343 344 if (data->size) { 345 memblock_reserve(data->addr, data->size); 346 ima_kexec_buffer_phys = data->addr; 347 ima_kexec_buffer_size = data->size; 348 } 349 350 early_memunmap(data, sizeof(*data)); 351 #else 352 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n"); 353 #endif 354 } 355 356 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE) 357 int __init ima_free_kexec_buffer(void) 358 { 359 if (!ima_kexec_buffer_size) 360 return -ENOENT; 361 362 memblock_free_late(ima_kexec_buffer_phys, 363 ima_kexec_buffer_size); 364 365 ima_kexec_buffer_phys = 0; 366 ima_kexec_buffer_size = 0; 367 368 return 0; 369 } 370 371 int __init ima_get_kexec_buffer(void **addr, size_t *size) 372 { 373 if (!ima_kexec_buffer_size) 374 return -ENOENT; 375 376 *addr = __va(ima_kexec_buffer_phys); 377 *size = ima_kexec_buffer_size; 378 379 return 0; 380 } 381 #endif 382 383 static void __init parse_setup_data(void) 384 { 385 struct setup_data *data; 386 u64 pa_data, pa_next; 387 388 pa_data = boot_params.hdr.setup_data; 389 while (pa_data) { 390 u32 data_len, data_type; 391 392 data = early_memremap(pa_data, sizeof(*data)); 393 data_len = data->len + sizeof(struct setup_data); 394 data_type = data->type; 395 pa_next = data->next; 396 early_memunmap(data, sizeof(*data)); 397 398 switch (data_type) { 399 case SETUP_E820_EXT: 400 e820__memory_setup_extended(pa_data, data_len); 401 break; 402 case SETUP_DTB: 403 add_dtb(pa_data); 404 break; 405 case SETUP_EFI: 406 parse_efi_setup(pa_data, data_len); 407 break; 408 case SETUP_IMA: 409 add_early_ima_buffer(pa_data); 410 break; 411 case SETUP_RNG_SEED: 412 data = early_memremap(pa_data, data_len); 413 add_bootloader_randomness(data->data, data->len); 414 /* Zero seed for forward secrecy. */ 415 memzero_explicit(data->data, data->len); 416 /* Zero length in case we find ourselves back here by accident. */ 417 memzero_explicit(&data->len, sizeof(data->len)); 418 early_memunmap(data, data_len); 419 break; 420 default: 421 break; 422 } 423 pa_data = pa_next; 424 } 425 } 426 427 static void __init memblock_x86_reserve_range_setup_data(void) 428 { 429 struct setup_indirect *indirect; 430 struct setup_data *data; 431 u64 pa_data, pa_next; 432 u32 len; 433 434 pa_data = boot_params.hdr.setup_data; 435 while (pa_data) { 436 data = early_memremap(pa_data, sizeof(*data)); 437 if (!data) { 438 pr_warn("setup: failed to memremap setup_data entry\n"); 439 return; 440 } 441 442 len = sizeof(*data); 443 pa_next = data->next; 444 445 memblock_reserve(pa_data, sizeof(*data) + data->len); 446 447 if (data->type == SETUP_INDIRECT) { 448 len += data->len; 449 early_memunmap(data, sizeof(*data)); 450 data = early_memremap(pa_data, len); 451 if (!data) { 452 pr_warn("setup: failed to memremap indirect setup_data\n"); 453 return; 454 } 455 456 indirect = (struct setup_indirect *)data->data; 457 458 if (indirect->type != SETUP_INDIRECT) 459 memblock_reserve(indirect->addr, indirect->len); 460 } 461 462 pa_data = pa_next; 463 early_memunmap(data, len); 464 } 465 } 466 467 static void __init arch_reserve_crashkernel(void) 468 { 469 unsigned long long crash_base, crash_size, low_size = 0; 470 char *cmdline = boot_command_line; 471 bool high = false; 472 int ret; 473 474 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 475 return; 476 477 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(), 478 &crash_size, &crash_base, 479 &low_size, &high); 480 if (ret) 481 return; 482 483 if (xen_pv_domain()) { 484 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 485 return; 486 } 487 488 reserve_crashkernel_generic(cmdline, crash_size, crash_base, 489 low_size, high); 490 } 491 492 static struct resource standard_io_resources[] = { 493 { .name = "dma1", .start = 0x00, .end = 0x1f, 494 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 495 { .name = "pic1", .start = 0x20, .end = 0x21, 496 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 497 { .name = "timer0", .start = 0x40, .end = 0x43, 498 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 499 { .name = "timer1", .start = 0x50, .end = 0x53, 500 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 501 { .name = "keyboard", .start = 0x60, .end = 0x60, 502 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 503 { .name = "keyboard", .start = 0x64, .end = 0x64, 504 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 505 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 506 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 507 { .name = "pic2", .start = 0xa0, .end = 0xa1, 508 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 509 { .name = "dma2", .start = 0xc0, .end = 0xdf, 510 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 511 { .name = "fpu", .start = 0xf0, .end = 0xff, 512 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 513 }; 514 515 void __init reserve_standard_io_resources(void) 516 { 517 int i; 518 519 /* request I/O space for devices used on all i[345]86 PCs */ 520 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 521 request_resource(&ioport_resource, &standard_io_resources[i]); 522 523 } 524 525 static bool __init snb_gfx_workaround_needed(void) 526 { 527 #ifdef CONFIG_PCI 528 int i; 529 u16 vendor, devid; 530 static const __initconst u16 snb_ids[] = { 531 0x0102, 532 0x0112, 533 0x0122, 534 0x0106, 535 0x0116, 536 0x0126, 537 0x010a, 538 }; 539 540 /* Assume no if something weird is going on with PCI */ 541 if (!early_pci_allowed()) 542 return false; 543 544 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 545 if (vendor != 0x8086) 546 return false; 547 548 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 549 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 550 if (devid == snb_ids[i]) 551 return true; 552 #endif 553 554 return false; 555 } 556 557 /* 558 * Sandy Bridge graphics has trouble with certain ranges, exclude 559 * them from allocation. 560 */ 561 static void __init trim_snb_memory(void) 562 { 563 static const __initconst unsigned long bad_pages[] = { 564 0x20050000, 565 0x20110000, 566 0x20130000, 567 0x20138000, 568 0x40004000, 569 }; 570 int i; 571 572 if (!snb_gfx_workaround_needed()) 573 return; 574 575 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 576 577 /* 578 * SandyBridge integrated graphics devices have a bug that prevents 579 * them from accessing certain memory ranges, namely anything below 580 * 1M and in the pages listed in bad_pages[] above. 581 * 582 * To avoid these pages being ever accessed by SNB gfx devices reserve 583 * bad_pages that have not already been reserved at boot time. 584 * All memory below the 1 MB mark is anyway reserved later during 585 * setup_arch(), so there is no need to reserve it here. 586 */ 587 588 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 589 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 590 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 591 bad_pages[i]); 592 } 593 } 594 595 static void __init trim_bios_range(void) 596 { 597 /* 598 * A special case is the first 4Kb of memory; 599 * This is a BIOS owned area, not kernel ram, but generally 600 * not listed as such in the E820 table. 601 * 602 * This typically reserves additional memory (64KiB by default) 603 * since some BIOSes are known to corrupt low memory. See the 604 * Kconfig help text for X86_RESERVE_LOW. 605 */ 606 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 607 608 /* 609 * special case: Some BIOSes report the PC BIOS 610 * area (640Kb -> 1Mb) as RAM even though it is not. 611 * take them out. 612 */ 613 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 614 615 e820__update_table(e820_table); 616 } 617 618 /* called before trim_bios_range() to spare extra sanitize */ 619 static void __init e820_add_kernel_range(void) 620 { 621 u64 start = __pa_symbol(_text); 622 u64 size = __pa_symbol(_end) - start; 623 624 /* 625 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 626 * attempt to fix it by adding the range. We may have a confused BIOS, 627 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 628 * exclude kernel range. If we really are running on top non-RAM, 629 * we will crash later anyways. 630 */ 631 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 632 return; 633 634 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 635 e820__range_remove(start, size, E820_TYPE_RAM, 0); 636 e820__range_add(start, size, E820_TYPE_RAM); 637 } 638 639 static void __init early_reserve_memory(void) 640 { 641 /* 642 * Reserve the memory occupied by the kernel between _text and 643 * __end_of_kernel_reserve symbols. Any kernel sections after the 644 * __end_of_kernel_reserve symbol must be explicitly reserved with a 645 * separate memblock_reserve() or they will be discarded. 