xref: /linux/arch/x86/kernel/setup.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *
6  *  Memory region support
7  *	David Parsons <orc@pell.chi.il.us>, July-August 1999
8  *
9  *  Added E820 sanitization routine (removes overlapping memory regions);
10  *  Brian Moyle <bmoyle@mvista.com>, February 2001
11  *
12  * Moved CPU detection code to cpu/${cpu}.c
13  *    Patrick Mochel <mochel@osdl.org>, March 2002
14  *
15  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
16  *  Alex Achenbach <xela@slit.de>, December 2002.
17  *
18  */
19 
20 /*
21  * This file handles the architecture-dependent parts of initialization
22  */
23 
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53 
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61 
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67 
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 #include <linux/mem_encrypt.h>
73 
74 #include <linux/usb/xhci-dbgp.h>
75 #include <video/edid.h>
76 
77 #include <asm/mtrr.h>
78 #include <asm/apic.h>
79 #include <asm/realmode.h>
80 #include <asm/e820/api.h>
81 #include <asm/mpspec.h>
82 #include <asm/setup.h>
83 #include <asm/efi.h>
84 #include <asm/timer.h>
85 #include <asm/i8259.h>
86 #include <asm/sections.h>
87 #include <asm/io_apic.h>
88 #include <asm/ist.h>
89 #include <asm/setup_arch.h>
90 #include <asm/bios_ebda.h>
91 #include <asm/cacheflush.h>
92 #include <asm/processor.h>
93 #include <asm/bugs.h>
94 #include <asm/kasan.h>
95 
96 #include <asm/vsyscall.h>
97 #include <asm/cpu.h>
98 #include <asm/desc.h>
99 #include <asm/dma.h>
100 #include <asm/iommu.h>
101 #include <asm/gart.h>
102 #include <asm/mmu_context.h>
103 #include <asm/proto.h>
104 
105 #include <asm/paravirt.h>
106 #include <asm/hypervisor.h>
107 #include <asm/olpc_ofw.h>
108 
109 #include <asm/percpu.h>
110 #include <asm/topology.h>
111 #include <asm/apicdef.h>
112 #include <asm/amd_nb.h>
113 #include <asm/mce.h>
114 #include <asm/alternative.h>
115 #include <asm/prom.h>
116 #include <asm/microcode.h>
117 #include <asm/mmu_context.h>
118 #include <asm/kaslr.h>
119 #include <asm/unwind.h>
120 
121 /*
122  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
123  * max_pfn_mapped:     highest direct mapped pfn over 4GB
124  *
125  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
126  * represented by pfn_mapped
127  */
128 unsigned long max_low_pfn_mapped;
129 unsigned long max_pfn_mapped;
130 
131 #ifdef CONFIG_DMI
132 RESERVE_BRK(dmi_alloc, 65536);
133 #endif
134 
135 
136 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
137 unsigned long _brk_end = (unsigned long)__brk_base;
138 
139 struct boot_params boot_params;
140 
141 /*
142  * Machine setup..
143  */
144 static struct resource data_resource = {
145 	.name	= "Kernel data",
146 	.start	= 0,
147 	.end	= 0,
148 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
149 };
150 
151 static struct resource code_resource = {
152 	.name	= "Kernel code",
153 	.start	= 0,
154 	.end	= 0,
155 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
156 };
157 
158 static struct resource bss_resource = {
159 	.name	= "Kernel bss",
160 	.start	= 0,
161 	.end	= 0,
162 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
163 };
164 
165 
166 #ifdef CONFIG_X86_32
167 /* cpu data as detected by the assembly code in head_32.S */
168 struct cpuinfo_x86 new_cpu_data;
169 
170 /* common cpu data for all cpus */
171 struct cpuinfo_x86 boot_cpu_data __read_mostly;
172 EXPORT_SYMBOL(boot_cpu_data);
173 
174 unsigned int def_to_bigsmp;
175 
176 /* for MCA, but anyone else can use it if they want */
177 unsigned int machine_id;
178 unsigned int machine_submodel_id;
179 unsigned int BIOS_revision;
180 
181 struct apm_info apm_info;
182 EXPORT_SYMBOL(apm_info);
183 
184 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
185 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
186 struct ist_info ist_info;
187 EXPORT_SYMBOL(ist_info);
188 #else
189 struct ist_info ist_info;
190 #endif
191 
192 #else
193 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
194 	.x86_phys_bits = MAX_PHYSMEM_BITS,
195 };
196 EXPORT_SYMBOL(boot_cpu_data);
197 #endif
198 
199 
200 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
201 __visible unsigned long mmu_cr4_features __ro_after_init;
202 #else
203 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
204 #endif
205 
206 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
207 int bootloader_type, bootloader_version;
208 
209 /*
210  * Setup options
211  */
212 struct screen_info screen_info;
213 EXPORT_SYMBOL(screen_info);
214 struct edid_info edid_info;
215 EXPORT_SYMBOL_GPL(edid_info);
216 
217 extern int root_mountflags;
218 
219 unsigned long saved_video_mode;
220 
221 #define RAMDISK_IMAGE_START_MASK	0x07FF
222 #define RAMDISK_PROMPT_FLAG		0x8000
223 #define RAMDISK_LOAD_FLAG		0x4000
224 
225 static char __initdata command_line[COMMAND_LINE_SIZE];
226 #ifdef CONFIG_CMDLINE_BOOL
227 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
228 #endif
229 
230 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
231 struct edd edd;
232 #ifdef CONFIG_EDD_MODULE
233 EXPORT_SYMBOL(edd);
234 #endif
235 /**
236  * copy_edd() - Copy the BIOS EDD information
237  *              from boot_params into a safe place.
