xref: /linux/arch/x86/kernel/setup.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  * This file contains the setup_arch() code, which handles the architecture-dependent
6  * parts of early kernel initialization.
7  */
8 #include <linux/acpi.h>
9 #include <linux/console.h>
10 #include <linux/cpu.h>
11 #include <linux/crash_dump.h>
12 #include <linux/dma-map-ops.h>
13 #include <linux/efi.h>
14 #include <linux/hugetlb.h>
15 #include <linux/ima.h>
16 #include <linux/init_ohci1394_dma.h>
17 #include <linux/initrd.h>
18 #include <linux/iscsi_ibft.h>
19 #include <linux/memblock.h>
20 #include <linux/panic_notifier.h>
21 #include <linux/pci.h>
22 #include <linux/random.h>
23 #include <linux/root_dev.h>
24 #include <linux/static_call.h>
25 #include <linux/sysfb.h>
26 #include <linux/swiotlb.h>
27 #include <linux/tboot.h>
28 #include <linux/usb/xhci-dbgp.h>
29 #include <linux/vmalloc.h>
30 
31 #include <uapi/linux/mount.h>
32 
33 #include <xen/xen.h>
34 
35 #include <asm/apic.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/bugs.h>
38 #include <asm/cacheinfo.h>
39 #include <asm/coco.h>
40 #include <asm/cpu.h>
41 #include <asm/efi.h>
42 #include <asm/gart.h>
43 #include <asm/hypervisor.h>
44 #include <asm/io_apic.h>
45 #include <asm/kasan.h>
46 #include <asm/kaslr.h>
47 #include <asm/mce.h>
48 #include <asm/memtype.h>
49 #include <asm/mtrr.h>
50 #include <asm/nmi.h>
51 #include <asm/numa.h>
52 #include <asm/olpc_ofw.h>
53 #include <asm/pci-direct.h>
54 #include <asm/prom.h>
55 #include <asm/proto.h>
56 #include <asm/realmode.h>
57 #include <asm/thermal.h>
58 #include <asm/unwind.h>
59 #include <asm/vsyscall.h>
60 
61 /*
62  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
63  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
64  *
65  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
66  * represented by pfn_mapped[].
67  */
68 unsigned long max_low_pfn_mapped;
69 unsigned long max_pfn_mapped;
70 
71 #ifdef CONFIG_DMI
72 RESERVE_BRK(dmi_alloc, 65536);
73 #endif
74 
75 
76 unsigned long _brk_start = (unsigned long)__brk_base;
77 unsigned long _brk_end   = (unsigned long)__brk_base;
78 
79 struct boot_params boot_params;
80 
81 /*
82  * These are the four main kernel memory regions, we put them into
83  * the resource tree so that kdump tools and other debugging tools
84  * recover it:
85  */
86 
87 static struct resource rodata_resource = {
88 	.name	= "Kernel rodata",
89 	.start	= 0,
90 	.end	= 0,
91 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
92 };
93 
94 static struct resource data_resource = {
95 	.name	= "Kernel data",
96 	.start	= 0,
97 	.end	= 0,
98 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
99 };
100 
101 static struct resource code_resource = {
102 	.name	= "Kernel code",
103 	.start	= 0,
104 	.end	= 0,
105 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
106 };
107 
108 static struct resource bss_resource = {
109 	.name	= "Kernel bss",
110 	.start	= 0,
111 	.end	= 0,
112 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
113 };
114 
115 
116 #ifdef CONFIG_X86_32
117 /* CPU data as detected by the assembly code in head_32.S */
118 struct cpuinfo_x86 new_cpu_data;
119 
120 struct apm_info apm_info;
121 EXPORT_SYMBOL(apm_info);
122 
123 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
124 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
125 struct ist_info ist_info;
126 EXPORT_SYMBOL(ist_info);
127 #else
128 struct ist_info ist_info;
129 #endif
130 
131 #endif
132 
133 struct cpuinfo_x86 boot_cpu_data __read_mostly;
134 EXPORT_SYMBOL(boot_cpu_data);
135 SYM_PIC_ALIAS(boot_cpu_data);
136 
137 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
138 __visible unsigned long mmu_cr4_features __ro_after_init;
139 #else
140 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
141 #endif
142 
143 #ifdef CONFIG_IMA
144 static phys_addr_t ima_kexec_buffer_phys;
145 static size_t ima_kexec_buffer_size;
146 #endif
147 
148 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
149 int bootloader_type, bootloader_version;
150 
151 static const struct ctl_table x86_sysctl_table[] = {
152 	{
153 		.procname       = "unknown_nmi_panic",
154 		.data           = &unknown_nmi_panic,
155 		.maxlen         = sizeof(int),
156 		.mode           = 0644,
157 		.proc_handler   = proc_dointvec,
158 	},
159 	{
160 		.procname	= "panic_on_unrecovered_nmi",
161 		.data		= &panic_on_unrecovered_nmi,
162 		.maxlen		= sizeof(int),
163 		.mode		= 0644,
164 		.proc_handler	= proc_dointvec,
165 	},
166 	{
167 		.procname	= "panic_on_io_nmi",
168 		.data		= &panic_on_io_nmi,
169 		.maxlen		= sizeof(int),
170 		.mode		= 0644,
171 		.proc_handler	= proc_dointvec,
172 	},
173 	{
174 		.procname	= "bootloader_type",
175 		.data		= &bootloader_type,
176 		.maxlen		= sizeof(int),
177 		.mode		= 0444,