646 */ 647 memblock_reserve(__pa_symbol(_text), 648 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 649 650 /* 651 * The first 4Kb of memory is a BIOS owned area, but generally it is 652 * not listed as such in the E820 table. 653 * 654 * Reserve the first 64K of memory since some BIOSes are known to 655 * corrupt low memory. After the real mode trampoline is allocated the 656 * rest of the memory below 640k is reserved. 657 * 658 * In addition, make sure page 0 is always reserved because on 659 * systems with L1TF its contents can be leaked to user processes. 660 */ 661 memblock_reserve(0, SZ_64K); 662 663 early_reserve_initrd(); 664 665 memblock_x86_reserve_range_setup_data(); 666 667 reserve_bios_regions(); 668 trim_snb_memory(); 669 } 670 671 /* 672 * Dump out kernel offset information on panic. 673 */ 674 static int 675 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 676 { 677 if (kaslr_enabled()) { 678 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 679 kaslr_offset(), 680 __START_KERNEL, 681 __START_KERNEL_map, 682 MODULES_VADDR-1); 683 } else { 684 pr_emerg("Kernel Offset: disabled\n"); 685 } 686 687 return 0; 688 } 689 690 void x86_configure_nx(void) 691 { 692 if (boot_cpu_has(X86_FEATURE_NX)) 693 __supported_pte_mask |= _PAGE_NX; 694 else 695 __supported_pte_mask &= ~_PAGE_NX; 696 } 697 698 static void __init x86_report_nx(void) 699 { 700 if (!boot_cpu_has(X86_FEATURE_NX)) { 701 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 702 "missing in CPU!\n"); 703 } else { 704 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 705 printk(KERN_INFO "NX (Execute Disable) protection: active\n"); 706 #else 707 /* 32bit non-PAE kernel, NX cannot be used */ 708 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 709 "cannot be enabled: non-PAE kernel!\n"); 710 #endif 711 } 712 } 713 714 /* 715 * Determine if we were loaded by an EFI loader. If so, then we have also been 716 * passed the efi memmap, systab, etc., so we should use these data structures 717 * for initialization. Note, the efi init code path is determined by the 718 * global efi_enabled. This allows the same kernel image to be used on existing 719 * systems (with a traditional BIOS) as well as on EFI systems. 720 */ 721 /* 722 * setup_arch - architecture-specific boot-time initializations 723 * 724 * Note: On x86_64, fixmaps are ready for use even before this is called. 725 */ 726 727 void __init setup_arch(char **cmdline_p) 728 { 729 #ifdef CONFIG_X86_32 730 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 731 732 /* 733 * copy kernel address range established so far and switch 734 * to the proper swapper page table 735 */ 736 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 737 initial_page_table + KERNEL_PGD_BOUNDARY, 738 KERNEL_PGD_PTRS); 739 740 load_cr3(swapper_pg_dir); 741 /* 742 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 743 * a cr3 based tlb flush, so the following __flush_tlb_all() 744 * will not flush anything because the CPU quirk which clears 745 * X86_FEATURE_PGE has not been invoked yet. Though due to the 746 * load_cr3() above the TLB has been flushed already. The 747 * quirk is invoked before subsequent calls to __flush_tlb_all() 748 * so proper operation is guaranteed. 749 */ 750 __flush_tlb_all(); 751 #else 752 printk(KERN_INFO "Command line: %s\n", boot_command_line); 753 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 754 #endif 755 756 /* 757 * If we have OLPC OFW, we might end up relocating the fixmap due to 758 * reserve_top(), so do this before touching the ioremap area. 759 */ 760 olpc_ofw_detect(); 761 762 idt_setup_early_traps(); 763 early_cpu_init(); 764 jump_label_init(); 765 static_call_init(); 766 early_ioremap_init(); 767 768 setup_olpc_ofw_pgd(); 769 770 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 771 screen_info = boot_params.screen_info; 772 edid_info = boot_params.edid_info; 773 #ifdef CONFIG_X86_32 774 apm_info.bios = boot_params.apm_bios_info; 775 ist_info = boot_params.ist_info; 776 #endif 777 saved_video_mode = boot_params.hdr.vid_mode; 778 