238  *
239  */
240 static inline void __init copy_edd(void)
241 {
242      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
243 	    sizeof(edd.mbr_signature));
244      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
245      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
246      edd.edd_info_nr = boot_params.eddbuf_entries;
247 }
248 #else
249 static inline void __init copy_edd(void)
250 {
251 }
252 #endif
253 
254 void * __init extend_brk(size_t size, size_t align)
255 {
256 	size_t mask = align - 1;
257 	void *ret;
258 
259 	BUG_ON(_brk_start == 0);
260 	BUG_ON(align & mask);
261 
262 	_brk_end = (_brk_end + mask) & ~mask;
263 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
264 
265 	ret = (void *)_brk_end;
266 	_brk_end += size;
267 
268 	memset(ret, 0, size);
269 
270 	return ret;
271 }
272 
273 #ifdef CONFIG_X86_32
274 static void __init cleanup_highmap(void)
275 {
276 }
277 #endif
278 
279 static void __init reserve_brk(void)
280 {
281 	if (_brk_end > _brk_start)
282 		memblock_reserve(__pa_symbol(_brk_start),
283 				 _brk_end - _brk_start);
284 
285 	/* Mark brk area as locked down and no longer taking any
286 	   new allocations */
287 	_brk_start = 0;
288 }
289 
290 u64 relocated_ramdisk;
291 
292 #ifdef CONFIG_BLK_DEV_INITRD
293 
294 static u64 __init get_ramdisk_image(void)
295 {
296 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
297 
298 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
299 
300 	return ramdisk_image;
301 }
302 static u64 __init get_ramdisk_size(void)
303 {
304 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
305 
306 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
307 
308 	return ramdisk_size;
309 }
310 
311 static void __init relocate_initrd(void)
312 {
313 	/* Assume only end is not page aligned */
314 	u64 ramdisk_image = get_ramdisk_image();
315 	u64 ramdisk_size  = get_ramdisk_size();
316 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
317 
318 	/* We need to move the initrd down into directly mapped mem */
319 	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
320 						   area_size, PAGE_SIZE);
321 
322 	if (!relocated_ramdisk)
323 		panic("Cannot find place for new RAMDISK of size %lld\n",
324 		      ramdisk_size);
325 
326 	/* Note: this includes all the mem currently occupied by
327 	   the initrd, we rely on that fact to keep the data intact. */
328 	memblock_reserve(relocated_ramdisk, area_size);
329 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
330 	initrd_end   = initrd_start + ramdisk_size;
331 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
332 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
333 
334 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
335 
336 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
337 		" [mem %#010llx-%#010llx]\n",
338 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
339 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
340 }
341 
342 static void __init early_reserve_initrd(void)
343 {
344 	/* Assume only end is not page aligned */
345 	u64 ramdisk_image = get_ramdisk_image();
346 	u64 ramdisk_size  = get_ramdisk_size();
347 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
348 
349 	if (!boot_params.hdr.type_of_loader ||
350 	    !ramdisk_image || !ramdisk_size)
351 		return;		/* No initrd provided by bootloader */
352 
353 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
354 }
355 static void __init reserve_initrd(void)
356 {
357 	/* Assume only end is not page aligned */
358 	u64 ramdisk_image = get_ramdisk_image();
359 	u64 ramdisk_size  = get_ramdisk_size();
360 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
361 	u64 mapped_size;
362 
363 	if (!boot_params.hdr.type_of_loader ||
364 	    !ramdisk_image || !ramdisk_size)
365 		return;		/* No initrd provided by bootloader */
366 
367 	initrd_start = 0;
368 
369 	mapped_size = memblock_mem_size(max_pfn_mapped);
370 	if (ramdisk_size >= (mapped_size>>1))
371 		panic("initrd too large to handle, "
372 		       "disabling initrd (%lld needed, %lld available)\n",
373 		       ramdisk_size, mapped_size>>1);
374 
375 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
376 			ramdisk_end - 1);
377 
378 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
379 				PFN_DOWN(ramdisk_end))) {
380 		/* All are mapped, easy case */
381 		initrd_start = ramdisk_image + PAGE_OFFSET;
382 		initrd_end = initrd_start + ramdisk_size;
383 		return;
384 	}
385 
386 	relocate_initrd();
387 