178 		.proc_handler	= proc_dointvec,
179 	},
180 	{
181 		.procname	= "bootloader_version",
182 		.data		= &bootloader_version,
183 		.maxlen		= sizeof(int),
184 		.mode		= 0444,
185 		.proc_handler	= proc_dointvec,
186 	},
187 	{
188 		.procname	= "io_delay_type",
189 		.data		= &io_delay_type,
190 		.maxlen		= sizeof(int),
191 		.mode		= 0644,
192 		.proc_handler	= proc_dointvec,
193 	},
194 #if defined(CONFIG_ACPI_SLEEP)
195 	{
196 		.procname	= "acpi_video_flags",
197 		.data		= &acpi_realmode_flags,
198 		.maxlen		= sizeof(unsigned long),
199 		.mode		= 0644,
200 		.proc_handler	= proc_doulongvec_minmax,
201 	},
202 #endif
203 };
204 
205 static int __init init_x86_sysctl(void)
206 {
207 	register_sysctl_init("kernel", x86_sysctl_table);
208 	return 0;
209 }
210 arch_initcall(init_x86_sysctl);
211 
212 /*
213  * Setup options
214  */
215 
216 struct sysfb_display_info sysfb_primary_display;
217 EXPORT_SYMBOL(sysfb_primary_display);
218 
219 extern int root_mountflags;
220 
221 unsigned long saved_video_mode;
222 
223 #define RAMDISK_IMAGE_START_MASK	0x07FF
224 #define RAMDISK_PROMPT_FLAG		0x8000
225 #define RAMDISK_LOAD_FLAG		0x4000
226 
227 static char __initdata command_line[COMMAND_LINE_SIZE];
228 #ifdef CONFIG_CMDLINE_BOOL
229 char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
230 bool builtin_cmdline_added __ro_after_init;
231 #endif
232 
233 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
234 struct edd edd;
235 #ifdef CONFIG_EDD_MODULE
236 EXPORT_SYMBOL(edd);
237 #endif
238 /**
239  * copy_edd() - Copy the BIOS EDD information
240  *              from boot_params into a safe place.
241  *
242  */
243 static inline void __init copy_edd(void)
244 {
245      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
246 	    sizeof(edd.mbr_signature));
247      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
248      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
249      edd.edd_info_nr = boot_params.eddbuf_entries;
250 }
251 #else
252 static inline void __init copy_edd(void)
253 {
254 }
255 #endif
256 
257 void * __init extend_brk(size_t size, size_t align)
258 {
259 	size_t mask = align - 1;
260 	void *ret;
261 
262 	BUG_ON(_brk_start == 0);
263 	BUG_ON(align & mask);
264 
265 	_brk_end = (_brk_end + mask) & ~mask;
266 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
267 
268 	ret = (void *)_brk_end;
269 	_brk_end += size;
270 
271 	memset(ret, 0, size);
272 
273 	return ret;
274 }
275 
276 #ifdef CONFIG_X86_32
277 static void __init cleanup_highmap(void)
278 {
279 }
280 #endif
281 
282 static void __init reserve_brk(void)
283 {
284 	if (_brk_end > _brk_start)
285 		memblock_reserve_kern(__pa_symbol(_brk_start),
286 				      _brk_end - _brk_start);
287 
288 	/* Mark brk area as locked down and no longer taking any
289 	   new allocations */
290 	_brk_start = 0;
291 }
292 
293 #ifdef CONFIG_BLK_DEV_INITRD
294 
295 static u64 __init get_ramdisk_image(void)
296 {
297 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
298 
299 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
300 
301 	if (ramdisk_image == 0)
302 		ramdisk_image = phys_initrd_start;
303 
304 	return ramdisk_image;
305 }
306 static u64 __init get_ramdisk_size(void)
307 {
308 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
309 
310 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
311 
312 	if (ramdisk_size == 0)
313 		ramdisk_size = phys_initrd_size;
314 
315 	return ramdisk_size;
316 }
317 
318 static void __init relocate_initrd(void)
319 {
320 	/* Assume only end is not page aligned */
321 	u64 ramdisk_image = get_ramdisk_image();
322 	u64 ramdisk_size  = get_ramdisk_size();
323 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
324 	int ret = 0;
325 
326 	/* We need to move the initrd down into directly mapped mem */
327 	u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
328 						      PFN_PHYS(max_pfn_mapped));
329 	if (!relocated_ramdisk)
330 		panic("Cannot find place for new RAMDISK of size %lld\n",
331 		      ramdisk_size);
332 
333 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
334 	initrd_end   = initrd_start + ramdisk_size;
335 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
336 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
337 
338 	ret = copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
339 	if (ret)
340 		panic("Copy RAMDISK failed\n");
341 
342 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
343 		" [mem %#010llx-%#010llx]\n",
344 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
345 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
346 }
347 
348 static void __init early_reserve_initrd(void)
349 {
350 	/* Assume only end is not page aligned */
351 	u64 ramdisk_image = get_ramdisk_image();
352 	u64 ramdisk_size  = get_ramdisk_size();