bootloader_type = boot_params.hdr.type_of_loader; 779 if ((bootloader_type >> 4) == 0xe) { 780 bootloader_type &= 0xf; 781 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 782 } 783 bootloader_version = bootloader_type & 0xf; 784 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 785 786 #ifdef CONFIG_BLK_DEV_RAM 787 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 788 #endif 789 #ifdef CONFIG_EFI 790 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 791 EFI32_LOADER_SIGNATURE, 4)) { 792 set_bit(EFI_BOOT, &efi.flags); 793 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 794 EFI64_LOADER_SIGNATURE, 4)) { 795 set_bit(EFI_BOOT, &efi.flags); 796 set_bit(EFI_64BIT, &efi.flags); 797 } 798 #endif 799 800 x86_init.oem.arch_setup(); 801 802 /* 803 * Do some memory reservations *before* memory is added to memblock, so 804 * memblock allocations won't overwrite it. 805 * 806 * After this point, everything still needed from the boot loader or 807 * firmware or kernel text should be early reserved or marked not RAM in 808 * e820. All other memory is free game. 809 * 810 * This call needs to happen before e820__memory_setup() which calls the 811 * xen_memory_setup() on Xen dom0 which relies on the fact that those 812 * early reservations have happened already. 813 */ 814 early_reserve_memory(); 815 816 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 817 e820__memory_setup(); 818 parse_setup_data(); 819 820 copy_edd(); 821 822 if (!boot_params.hdr.root_flags) 823 root_mountflags &= ~MS_RDONLY; 824 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end); 825 826 code_resource.start = __pa_symbol(_text); 827 code_resource.end = __pa_symbol(_etext)-1; 828 rodata_resource.start = __pa_symbol(__start_rodata); 829 rodata_resource.end = __pa_symbol(__end_rodata)-1; 830 data_resource.start = __pa_symbol(_sdata); 831 data_resource.end = __pa_symbol(_edata)-1; 832 bss_resource.start = __pa_symbol(__bss_start); 833 bss_resource.end = __pa_symbol(__bss_stop)-1; 834 835 #ifdef CONFIG_CMDLINE_BOOL 836 #ifdef CONFIG_CMDLINE_OVERRIDE 837 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 838 #else 839 if (builtin_cmdline[0]) { 840 /* append boot loader cmdline to builtin */ 841 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 842 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 843 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 844 } 845 #endif 846 #endif 847 848 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 849 *cmdline_p = command_line; 850 851 /* 852 * x86_configure_nx() is called before parse_early_param() to detect 853 * whether hardware doesn't support NX (so that the early EHCI debug 854 * console setup can safely call set_fixmap()). 855 */ 856 x86_configure_nx(); 857 858 parse_early_param(); 859 860 if (efi_enabled(EFI_BOOT)) 861 efi_memblock_x86_reserve_range(); 862 863 #ifdef CONFIG_MEMORY_HOTPLUG 864 /* 865 * Memory used by the kernel cannot be hot-removed because Linux 866 * cannot migrate the kernel pages. When memory hotplug is 867 * enabled, we should prevent memblock from allocating memory 868 * for the kernel. 869 * 870 * ACPI SRAT records all hotpluggable memory ranges. But before 871 * SRAT is parsed, we don't know about it. 872 * 873 * The kernel image is loaded into memory at very early time. We 874 * cannot prevent this anyway. So on NUMA system, we set any 875 * node the kernel resides in as un-hotpluggable. 876 * 877 * Since on modern servers, one node could have double-digit 878 * gigabytes memory, we can assume the memory around the kernel 879 * image is also un-hotpluggable. So before SRAT is parsed, just 880 * allocate memory near the kernel image to try the best to keep 881 * the kernel away from hotpluggable memory. 882 */ 883 if (movable_node_is_enabled()) 884 memblock_set_bottom_up(true); 885 #endif 886 887 x86_report_nx(); 888 889 apic_setup_apic_calls(); 890 891 if (acpi_mps_check()) { 892 #ifdef CONFIG_X86_LOCAL_APIC 893 apic_is_disabled = true; 894 #endif 895 setup_clear_cpu_cap(X86_FEATURE_APIC); 896 } 897 898 e820__reserve_setup_data(); 899 e820__finish_early_params(); 900 901 if (efi_enabled(EFI_BOOT)) 902 efi_init(); 903 904 reserve_ibft_region(); 905 dmi_setup(); 906 907 /* 908 * VMware detection requires dmi to be available, so this 909 * needs to be done after dmi_setup(), for the boot CPU. 910 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be 911 * called before cache_bp_init() for setting up MTRR state. 