388 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
389 }
390 
391 #else
392 static void __init early_reserve_initrd(void)
393 {
394 }
395 static void __init reserve_initrd(void)
396 {
397 }
398 #endif /* CONFIG_BLK_DEV_INITRD */
399 
400 static void __init parse_setup_data(void)
401 {
402 	struct setup_data *data;
403 	u64 pa_data, pa_next;
404 
405 	pa_data = boot_params.hdr.setup_data;
406 	while (pa_data) {
407 		u32 data_len, data_type;
408 
409 		data = early_memremap(pa_data, sizeof(*data));
410 		data_len = data->len + sizeof(struct setup_data);
411 		data_type = data->type;
412 		pa_next = data->next;
413 		early_memunmap(data, sizeof(*data));
414 
415 		switch (data_type) {
416 		case SETUP_E820_EXT:
417 			e820__memory_setup_extended(pa_data, data_len);
418 			break;
419 		case SETUP_DTB:
420 			add_dtb(pa_data);
421 			break;
422 		case SETUP_EFI:
423 			parse_efi_setup(pa_data, data_len);
424 			break;
425 		default:
426 			break;
427 		}
428 		pa_data = pa_next;
429 	}
430 }
431 
432 static void __init memblock_x86_reserve_range_setup_data(void)
433 {
434 	struct setup_data *data;
435 	u64 pa_data;
436 
437 	pa_data = boot_params.hdr.setup_data;
438 	while (pa_data) {
439 		data = early_memremap(pa_data, sizeof(*data));
440 		memblock_reserve(pa_data, sizeof(*data) + data->len);
441 		pa_data = data->next;
442 		early_memunmap(data, sizeof(*data));
443 	}
444 }
445 
446 /*
447  * --------- Crashkernel reservation ------------------------------
448  */
449 
450 #ifdef CONFIG_KEXEC_CORE
451 
452 /* 16M alignment for crash kernel regions */
453 #define CRASH_ALIGN		(16 << 20)
454 
455 /*
456  * Keep the crash kernel below this limit.  On 32 bits earlier kernels
457  * would limit the kernel to the low 512 MiB due to mapping restrictions.
458  * On 64bit, old kexec-tools need to under 896MiB.
459  */
460 #ifdef CONFIG_X86_32
461 # define CRASH_ADDR_LOW_MAX	(512 << 20)
462 # define CRASH_ADDR_HIGH_MAX	(512 << 20)
463 #else
464 # define CRASH_ADDR_LOW_MAX	(896UL << 20)
465 # define CRASH_ADDR_HIGH_MAX	MAXMEM
466 #endif
467 
468 static int __init reserve_crashkernel_low(void)
469 {
470 #ifdef CONFIG_X86_64
471 	unsigned long long base, low_base = 0, low_size = 0;
472 	unsigned long total_low_mem;
473 	int ret;
474 
475 	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
476 
477 	/* crashkernel=Y,low */
478 	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
479 	if (ret) {
480 		/*
481 		 * two parts from lib/swiotlb.c:
482 		 * -swiotlb size: user-specified with swiotlb= or default.
483 		 *
484 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
485 		 * to 8M for other buffers that may need to stay low too. Also
486 		 * make sure we allocate enough extra low memory so that we
487 		 * don't run out of DMA buffers for 32-bit devices.
488 		 */
489 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
490 	} else {
491 		/* passed with crashkernel=0,low ? */
492 		if (!low_size)
493 			return 0;
494 	}
495 
496 	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
497 	if (!low_base) {
498 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
499 		       (unsigned long)(low_size >> 20));
500 		return -ENOMEM;
501 	}
502 
503 	ret = memblock_reserve(low_base, low_size);
504 	if (ret) {
505 		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
506 		return ret;
507 	}
508 
509 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
510 		(unsigned long)(low_size >> 20),
511 		(unsigned long)(low_base >> 20),
512 		(unsigned long)(total_low_mem >> 20));
513 
514 	crashk_low_res.start = low_base;
515 	crashk_low_res.end   = low_base + low_size - 1;
516 	insert_resource(&iomem_resource, &crashk_low_res);
517 #endif
518 	return 0;
519 }
520 
521 static void __init reserve_crashkernel(void)
522 {
523 	unsigned long long crash_size, crash_base, total_mem;
524 	bool high = false;
525 	int ret;
526 
527 	total_mem = memblock_phys_mem_size();
528 
529 	/* crashkernel=XM */
530 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
531 	if (ret != 0 || crash_size <= 0) {
532 		/* crashkernel=X,high */
533 		ret = parse_crashkernel_high(boot_command_line, total_mem,
534 					     &crash_size, &crash_base);
535 		if (ret != 0 || crash_size <= 0)
536 			return;
537 		high = true;
538 	}
539 
540 	/* 0 means: find the address automatically */
541 	if (crash_base <= 0) {
542 		/*
543 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
544 		 * as old kexec-tools loads bzImage below that, unless
545 		 * "crashkernel=size[KMG],high" is specified.