353 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
354 
355 	if (!boot_params.hdr.type_of_loader ||
356 	    !ramdisk_image || !ramdisk_size)
357 		return;		/* No initrd provided by bootloader */
358 
359 	memblock_reserve_kern(ramdisk_image, ramdisk_end - ramdisk_image);
360 }
361 
362 static void __init reserve_initrd(void)
363 {
364 	/* Assume only end is not page aligned */
365 	u64 ramdisk_image = get_ramdisk_image();
366 	u64 ramdisk_size  = get_ramdisk_size();
367 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
368 
369 	if (!boot_params.hdr.type_of_loader ||
370 	    !ramdisk_image || !ramdisk_size)
371 		return;		/* No initrd provided by bootloader */
372 
373 	initrd_start = 0;
374 
375 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
376 			ramdisk_end - 1);
377 
378 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
379 				PFN_DOWN(ramdisk_end))) {
380 		/* All are mapped, easy case */
381 		initrd_start = ramdisk_image + PAGE_OFFSET;
382 		initrd_end = initrd_start + ramdisk_size;
383 		return;
384 	}
385 
386 	relocate_initrd();
387 
388 	memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
389 }
390 
391 #else
392 static void __init early_reserve_initrd(void)
393 {
394 }
395 static void __init reserve_initrd(void)
396 {
397 }
398 #endif /* CONFIG_BLK_DEV_INITRD */
399 
400 static void __init add_early_ima_buffer(u64 phys_addr)
401 {
402 #ifdef CONFIG_IMA
403 	struct ima_setup_data *data;
404 
405 	data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
406 	if (!data) {
407 		pr_warn("setup: failed to memremap ima_setup_data entry\n");
408 		return;
409 	}
410 
411 	if (data->size) {
412 		memblock_reserve_kern(data->addr, data->size);
413 		ima_kexec_buffer_phys = data->addr;
414 		ima_kexec_buffer_size = data->size;
415 	}
416 
417 	early_memunmap(data, sizeof(*data));
418 #else
419 	pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
420 #endif
421 }
422 
423 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
424 int __init ima_free_kexec_buffer(void)
425 {
426 	if (!ima_kexec_buffer_size)
427 		return -ENOENT;
428 
429 	memblock_free_late(ima_kexec_buffer_phys,
430 			   ima_kexec_buffer_size);
431 
432 	ima_kexec_buffer_phys = 0;
433 	ima_kexec_buffer_size = 0;
434 
435 	return 0;
436 }
437 
438 int __init ima_get_kexec_buffer(void **addr, size_t *size)
439 {
440 	int ret;
441 
442 	if (!ima_kexec_buffer_size)
443 		return -ENOENT;
444 
445 	ret = ima_validate_range(ima_kexec_buffer_phys, ima_kexec_buffer_size);
446 	if (ret)
447 		return ret;
448 
449 	*addr = __va(ima_kexec_buffer_phys);
450 	*size = ima_kexec_buffer_size;
451 
452 	return 0;
453 }
454 #endif
455 
456 static void __init add_kho(u64 phys_addr, u32 data_len)
457 {
458 	struct kho_data *kho;
459 	u64 addr = phys_addr + sizeof(struct setup_data);
460 	u64 size = data_len - sizeof(struct setup_data);
461 
462 	if (!IS_ENABLED(CONFIG_KEXEC_HANDOVER)) {
463 		pr_warn("Passed KHO data, but CONFIG_KEXEC_HANDOVER not set. Ignoring.\n");
464 		return;
465 	}
466 
467 	kho = early_memremap(addr, size);
468 	if (!kho) {
469 		pr_warn("setup: failed to memremap kho data (0x%llx, 0x%llx)\n",
470 			addr, size);
471 		return;
472 	}
473 
474 	kho_populate(kho->fdt_addr, kho->fdt_size, kho->scratch_addr, kho->scratch_size);
475 
476 	early_memunmap(kho, size);
477 }
478 
479 static void __init parse_setup_data(void)
480 {
481 	struct setup_data *data;
482 	u64 pa_data, pa_next;
483 
484 	pa_data = boot_params.hdr.setup_data;
485 	while (pa_data) {
486 		u32 data_len, data_type;
487 
488 		data = early_memremap(pa_data, sizeof(*data));
489 		data_len = data->len + sizeof(struct setup_data);
490 		data_type = data->type;
491 		pa_next = data->next;
492 		early_memunmap(data, sizeof(*data));
493 
494 		switch (data_type) {
495 		case SETUP_E820_EXT:
496 			e820__memory_setup_extended(pa_data, data_len);
497 			break;
498 		case SETUP_DTB:
499 			add_dtb(pa_data);
500 			break;
501 		case SETUP_EFI:
502 			parse_efi_setup(pa_data, data_len);
503 			break;
504 		case SETUP_IMA:
505 			add_early_ima_buffer(pa_data);
506 			break;
507 		case SETUP_KEXEC_KHO:
508 			add_kho(pa_data, data_len);
509 			break;
510 		case SETUP_RNG_SEED:
511 			data = early_memremap(pa_data, data_len);
512 			add_bootloader_randomness(data->data, data->len);
513 			/* Zero seed for forward secrecy. */
514 			memzero_explicit(data->data, data->len);
515 			/* Zero length in case we find ourselves back here by accident. */
516 			memzero_explicit(&data->len, sizeof(data->len));
517 			early_memunmap(data, data_len);
518 			break;
519 		default:
520 			break;
521 		}
522 		pa_data = pa_next;
523 	}
524 }
525 
526 /*
527  * Translate the fields of 'struct boot_param' into global variables
528  * representing these parameters.