912 */ 913 init_hypervisor_platform(); 914 915 tsc_early_init(); 916 x86_init.resources.probe_roms(); 917 918 /* after parse_early_param, so could debug it */ 919 insert_resource(&iomem_resource, &code_resource); 920 insert_resource(&iomem_resource, &rodata_resource); 921 insert_resource(&iomem_resource, &data_resource); 922 insert_resource(&iomem_resource, &bss_resource); 923 924 e820_add_kernel_range(); 925 trim_bios_range(); 926 #ifdef CONFIG_X86_32 927 if (ppro_with_ram_bug()) { 928 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 929 E820_TYPE_RESERVED); 930 e820__update_table(e820_table); 931 printk(KERN_INFO "fixed physical RAM map:\n"); 932 e820__print_table("bad_ppro"); 933 } 934 #else 935 early_gart_iommu_check(); 936 #endif 937 938 /* 939 * partially used pages are not usable - thus 940 * we are rounding upwards: 941 */ 942 max_pfn = e820__end_of_ram_pfn(); 943 944 /* update e820 for memory not covered by WB MTRRs */ 945 cache_bp_init(); 946 if (mtrr_trim_uncached_memory(max_pfn)) 947 max_pfn = e820__end_of_ram_pfn(); 948 949 max_possible_pfn = max_pfn; 950 951 /* 952 * Define random base addresses for memory sections after max_pfn is 953 * defined and before each memory section base is used. 954 */ 955 kernel_randomize_memory(); 956 957 #ifdef CONFIG_X86_32 958 /* max_low_pfn get updated here */ 959 find_low_pfn_range(); 960 #else 961 check_x2apic(); 962 963 /* How many end-of-memory variables you have, grandma! */ 964 /* need this before calling reserve_initrd */ 965 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 966 max_low_pfn = e820__end_of_low_ram_pfn(); 967 else 968 max_low_pfn = max_pfn; 969 970 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 971 #endif 972 973 /* 974 * Find and reserve possible boot-time SMP configuration: 975 */ 976 find_smp_config(); 977 978 early_alloc_pgt_buf(); 979 980 /* 981 * Need to conclude brk, before e820__memblock_setup() 982 * it could use memblock_find_in_range, could overlap with 983 * brk area. 984 */ 985 reserve_brk(); 986 987 cleanup_highmap(); 988 989 memblock_set_current_limit(ISA_END_ADDRESS); 990 e820__memblock_setup(); 991 992 /* 993 * Needs to run after memblock setup because it needs the physical 994 * memory size. 995 */ 996 mem_encrypt_setup_arch(); 997 998 efi_fake_memmap(); 999 efi_find_mirror(); 1000 efi_esrt_init(); 1001 efi_mokvar_table_init(); 1002 1003 /* 1004 * The EFI specification says that boot service code won't be 1005 * called after ExitBootServices(). This is, in fact, a lie. 1006 */ 1007 efi_reserve_boot_services(); 1008 1009 /* preallocate 4k for mptable mpc */ 1010 e820__memblock_alloc_reserved_mpc_new(); 1011 1012 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1013 setup_bios_corruption_check(); 1014 #endif 1015 1016 #ifdef CONFIG_X86_32 1017 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1018 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1019 #endif 1020 1021 /* 1022 * Find free memory for the real mode trampoline and place it there. If 1023 * there is not enough free memory under 1M, on EFI-enabled systems 1024 * there will be additional attempt to reclaim the memory for the real 1025 * mode trampoline at efi_free_boot_services(). 1026 * 1027 * Unconditionally reserve the entire first 1M of RAM because BIOSes 1028 * are known to corrupt low memory and several hundred kilobytes are not 1029 * worth complex detection what memory gets clobbered. Windows does the 1030 * same thing for very similar reasons. 1031 * 1032 * Moreover, on machines with SandyBridge graphics or in setups that use 1033 * crashkernel the entire 1M is reserved anyway. 1034 * 1035 * Note the host kernel TDX also requires the first 1MB being reserved. 1036 */ 1037 x86_platform.realmode_reserve(); 1038 1039 init_mem_mapping(); 1040 1041 idt_setup_early_pf(); 1042 1043 /* 1044 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1045 * with the current CR4 value. This may not be necessary, but 1046 * auditing all the early-boot CR4 manipulation would be needed to 1047 * rule it out. 1048 * 1049 * Mask off features that don't work outside long mode (just 1050 * PCIDE for now). 