546 		 */
547 		crash_base = memblock_find_in_range(CRASH_ALIGN,
548 						    high ? CRASH_ADDR_HIGH_MAX
549 							 : CRASH_ADDR_LOW_MAX,
550 						    crash_size, CRASH_ALIGN);
551 		if (!crash_base) {
552 			pr_info("crashkernel reservation failed - No suitable area found.\n");
553 			return;
554 		}
555 
556 	} else {
557 		unsigned long long start;
558 
559 		start = memblock_find_in_range(crash_base,
560 					       crash_base + crash_size,
561 					       crash_size, 1 << 20);
562 		if (start != crash_base) {
563 			pr_info("crashkernel reservation failed - memory is in use.\n");
564 			return;
565 		}
566 	}
567 	ret = memblock_reserve(crash_base, crash_size);
568 	if (ret) {
569 		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
570 		return;
571 	}
572 
573 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
574 		memblock_free(crash_base, crash_size);
575 		return;
576 	}
577 
578 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
579 		(unsigned long)(crash_size >> 20),
580 		(unsigned long)(crash_base >> 20),
581 		(unsigned long)(total_mem >> 20));
582 
583 	crashk_res.start = crash_base;
584 	crashk_res.end   = crash_base + crash_size - 1;
585 	insert_resource(&iomem_resource, &crashk_res);
586 }
587 #else
588 static void __init reserve_crashkernel(void)
589 {
590 }
591 #endif
592 
593 static struct resource standard_io_resources[] = {
594 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
595 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
596 	{ .name = "pic1", .start = 0x20, .end = 0x21,
597 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
598 	{ .name = "timer0", .start = 0x40, .end = 0x43,
599 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
600 	{ .name = "timer1", .start = 0x50, .end = 0x53,
601 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
602 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
603 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
604 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
605 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
606 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
607 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
608 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
609 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
610 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
611 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
612 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
613 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
614 };
615 
616 void __init reserve_standard_io_resources(void)
617 {
618 	int i;
619 
620 	/* request I/O space for devices used on all i[345]86 PCs */
621 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
622 		request_resource(&ioport_resource, &standard_io_resources[i]);
623 
624 }
625 
626 static __init void reserve_ibft_region(void)
627 {
628 	unsigned long addr, size = 0;
629 
630 	addr = find_ibft_region(&size);
631 
632 	if (size)
633 		memblock_reserve(addr, size);
634 }
635 
636 static bool __init snb_gfx_workaround_needed(void)
637 {
638 #ifdef CONFIG_PCI
639 	int i;
640 	u16 vendor, devid;
641 	static const __initconst u16 snb_ids[] = {
642 		0x0102,
643 		0x0112,
644 		0x0122,
645 		0x0106,
646 		0x0116,
647 		0x0126,
648 		0x010a,
649 	};
650 
651 	/* Assume no if something weird is going on with PCI */
652 	if (!early_pci_allowed())
653 		return false;
654 
655 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
656 	if (vendor != 0x8086)
657 		return false;
658 
659 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
660 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
661 		if (devid == snb_ids[i])
662 			return true;
663 #endif
664 
665 	return false;
666 }
667 
668 /*
669  * Sandy Bridge graphics has trouble with certain ranges, exclude
670  * them from allocation.
671  */
672 static void __init trim_snb_memory(void)
673 {
674 	static const __initconst unsigned long bad_pages[] = {
675 		0x20050000,
676 		0x20110000,
677 		0x20130000,
678 		0x20138000,
679 		0x40004000,
680 	};
681 	int i;
682 
683 	if (!snb_gfx_workaround_needed())
684 		return;
685 
686 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
687 
688 	/*
689 	 * Reserve all memory below the 1 MB mark that has not
690 	 * already been reserved.
691 	 */
692 	memblock_reserve(0, 1<<20);
693 
694 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
695 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
696 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
697 			       bad_pages[i]);
698 	}
699 }
700 
701 /*
702  * Here we put platform-specific memory range workarounds, i.e.
703  * memory known to be corrupt or otherwise in need to be reserved on
704  * specific platforms.
705  *
706  * If this gets used more widely it could use a real dispatch mechanism.