529  */
530 static void __init parse_boot_params(void)
531 {
532 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
533 	sysfb_primary_display.screen = boot_params.screen_info;
534 #if defined(CONFIG_FIRMWARE_EDID)
535 	sysfb_primary_display.edid = boot_params.edid_info;
536 #endif
537 #ifdef CONFIG_X86_32
538 	apm_info.bios = boot_params.apm_bios_info;
539 	ist_info = boot_params.ist_info;
540 #endif
541 	saved_video_mode = boot_params.hdr.vid_mode;
542 	bootloader_type = boot_params.hdr.type_of_loader;
543 	if ((bootloader_type >> 4) == 0xe) {
544 		bootloader_type &= 0xf;
545 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
546 	}
547 	bootloader_version  = bootloader_type & 0xf;
548 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
549 
550 #ifdef CONFIG_BLK_DEV_RAM
551 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
552 #endif
553 #ifdef CONFIG_EFI
554 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
555 		     EFI32_LOADER_SIGNATURE, 4)) {
556 		set_bit(EFI_BOOT, &efi.flags);
557 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
558 		     EFI64_LOADER_SIGNATURE, 4)) {
559 		set_bit(EFI_BOOT, &efi.flags);
560 		set_bit(EFI_64BIT, &efi.flags);
561 	}
562 #endif
563 
564 	if (!boot_params.hdr.root_flags)
565 		root_mountflags &= ~MS_RDONLY;
566 }
567 
568 static void __init memblock_x86_reserve_range_setup_data(void)
569 {
570 	struct setup_indirect *indirect;
571 	struct setup_data *data;
572 	u64 pa_data, pa_next;
573 	u32 len;
574 
575 	pa_data = boot_params.hdr.setup_data;
576 	while (pa_data) {
577 		data = early_memremap(pa_data, sizeof(*data));
578 		if (!data) {
579 			pr_warn("setup: failed to memremap setup_data entry\n");
580 			return;
581 		}
582 
583 		len = sizeof(*data);
584 		pa_next = data->next;
585 
586 		memblock_reserve_kern(pa_data, sizeof(*data) + data->len);
587 
588 		if (data->type == SETUP_INDIRECT) {
589 			len += data->len;
590 			early_memunmap(data, sizeof(*data));
591 			data = early_memremap(pa_data, len);
592 			if (!data) {
593 				pr_warn("setup: failed to memremap indirect setup_data\n");
594 				return;
595 			}
596 
597 			indirect = (struct setup_indirect *)data->data;
598 
599 			if (indirect->type != SETUP_INDIRECT)
600 				memblock_reserve_kern(indirect->addr, indirect->len);
601 		}
602 
603 		pa_data = pa_next;
604 		early_memunmap(data, len);
605 	}
606 }
607 
608 static void __init arch_reserve_crashkernel(void)
609 {
610 	unsigned long long crash_base, crash_size, low_size = 0, cma_size = 0;
611 	bool high = false;
612 	int ret;
613 
614 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
615 		return;
616 
617 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
618 				&crash_size, &crash_base,
619 				&low_size, &cma_size, &high);
620 	if (ret)
621 		return;
622 
623 	if (xen_pv_domain()) {
624 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
625 		return;
626 	}
627 
628 	reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
629 	reserve_crashkernel_cma(cma_size);
630 }
631 
632 static struct resource standard_io_resources[] = {
633 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
634 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 	{ .name = "pic1", .start = 0x20, .end = 0x21,
636 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 	{ .name = "timer0", .start = 0x40, .end = 0x43,
638 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 	{ .name = "timer1", .start = 0x50, .end = 0x53,
640 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
642 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
644 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
645 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
646 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
647 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
648 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
649 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
650 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
651 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
652 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
653 };
654 
655 void __init reserve_standard_io_resources(void)
656 {
657 	int i;
658 
659 	/* request I/O space for devices used on all i[345]86 PCs */
660 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
661 		request_resource(&ioport_resource, &standard_io_resources[i]);
662 
663 }
664 
665 static void __init setup_kernel_resources(void)
666 {
667 	code_resource.start = __pa_symbol(_text);
668 	code_resource.end = __pa_symbol(_etext)-1;
669 	rodata_resource.start = __pa_symbol(__start_rodata);
670 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
671 	data_resource.start = __pa_symbol(_sdata);
672 	data_resource.end = __pa_symbol(_edata)-1;
673 	bss_resource.start = __pa_symbol(__bss_start);
674 	bss_resource.end = __pa_symbol(__bss_stop)-1;
675 
676 	insert_resource(&iomem_resource, &code_resource);
677 	insert_resource(&iomem_resource, &rodata_resource);
678 	insert_resource(&iomem_resource, &data_resource);
679 	insert_resource(&iomem_resource, &bss_resource);
680 }
681 
682 static bool __init snb_gfx_workaround_needed(void)
683 {
684 #ifdef CONFIG_PCI
685 	int i;
686 	u16 vendor, devid;
687 	static const __initconst u16 snb_ids[] = {
688 		0x0102,
689 		0x0112,
690 		0x0122,
691 		0x0106,
692 		0x0116,
693 		0x0126,
694 		0x010a,
695 	};
696 
697 	/* Assume no if something weird is going on with PCI */
698 	if (!early_pci_allowed())
699 		return false;
700 
701 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
702 	if (vendor != 0x8086)
703 		return false;
704 
705 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
706 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
707 		if (devid == snb_ids[i])
708 			return true;
709 #endif
710 
711 	return false;
712 }
713 
714 /*
715  * Sandy Bridge graphics has trouble with certain ranges, exclude
716  * them from allocation.