1051 */ 1052 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1053 1054 memblock_set_current_limit(get_max_mapped()); 1055 1056 /* 1057 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1058 */ 1059 1060 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1061 if (init_ohci1394_dma_early) 1062 init_ohci1394_dma_on_all_controllers(); 1063 #endif 1064 /* Allocate bigger log buffer */ 1065 setup_log_buf(1); 1066 1067 if (efi_enabled(EFI_BOOT)) { 1068 switch (boot_params.secure_boot) { 1069 case efi_secureboot_mode_disabled: 1070 pr_info("Secure boot disabled\n"); 1071 break; 1072 case efi_secureboot_mode_enabled: 1073 pr_info("Secure boot enabled\n"); 1074 break; 1075 default: 1076 pr_info("Secure boot could not be determined\n"); 1077 break; 1078 } 1079 } 1080 1081 reserve_initrd(); 1082 1083 acpi_table_upgrade(); 1084 /* Look for ACPI tables and reserve memory occupied by them. */ 1085 acpi_boot_table_init(); 1086 1087 vsmp_init(); 1088 1089 io_delay_init(); 1090 1091 early_platform_quirks(); 1092 1093 early_acpi_boot_init(); 1094 1095 x86_flattree_get_config(); 1096 1097 initmem_init(); 1098 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1099 1100 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1101 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1102 1103 /* 1104 * Reserve memory for crash kernel after SRAT is parsed so that it 1105 * won't consume hotpluggable memory. 1106 */ 1107 arch_reserve_crashkernel(); 1108 1109 memblock_find_dma_reserve(); 1110 1111 if (!early_xdbc_setup_hardware()) 1112 early_xdbc_register_console(); 1113 1114 x86_init.paging.pagetable_init(); 1115 1116 kasan_init(); 1117 1118 /* 1119 * Sync back kernel address range. 1120 * 1121 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1122 * this call? 1123 */ 1124 sync_initial_page_table(); 1125 1126 tboot_probe(); 1127 1128 map_vsyscall(); 1129 1130 x86_32_probe_apic(); 1131 1132 early_quirks(); 1133 1134 /* 1135 * Read APIC and some other early information from ACPI tables. 1136 */ 1137 acpi_boot_init(); 1138 x86_dtb_init(); 1139 1140 /* 1141 * get boot-time SMP configuration: 1142 */ 1143 get_smp_config(); 1144 1145 /* 1146 * Systems w/o ACPI and mptables might not have it mapped the local 1147 * APIC yet, but prefill_possible_map() might need to access it. 1148 */ 1149 init_apic_mappings(); 1150 1151 prefill_possible_map(); 1152 1153 init_cpu_to_node(); 1154 init_gi_nodes(); 1155 1156 io_apic_init_mappings(); 1157 1158 x86_init.hyper.guest_late_init(); 1159 1160 e820__reserve_resources(); 1161 e820__register_nosave_regions(max_pfn); 1162 1163 x86_init.resources.reserve_resources(); 1164 1165 e820__setup_pci_gap(); 1166 1167 #ifdef CONFIG_VT 1168 #if defined(CONFIG_VGA_CONSOLE) 1169 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1170 vgacon_register_screen(&screen_info); 1171 #endif 1172 #endif 1173 x86_init.oem.banner(); 1174 1175 x86_init.timers.wallclock_init(); 1176 1177 /* 1178 * This needs to run before setup_local_APIC() which soft-disables the 1179 * local APIC temporarily and that masks the thermal LVT interrupt, 1180 * leading to softlockups on machines which have configured SMI 1181 * interrupt delivery. 1182 */ 1183 therm_lvt_init(); 1184 1185 mcheck_init(); 1186 1187 register_refined_jiffies(CLOCK_TICK_RATE); 1188 1189 #ifdef CONFIG_EFI 1190 if (efi_enabled(EFI_BOOT)) 1191 efi_apply_memmap_quirks(); 1192 #endif 1193 1194 unwind_init(); 1195 } 1196 1197 #ifdef CONFIG_X86_32 1198 1199 static struct resource video_ram_resource = { 1200 .name = "Video RAM area", 1201 .start = 0xa0000, 1202 .end = 0xbffff, 1203 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1204 }; 1205 1206 void __init i386_reserve_resources(void) 1207 { 1208 request_resource(&iomem_resource, &video_ram_resource); 1209 reserve_standard_io_resources(); 1210 } 1211 1212 #endif /* CONFIG_X86_32 */ 1213 1214 static struct notifier_block kernel_offset_notifier = { 1215 .notifier_call = dump_kernel_offset 1216 }; 1217 1218 static int __init register_kernel_offset_dumper(void) 1219 { 1220 atomic_notifier_chain_register(&panic_notifier_list, 1221 &kernel_offset_notifier); 1222 return 0; 1223 } 1224 __initcall(register_kernel_offset_dumper); 1225