707  */
708 static void __init trim_platform_memory_ranges(void)
709 {
710 	trim_snb_memory();
711 }
712 
713 static void __init trim_bios_range(void)
714 {
715 	/*
716 	 * A special case is the first 4Kb of memory;
717 	 * This is a BIOS owned area, not kernel ram, but generally
718 	 * not listed as such in the E820 table.
719 	 *
720 	 * This typically reserves additional memory (64KiB by default)
721 	 * since some BIOSes are known to corrupt low memory.  See the
722 	 * Kconfig help text for X86_RESERVE_LOW.
723 	 */
724 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
725 
726 	/*
727 	 * special case: Some BIOSen report the PC BIOS
728 	 * area (640->1Mb) as ram even though it is not.
729 	 * take them out.
730 	 */
731 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
732 
733 	e820__update_table(e820_table);
734 }
735 
736 /* called before trim_bios_range() to spare extra sanitize */
737 static void __init e820_add_kernel_range(void)
738 {
739 	u64 start = __pa_symbol(_text);
740 	u64 size = __pa_symbol(_end) - start;
741 
742 	/*
743 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
744 	 * attempt to fix it by adding the range. We may have a confused BIOS,
745 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
746 	 * exclude kernel range. If we really are running on top non-RAM,
747 	 * we will crash later anyways.
748 	 */
749 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
750 		return;
751 
752 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
753 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
754 	e820__range_add(start, size, E820_TYPE_RAM);
755 }
756 
757 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
758 
759 static int __init parse_reservelow(char *p)
760 {
761 	unsigned long long size;
762 
763 	if (!p)
764 		return -EINVAL;
765 
766 	size = memparse(p, &p);
767 
768 	if (size < 4096)
769 		size = 4096;
770 
771 	if (size > 640*1024)
772 		size = 640*1024;
773 
774 	reserve_low = size;
775 
776 	return 0;
777 }
778 
779 early_param("reservelow", parse_reservelow);
780 
781 static void __init trim_low_memory_range(void)
782 {
783 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
784 }
785 
786 /*
787  * Dump out kernel offset information on panic.
788  */
789 static int
790 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
791 {
792 	if (kaslr_enabled()) {
793 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
794 			 kaslr_offset(),
795 			 __START_KERNEL,
796 			 __START_KERNEL_map,
797 			 MODULES_VADDR-1);
798 	} else {
799 		pr_emerg("Kernel Offset: disabled\n");
800 	}
801 
802 	return 0;
803 }
804 
805 /*
806  * Determine if we were loaded by an EFI loader.  If so, then we have also been
807  * passed the efi memmap, systab, etc., so we should use these data structures
808  * for initialization.  Note, the efi init code path is determined by the
809  * global efi_enabled. This allows the same kernel image to be used on existing
810  * systems (with a traditional BIOS) as well as on EFI systems.
811  */
812 /*
813  * setup_arch - architecture-specific boot-time initializations
814  *
815  * Note: On x86_64, fixmaps are ready for use even before this is called.
816  */
817 
818 void __init setup_arch(char **cmdline_p)
819 {
820 	memblock_reserve(__pa_symbol(_text),
821 			 (unsigned long)__bss_stop - (unsigned long)_text);
822 
823 	early_reserve_initrd();
824 
825 	/*
826 	 * At this point everything still needed from the boot loader
827 	 * or BIOS or kernel text should be early reserved or marked not
828 	 * RAM in e820. All other memory is free game.
829 	 */
830 
831 #ifdef CONFIG_X86_32
832 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
833 
834 	/*
835 	 * copy kernel address range established so far and switch
836 	 * to the proper swapper page table
837 	 */
838 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
839 			initial_page_table + KERNEL_PGD_BOUNDARY,
840 			KERNEL_PGD_PTRS);
841 
842 	load_cr3(swapper_pg_dir);
843 	/*
844 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
845 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
846 	 * will not flush anything because the cpu quirk which clears
847 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
848 	 * load_cr3() above the TLB has been flushed already. The
849 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
850 	 * so proper operation is guaranteed.
851 	 */
852 	__flush_tlb_all();
853 #else
854 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
855 #endif
856 
857 	/*
858 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
859 	 * reserve_top(), so do this before touching the ioremap area.