717  */
718 static void __init trim_snb_memory(void)
719 {
720 	static const __initconst unsigned long bad_pages[] = {
721 		0x20050000,
722 		0x20110000,
723 		0x20130000,
724 		0x20138000,
725 		0x40004000,
726 	};
727 	int i;
728 
729 	if (!snb_gfx_workaround_needed())
730 		return;
731 
732 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
733 
734 	/*
735 	 * SandyBridge integrated graphics devices have a bug that prevents
736 	 * them from accessing certain memory ranges, namely anything below
737 	 * 1M and in the pages listed in bad_pages[] above.
738 	 *
739 	 * To avoid these pages being ever accessed by SNB gfx devices reserve
740 	 * bad_pages that have not already been reserved at boot time.
741 	 * All memory below the 1 MB mark is anyway reserved later during
742 	 * setup_arch(), so there is no need to reserve it here.
743 	 */
744 
745 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
746 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
747 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
748 			       bad_pages[i]);
749 	}
750 }
751 
752 static void __init trim_bios_range(void)
753 {
754 	/*
755 	 * A special case is the first 4Kb of memory;
756 	 * This is a BIOS owned area, not kernel ram, but generally
757 	 * not listed as such in the E820 table.
758 	 *
759 	 * This typically reserves additional memory (64KiB by default)
760 	 * since some BIOSes are known to corrupt low memory.  See the
761 	 * Kconfig help text for X86_RESERVE_LOW.
762 	 */
763 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
764 
765 	/*
766 	 * special case: Some BIOSes report the PC BIOS
767 	 * area (640Kb -> 1Mb) as RAM even though it is not.
768 	 * take them out.
769 	 */
770 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM);
771 
772 	e820__update_table(e820_table);
773 }
774 
775 /* called before trim_bios_range() to spare extra sanitize */
776 static void __init e820_add_kernel_range(void)
777 {
778 	u64 start = __pa_symbol(_text);
779 	u64 size = __pa_symbol(_end) - start;
780 
781 	/*
782 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
783 	 * attempt to fix it by adding the range. We may have a confused BIOS,
784 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
785 	 * exclude kernel range. If we really are running on top non-RAM,
786 	 * we will crash later anyways.
787 	 */
788 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
789 		return;
790 
791 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
792 	e820__range_remove(start, size, 0);
793 	e820__range_add(start, size, E820_TYPE_RAM);
794 }
795 
796 static void __init early_reserve_memory(void)
797 {
798 	/*
799 	 * Reserve the memory occupied by the kernel between _text and
800 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
801 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
802 	 * separate memblock_reserve() or they will be discarded.
803 	 */
804 	memblock_reserve_kern(__pa_symbol(_text),
805 			      (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
806 
807 	/*
808 	 * The first 4Kb of memory is a BIOS owned area, but generally it is
809 	 * not listed as such in the E820 table.
810 	 *
811 	 * Reserve the first 64K of memory since some BIOSes are known to
812 	 * corrupt low memory. After the real mode trampoline is allocated the
813 	 * rest of the memory below 640k is reserved.
814 	 *
815 	 * In addition, make sure page 0 is always reserved because on
816 	 * systems with L1TF its contents can be leaked to user processes.
817 	 */
818 	memblock_reserve(0, SZ_64K);
819 
820 	early_reserve_initrd();
821 
822 	memblock_x86_reserve_range_setup_data();
823 
824 	reserve_bios_regions();
825 	trim_snb_memory();
826 }
827 
828 /*
829  * Dump out kernel offset information on panic.