860 	 */
861 	olpc_ofw_detect();
862 
863 	idt_setup_early_traps();
864 	early_cpu_init();
865 	early_ioremap_init();
866 
867 	setup_olpc_ofw_pgd();
868 
869 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
870 	screen_info = boot_params.screen_info;
871 	edid_info = boot_params.edid_info;
872 #ifdef CONFIG_X86_32
873 	apm_info.bios = boot_params.apm_bios_info;
874 	ist_info = boot_params.ist_info;
875 #endif
876 	saved_video_mode = boot_params.hdr.vid_mode;
877 	bootloader_type = boot_params.hdr.type_of_loader;
878 	if ((bootloader_type >> 4) == 0xe) {
879 		bootloader_type &= 0xf;
880 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
881 	}
882 	bootloader_version  = bootloader_type & 0xf;
883 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
884 
885 #ifdef CONFIG_BLK_DEV_RAM
886 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
887 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
888 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
889 #endif
890 #ifdef CONFIG_EFI
891 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
892 		     EFI32_LOADER_SIGNATURE, 4)) {
893 		set_bit(EFI_BOOT, &efi.flags);
894 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
895 		     EFI64_LOADER_SIGNATURE, 4)) {
896 		set_bit(EFI_BOOT, &efi.flags);
897 		set_bit(EFI_64BIT, &efi.flags);
898 	}
899 #endif
900 
901 	x86_init.oem.arch_setup();
902 
903 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
904 	e820__memory_setup();
905 	parse_setup_data();
906 
907 	copy_edd();
908 
909 	if (!boot_params.hdr.root_flags)
910 		root_mountflags &= ~MS_RDONLY;
911 	init_mm.start_code = (unsigned long) _text;
912 	init_mm.end_code = (unsigned long) _etext;
913 	init_mm.end_data = (unsigned long) _edata;
914 	init_mm.brk = _brk_end;
915 
916 	mpx_mm_init(&init_mm);
917 
918 	code_resource.start = __pa_symbol(_text);
919 	code_resource.end = __pa_symbol(_etext)-1;
920 	data_resource.start = __pa_symbol(_etext);
921 	data_resource.end = __pa_symbol(_edata)-1;
922 	bss_resource.start = __pa_symbol(__bss_start);
923 	bss_resource.end = __pa_symbol(__bss_stop)-1;
924 
925 #ifdef CONFIG_CMDLINE_BOOL
926 #ifdef CONFIG_CMDLINE_OVERRIDE
927 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
928 #else
929 	if (builtin_cmdline[0]) {
930 		/* append boot loader cmdline to builtin */
931 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
932 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
933 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
934 	}
935 #endif
936 #endif
937 
938 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
939 	*cmdline_p = command_line;
940 
941 	/*
942 	 * x86_configure_nx() is called before parse_early_param() to detect
943 	 * whether hardware doesn't support NX (so that the early EHCI debug
944 	 * console setup can safely call set_fixmap()). It may then be called
945 	 * again from within noexec_setup() during parsing early parameters
946 	 * to honor the respective command line option.
947 	 */
948 	x86_configure_nx();
949 
950 	parse_early_param();
951 
952 	if (efi_enabled(EFI_BOOT))
953 		efi_memblock_x86_reserve_range();
954 #ifdef CONFIG_MEMORY_HOTPLUG
955 	/*
956 	 * Memory used by the kernel cannot be hot-removed because Linux
957 	 * cannot migrate the kernel pages. When memory hotplug is
958 	 * enabled, we should prevent memblock from allocating memory
959 	 * for the kernel.
960 	 *
961 	 * ACPI SRAT records all hotpluggable memory ranges. But before
962 	 * SRAT is parsed, we don't know about it.
963 	 *
964 	 * The kernel image is loaded into memory at very early time. We
965 	 * cannot prevent this anyway. So on NUMA system, we set any
966 	 * node the kernel resides in as un-hotpluggable.
967 	 *
968 	 * Since on modern servers, one node could have double-digit
969 	 * gigabytes memory, we can assume the memory around the kernel
970 	 * image is also un-hotpluggable. So before SRAT is parsed, just
971 	 * allocate memory near the kernel image to try the best to keep
972 	 * the kernel away from hotpluggable memory.
973 	 */
974 	if (movable_node_is_enabled())
975 		memblock_set_bottom_up(true);
976 #endif
977 
978 	x86_report_nx();
979 
980 	/* after early param, so could get panic from serial */
981 	memblock_x86_reserve_range_setup_data();
982 
983 	if (acpi_mps_check()) {
984 #ifdef CONFIG_X86_LOCAL_APIC
985 		disable_apic = 1;
986 #endif
987 		setup_clear_cpu_cap(X86_FEATURE_APIC);
988 	}
989 
990 #ifdef CONFIG_PCI
991 	if (pci_early_dump_regs)
992 		early_dump_pci_devices();
993 #endif
994 
995 	e820__reserve_setup_data();
996 	e820__finish_early_params();
997 
998 	if (efi_enabled(EFI_BOOT))
999 		efi_init();
1000 
1001 	dmi_scan_machine();
1002 	dmi_memdev_walk();
1003 	dmi_set_dump_stack_arch_desc();
1004 
1005 	/*
1006 	 * VMware detection requires dmi to be available, so this
1007 	 * needs to be done after dmi_scan_machine(), for the boot CPU.