830  */
831 static int
832 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
833 {
834 	if (kaslr_enabled()) {
835 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
836 			 kaslr_offset(),
837 			 __START_KERNEL,
838 			 __START_KERNEL_map,
839 			 MODULES_VADDR-1);
840 	} else {
841 		pr_emerg("Kernel Offset: disabled\n");
842 	}
843 
844 	return 0;
845 }
846 
847 void x86_configure_nx(void)
848 {
849 	if (boot_cpu_has(X86_FEATURE_NX))
850 		__supported_pte_mask |= _PAGE_NX;
851 	else
852 		__supported_pte_mask &= ~_PAGE_NX;
853 }
854 
855 static void __init x86_report_nx(void)
856 {
857 	if (!boot_cpu_has(X86_FEATURE_NX)) {
858 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
859 		       "missing in CPU!\n");
860 	} else {
861 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
862 		printk(KERN_INFO "NX (Execute Disable) protection: active\n");
863 #else
864 		/* 32bit non-PAE kernel, NX cannot be used */
865 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
866 		       "cannot be enabled: non-PAE kernel!\n");
867 #endif
868 	}
869 }
870 
871 /*
872  * Determine if we were loaded by an EFI loader.  If so, then we have also been
873  * passed the efi memmap, systab, etc., so we should use these data structures
874  * for initialization.  Note, the efi init code path is determined by the
875  * global efi_enabled. This allows the same kernel image to be used on existing
876  * systems (with a traditional BIOS) as well as on EFI systems.
877  */
878 /*
879  * setup_arch - architecture-specific boot-time initializations
880  *
881  * Note: On x86_64, fixmaps are ready for use even before this is called.
882  */
883 
884 void __init setup_arch(char **cmdline_p)
885 {
886 #ifdef CONFIG_X86_32
887 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
888 
889 	/*
890 	 * copy kernel address range established so far and switch
891 	 * to the proper swapper page table
892 	 */
893 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
894 			initial_page_table + KERNEL_PGD_BOUNDARY,
895 			KERNEL_PGD_PTRS);
896 
897 	load_cr3(swapper_pg_dir);
898 	/*
899 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
900 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
901 	 * will not flush anything because the CPU quirk which clears
902 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
903 	 * load_cr3() above the TLB has been flushed already. The
904 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
905 	 * so proper operation is guaranteed.
906 	 */
907 	__flush_tlb_all();
908 #else
909 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
910 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
911 #endif
912 
913 #ifdef CONFIG_CMDLINE_BOOL
914 #ifdef CONFIG_CMDLINE_OVERRIDE
915 	strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
916 #else
917 	if (builtin_cmdline[0]) {
918 		/* append boot loader cmdline to builtin */
919 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
920 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
921 		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
922 	}
923 #endif
924 	builtin_cmdline_added = true;
925 #endif
926 
927 	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
928 	*cmdline_p = command_line;
929 
930 	/*
931 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
932 	 * reserve_top(), so do this before touching the ioremap area.
933 	 */
934 	olpc_ofw_detect();
935 
936 	idt_setup_early_traps();
937 	early_cpu_init();
938 	jump_label_init();
939 	static_call_init();
940 	early_ioremap_init();
941 
942 	setup_olpc_ofw_pgd();
943 
944 	parse_boot_params();
945 
946 	x86_init.oem.arch_setup();
947 
948 	/*
949 	 * Do some memory reservations *before* memory is added to memblock, so
950 	 * memblock allocations won't overwrite it.
951 	 *
952 	 * After this point, everything still needed from the boot loader or
953 	 * firmware or kernel text should be early reserved or marked not RAM in
954 	 * e820. All other memory is free game.
955 	 *
956 	 * This call needs to happen before e820__memory_setup() which calls the
957 	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
958 	 * early reservations have happened already.
959 	 */
960 	early_reserve_memory();
961 
962 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
963 	e820__memory_setup();
964 	parse_setup_data();
965 
966 	copy_edd();
967 
968 	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
969 
970 	/*
971 	 * x86_configure_nx() is called before parse_early_param() to detect
972 	 * whether hardware doesn't support NX (so that the early EHCI debug
973 	 * console setup can safely call set_fixmap()).
974 	 */
975 	x86_configure_nx();
976 
977 	parse_early_param();
978 
979 	if (efi_enabled(EFI_BOOT))
980 		efi_memblock_x86_reserve_range();
981 
982 	x86_report_nx();
983 
984 	apic_setup_apic_calls();
985 
986 	if (acpi_mps_check()) {
987 #ifdef CONFIG_X86_LOCAL_APIC
988 		apic_is_disabled = true;
989 #endif
990 		setup_clear_cpu_cap(X86_FEATURE_APIC);
991 	}
992 
993 	e820__finish_early_params();
994 
995 	if (efi_enabled(EFI_BOOT))
996 		efi_init();
997 
998 	reserve_ibft_region();
999 	x86_init.resources.dmi_setup();
1000 
1001 	/*
1002 	 * VMware detection requires dmi to be available, so this
1003 	 * needs to be done after dmi_setup(), for the boot CPU.
1004 	 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
1005 	 * called before cache_bp_init() for setting up MTRR state.
1006 	 */
1007 	init_hypervisor_platform();
1008 
1009 	tsc_early_init();
1010 	x86_init.resources.probe_roms();
1011 
1012 	/*
1013 	 * Add resources for kernel text and data to the iomem_resource.
1014 	 * Do it after parse_early_param, so it can be debugged.
1015 	 */
1016 	setup_kernel_resources();
1017 
1018 	e820_add_kernel_range();
1019 	trim_bios_range();
1020 #ifdef CONFIG_X86_32
1021 	if (ppro_with_ram_bug()) {
1022 		pr_info("Applying PPro RAM bug workaround: punching 256 kB hole at 1.75 GB physical.\n");
1023 		e820__range_update(0x70000000ULL, SZ_256K, E820_TYPE_RAM, E820_TYPE_RESERVED);
1024 		e820__update_table(e820_table);
1025 	}
1026 #else
1027 	early_gart_iommu_check();
1028 #endif
1029 
1030 	/*
1031 	 * partially used pages are not usable - thus
1032 	 * we are rounding upwards:
1033 	 */
1034 	max_pfn = e820__end_of_ram_pfn();
1035 
1036 	/* update e820 for memory not covered by WB MTRRs */
1037 	cache_bp_init();
1038 	if (mtrr_trim_uncached_memory(max_pfn))
1039 		max_pfn = e820__end_of_ram_pfn();
1040 
1041 	max_possible_pfn = max_pfn;
1042 
1043 	/*
1044 	 * Define random base addresses for memory sections after max_pfn is
1045 	 * defined and before each memory section base is used.
1046 	 */
1047 	kernel_randomize_memory();
1048 
1049 #ifdef CONFIG_X86_32
1050 	/* max_low_pfn get updated here */
1051 	find_low_pfn_range();
1052 #else
1053 	check_x2apic();
1054 
1055 	/* How many end-of-memory variables you have, grandma! */
1056 	/* need this before calling reserve_initrd */
1057 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1058 		max_low_pfn = e820__end_of_low_ram_pfn();
1059 	else
1060 		max_low_pfn = max_pfn;
1061 #endif
1062 
1063 	/* Find and reserve MPTABLE area */
1064 	x86_init.mpparse.find_mptable();
1065 
1066 	early_alloc_pgt_buf();
1067 
1068 	/*
1069 	 * Need to conclude brk, before e820__memblock_setup()
1070 	 * it could use memblock_find_in_range, could overlap with
1071 	 * brk area.
1072 	 */
1073 	reserve_brk();
1074 
1075 	cleanup_highmap();
1076 
1077 	e820__memblock_setup();
1078 
1079 	/*
1080 	 * Needs to run after memblock setup because it needs the physical
1081 	 * memory size.
1082 	 */
1083 	mem_encrypt_setup_arch();
1084 	cc_random_init();
1085 
1086 	efi_find_mirror();
1087 	efi_esrt_init();
1088 	efi_mokvar_table_init();
1089 
1090 	/*
1091 	 * The EFI specification says that boot service code won't be
1092 	 * called after ExitBootServices(). This is, in fact, a lie.
1093 	 */
1094 	efi_reserve_boot_services();
1095 
1096 	/* preallocate 4k for mptable mpc */
1097 	e820__memblock_alloc_reserved_mpc_new();
1098 
1099 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1100 	setup_bios_corruption_check();
1101 #endif
1102 
1103 #ifdef CONFIG_X86_32
1104 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1105 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1106 #endif
1107 
1108 	/*
1109 	 * Find free memory for the real mode trampoline and place it there. If
1110 	 * there is not enough free memory under 1M, on EFI-enabled systems
1111 	 * there will be additional attempt to reclaim the memory for the real
1112 	 * mode trampoline at efi_free_boot_services().
1113 	 *
1114 	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1115 	 * are known to corrupt low memory and several hundred kilobytes are not
1116 	 * worth complex detection what memory gets clobbered. Windows does the
1117 	 * same thing for very similar reasons.
1118 	 *
1119 	 * Moreover, on machines with SandyBridge graphics or in setups that use
1120 	 * crashkernel the entire 1M is reserved anyway.
1121 	 *
1122 	 * Note the host kernel TDX also requires the first 1MB being reserved.
1123 	 */
1124 	x86_platform.realmode_reserve();
1125 
1126 	init_mem_mapping();
1127 
1128 	/*
1129 	 * init_mem_mapping() relies on the early IDT page fault handling.
1130 	 * Now either enable FRED or install the real page fault handler
1131 	 * for 64-bit in the IDT.
1132 	 */
1133 	cpu_init_replace_early_idt();
1134 
1135 	/*
1136 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1137 	 * with the current CR4 value.  This may not be necessary, but
1138 	 * auditing all the early-boot CR4 manipulation would be needed to
1139 	 * rule it out.
1140 	 *
1141 	 * Mask off features that don't work outside long mode (just
1142 	 * PCIDE for now).