1008 	 */
1009 	init_hypervisor_platform();
1010 
1011 	x86_init.resources.probe_roms();
1012 
1013 	/* after parse_early_param, so could debug it */
1014 	insert_resource(&iomem_resource, &code_resource);
1015 	insert_resource(&iomem_resource, &data_resource);
1016 	insert_resource(&iomem_resource, &bss_resource);
1017 
1018 	e820_add_kernel_range();
1019 	trim_bios_range();
1020 #ifdef CONFIG_X86_32
1021 	if (ppro_with_ram_bug()) {
1022 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1023 				  E820_TYPE_RESERVED);
1024 		e820__update_table(e820_table);
1025 		printk(KERN_INFO "fixed physical RAM map:\n");
1026 		e820__print_table("bad_ppro");
1027 	}
1028 #else
1029 	early_gart_iommu_check();
1030 #endif
1031 
1032 	/*
1033 	 * partially used pages are not usable - thus
1034 	 * we are rounding upwards:
1035 	 */
1036 	max_pfn = e820__end_of_ram_pfn();
1037 
1038 	/* update e820 for memory not covered by WB MTRRs */
1039 	mtrr_bp_init();
1040 	if (mtrr_trim_uncached_memory(max_pfn))
1041 		max_pfn = e820__end_of_ram_pfn();
1042 
1043 	max_possible_pfn = max_pfn;
1044 
1045 	/*
1046 	 * This call is required when the CPU does not support PAT. If
1047 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1048 	 * effect.
1049 	 */
1050 	init_cache_modes();
1051 
1052 	/*
1053 	 * Define random base addresses for memory sections after max_pfn is
1054 	 * defined and before each memory section base is used.
1055 	 */
1056 	kernel_randomize_memory();
1057 
1058 #ifdef CONFIG_X86_32
1059 	/* max_low_pfn get updated here */
1060 	find_low_pfn_range();
1061 #else
1062 	check_x2apic();
1063 
1064 	/* How many end-of-memory variables you have, grandma! */
1065 	/* need this before calling reserve_initrd */
1066 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1067 		max_low_pfn = e820__end_of_low_ram_pfn();
1068 	else
1069 		max_low_pfn = max_pfn;
1070 
1071 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1072 #endif
1073 
1074 	/*
1075 	 * Find and reserve possible boot-time SMP configuration:
1076 	 */
1077 	find_smp_config();
1078 
1079 	reserve_ibft_region();
1080 
1081 	early_alloc_pgt_buf();
1082 
1083 	/*
1084 	 * Need to conclude brk, before e820__memblock_setup()
1085 	 *  it could use memblock_find_in_range, could overlap with
1086 	 *  brk area.
1087 	 */
1088 	reserve_brk();
1089 
1090 	cleanup_highmap();
1091 
1092 	memblock_set_current_limit(ISA_END_ADDRESS);
1093 	e820__memblock_setup();
1094 
1095 	reserve_bios_regions();
1096 
1097 	if (efi_enabled(EFI_MEMMAP)) {
1098 		efi_fake_memmap();
1099 		efi_find_mirror();
1100 		efi_esrt_init();
1101 
1102 		/*
1103 		 * The EFI specification says that boot service code won't be
1104 		 * called after ExitBootServices(). This is, in fact, a lie.
1105 		 */
1106 		efi_reserve_boot_services();
1107 	}
1108 
1109 	/* preallocate 4k for mptable mpc */
1110 	e820__memblock_alloc_reserved_mpc_new();
1111 
1112 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1113 	setup_bios_corruption_check();
1114 #endif
1115 
1116 #ifdef CONFIG_X86_32
1117 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1118 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1119 #endif
1120 
1121 	reserve_real_mode();
1122 
1123 	trim_platform_memory_ranges();
1124 	trim_low_memory_range();
1125 
1126 	init_mem_mapping();
1127 
1128 	idt_setup_early_pf();
1129 
1130 	/*
1131 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1132 	 * with the current CR4 value.  This may not be necessary, but
1133 	 * auditing all the early-boot CR4 manipulation would be needed to
1134 	 * rule it out.
1135 	 *
1136 	 * Mask off features that don't work outside long mode (just
1137 	 * PCIDE for now).