1143 	 */
1144 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1145 
1146 	memblock_set_current_limit(get_max_mapped());
1147 
1148 	/*
1149 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1150 	 */
1151 
1152 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1153 	if (init_ohci1394_dma_early)
1154 		init_ohci1394_dma_on_all_controllers();
1155 #endif
1156 	/* Allocate bigger log buffer */
1157 	setup_log_buf(1);
1158 
1159 	if (efi_enabled(EFI_BOOT)) {
1160 		switch (boot_params.secure_boot) {
1161 		case efi_secureboot_mode_disabled:
1162 			pr_info("Secure boot disabled\n");
1163 			break;
1164 		case efi_secureboot_mode_enabled:
1165 			pr_info("Secure boot enabled\n");
1166 			break;
1167 		default:
1168 			pr_info("Secure boot could not be determined\n");
1169 			break;
1170 		}
1171 	}
1172 
1173 	reserve_initrd();
1174 
1175 	acpi_table_upgrade();
1176 	/* Look for ACPI tables and reserve memory occupied by them. */
1177 	acpi_boot_table_init();
1178 
1179 	vsmp_init();
1180 
1181 	io_delay_init();
1182 
1183 	early_platform_quirks();
1184 
1185 	/* Some platforms need the APIC registered for NUMA configuration */
1186 	early_acpi_boot_init();
1187 	x86_init.mpparse.early_parse_smp_cfg();
1188 
1189 	x86_flattree_get_config();
1190 
1191 	initmem_init();
1192 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1193 
1194 	/*
1195 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1196 	 * won't consume hotpluggable memory.
1197 	 */
1198 	arch_reserve_crashkernel();
1199 
1200 	if (!early_xdbc_setup_hardware())
1201 		early_xdbc_register_console();
1202 
1203 	x86_init.paging.pagetable_init();
1204 
1205 	kasan_init();
1206 
1207 	/*
1208 	 * Sync back kernel address range.
1209 	 *
1210 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1211 	 * this call?
1212 	 */
1213 	sync_initial_page_table();
1214 
1215 	tboot_probe();
1216 
1217 	map_vsyscall();
1218 
1219 	x86_32_probe_apic();
1220 
1221 	early_quirks();
1222 
1223 	topology_apply_cmdline_limits_early();
1224 
1225 	/*
1226 	 * Parse SMP configuration. Try ACPI first and then the platform
1227 	 * specific parser.
1228 	 */
1229 	acpi_boot_init();
1230 	x86_init.mpparse.parse_smp_cfg();
1231 
1232 	/* Last opportunity to detect and map the local APIC */
1233 	init_apic_mappings();
1234 
1235 	topology_init_possible_cpus();
1236 
1237 	init_cpu_to_node();
1238 	init_gi_nodes();
1239 
1240 	io_apic_init_mappings();
1241 
1242 	x86_init.hyper.guest_late_init();
1243 
1244 	e820__reserve_resources();
1245 	e820__register_nosave_regions(max_pfn);
1246 
1247 	x86_init.resources.reserve_resources();
1248 
1249 	e820__setup_pci_gap();
1250 
1251 #ifdef CONFIG_VT
1252 #if defined(CONFIG_VGA_CONSOLE)
1253 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1254 		vgacon_register_screen(&sysfb_primary_display.screen);
1255 #endif
1256 #endif
1257 	x86_init.oem.banner();
1258 
1259 	x86_init.timers.wallclock_init();
1260 
1261 	/*
1262 	 * This needs to run before setup_local_APIC() which soft-disables the
1263 	 * local APIC temporarily and that masks the thermal LVT interrupt,
1264 	 * leading to softlockups on machines which have configured SMI
1265 	 * interrupt delivery.
1266 	 */
1267 	therm_lvt_init();
1268 
1269 	mcheck_init();
1270 
1271 	register_refined_jiffies(CLOCK_TICK_RATE);
1272 
1273 #ifdef CONFIG_EFI
1274 	if (efi_enabled(EFI_BOOT))
1275 		efi_apply_memmap_quirks();
1276 #endif
1277 
1278 	unwind_init();
1279 }
1280 
1281 #ifdef CONFIG_X86_32
1282 
1283 static struct resource video_ram_resource = {
1284 	.name	= "Video RAM area",
1285 	.start	= 0xa0000,
1286 	.end	= 0xbffff,
1287 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1288 };
1289 
1290 void __init i386_reserve_resources(void)
1291 {
1292 	request_resource(&iomem_resource, &video_ram_resource);
1293 	reserve_standard_io_resources();
1294 }
1295 
1296 #endif /* CONFIG_X86_32 */
1297 
1298 static struct notifier_block kernel_offset_notifier = {
1299 	.notifier_call = dump_kernel_offset
1300 };
1301 
1302 static int __init register_kernel_offset_dumper(void)
1303 {
1304 	atomic_notifier_chain_register(&panic_notifier_list,
1305 					&kernel_offset_notifier);
1306 	return 0;
1307 }
1308 __initcall(register_kernel_offset_dumper);
1309 
1310 #ifdef CONFIG_HOTPLUG_CPU
1311 bool arch_cpu_is_hotpluggable(int cpu)
1312 {
1313 	return cpu > 0;
1314 }
1315 #endif /* CONFIG_HOTPLUG_CPU */
1316