1138 	 */
1139 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1140 
1141 	memblock_set_current_limit(get_max_mapped());
1142 
1143 	/*
1144 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1145 	 */
1146 
1147 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1148 	if (init_ohci1394_dma_early)
1149 		init_ohci1394_dma_on_all_controllers();
1150 #endif
1151 	/* Allocate bigger log buffer */
1152 	setup_log_buf(1);
1153 
1154 	if (efi_enabled(EFI_BOOT)) {
1155 		switch (boot_params.secure_boot) {
1156 		case efi_secureboot_mode_disabled:
1157 			pr_info("Secure boot disabled\n");
1158 			break;
1159 		case efi_secureboot_mode_enabled:
1160 			pr_info("Secure boot enabled\n");
1161 			break;
1162 		default:
1163 			pr_info("Secure boot could not be determined\n");
1164 			break;
1165 		}
1166 	}
1167 
1168 	reserve_initrd();
1169 
1170 	acpi_table_upgrade();
1171 
1172 	vsmp_init();
1173 
1174 	io_delay_init();
1175 
1176 	early_platform_quirks();
1177 
1178 	/*
1179 	 * Parse the ACPI tables for possible boot-time SMP configuration.
1180 	 */
1181 	acpi_boot_table_init();
1182 
1183 	early_acpi_boot_init();
1184 
1185 	initmem_init();
1186 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1187 
1188 	/*
1189 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1190 	 * won't consume hotpluggable memory.
1191 	 */
1192 	reserve_crashkernel();
1193 
1194 	memblock_find_dma_reserve();
1195 
1196 #ifdef CONFIG_KVM_GUEST
1197 	kvmclock_init();
1198 #endif
1199 
1200 	tsc_early_delay_calibrate();
1201 	if (!early_xdbc_setup_hardware())
1202 		early_xdbc_register_console();
1203 
1204 	x86_init.paging.pagetable_init();
1205 
1206 	kasan_init();
1207 
1208 #ifdef CONFIG_X86_32
1209 	/* sync back kernel address range */
1210 	clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1211 			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1212 			KERNEL_PGD_PTRS);
1213 
1214 	/*
1215 	 * sync back low identity map too.  It is used for example
1216 	 * in the 32-bit EFI stub.
1217 	 */
1218 	clone_pgd_range(initial_page_table,
1219 			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1220 			min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1221 #endif
1222 
1223 	tboot_probe();
1224 
1225 	map_vsyscall();
1226 
1227 	generic_apic_probe();
1228 
1229 	early_quirks();
1230 
1231 	/*
1232 	 * Read APIC and some other early information from ACPI tables.
1233 	 */
1234 	acpi_boot_init();
1235 	sfi_init();
1236 	x86_dtb_init();
1237 
1238 	/*
1239 	 * get boot-time SMP configuration:
1240 	 */
1241 	get_smp_config();
1242 
1243 	/*
1244 	 * Systems w/o ACPI and mptables might not have it mapped the local
1245 	 * APIC yet, but prefill_possible_map() might need to access it.
1246 	 */
1247 	init_apic_mappings();
1248 
1249 	prefill_possible_map();
1250 
1251 	init_cpu_to_node();
1252 
1253 	io_apic_init_mappings();
1254 
1255 	x86_init.hyper.guest_late_init();
1256 
1257 	e820__reserve_resources();
1258 	e820__register_nosave_regions(max_low_pfn);
1259 
1260 	x86_init.resources.reserve_resources();
1261 
1262 	e820__setup_pci_gap();
1263 
1264 #ifdef CONFIG_VT
1265 #if defined(CONFIG_VGA_CONSOLE)
1266 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1267 		conswitchp = &vga_con;
1268 #elif defined(CONFIG_DUMMY_CONSOLE)
1269 	conswitchp = &dummy_con;
1270 #endif
1271 #endif
1272 	x86_init.oem.banner();
1273 
1274 	x86_init.timers.wallclock_init();
1275 
1276 	mcheck_init();
1277 
1278 	arch_init_ideal_nops();
1279 
1280 	register_refined_jiffies(CLOCK_TICK_RATE);
1281 
1282 #ifdef CONFIG_EFI
1283 	if (efi_enabled(EFI_BOOT))
1284 		efi_apply_memmap_quirks();
1285 #endif
1286 
1287 	unwind_init();
1288 }
1289 
1290 #ifdef CONFIG_X86_32
1291 
1292 static struct resource video_ram_resource = {
1293 	.name	= "Video RAM area",
1294 	.start	= 0xa0000,
1295 	.end	= 0xbffff,
1296 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1297 };
1298 
1299 void __init i386_reserve_resources(void)
1300 {
1301 	request_resource(&iomem_resource, &video_ram_resource);
1302 	reserve_standard_io_resources();
1303 }
1304 
1305 #endif /* CONFIG_X86_32 */
1306 
1307 static struct notifier_block kernel_offset_notifier = {
1308 	.notifier_call = dump_kernel_offset
1309 };
1310 
1311 static int __init register_kernel_offset_dumper(void)
1312 {
1313 	atomic_notifier_chain_register(&panic_notifier_list,
1314 					&kernel_offset_notifier);
1315 	return 0;
1316 }
1317 __initcall(register_kernel_offset_dumper);
1318 
1319 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1320 {
1321 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1322 		return;
1323 
1324 	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1325 }
1326