xref: /linux/arch/x86/kernel/setup.c (revision 058443934524590d5537a80f490267cc95a61c05)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  * This file contains the setup_arch() code, which handles the architecture-dependent
6  * parts of early kernel initialization.
7  */
8 #include <linux/acpi.h>
9 #include <linux/console.h>
10 #include <linux/crash_dump.h>
11 #include <linux/dma-map-ops.h>
12 #include <linux/dmi.h>
13 #include <linux/efi.h>
14 #include <linux/ima.h>
15 #include <linux/init_ohci1394_dma.h>
16 #include <linux/initrd.h>
17 #include <linux/iscsi_ibft.h>
18 #include <linux/memblock.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/pci.h>
21 #include <linux/root_dev.h>
22 #include <linux/hugetlb.h>
23 #include <linux/tboot.h>
24 #include <linux/usb/xhci-dbgp.h>
25 #include <linux/static_call.h>
26 #include <linux/swiotlb.h>
27 #include <linux/random.h>
28 
29 #include <uapi/linux/mount.h>
30 
31 #include <xen/xen.h>
32 
33 #include <asm/apic.h>
34 #include <asm/numa.h>
35 #include <asm/bios_ebda.h>
36 #include <asm/bugs.h>
37 #include <asm/cpu.h>
38 #include <asm/efi.h>
39 #include <asm/gart.h>
40 #include <asm/hypervisor.h>
41 #include <asm/io_apic.h>
42 #include <asm/kasan.h>
43 #include <asm/kaslr.h>
44 #include <asm/mce.h>
45 #include <asm/memtype.h>
46 #include <asm/mtrr.h>
47 #include <asm/realmode.h>
48 #include <asm/olpc_ofw.h>
49 #include <asm/pci-direct.h>
50 #include <asm/prom.h>
51 #include <asm/proto.h>
52 #include <asm/thermal.h>
53 #include <asm/unwind.h>
54 #include <asm/vsyscall.h>
55 #include <linux/vmalloc.h>
56 
57 /*
58  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
59  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
60  *
61  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
62  * represented by pfn_mapped[].
63  */
64 unsigned long max_low_pfn_mapped;
65 unsigned long max_pfn_mapped;
66 
67 #ifdef CONFIG_DMI
68 RESERVE_BRK(dmi_alloc, 65536);
69 #endif
70 
71 
72 unsigned long _brk_start = (unsigned long)__brk_base;
73 unsigned long _brk_end   = (unsigned long)__brk_base;
74 
75 struct boot_params boot_params;
76 
77 /*
78  * These are the four main kernel memory regions, we put them into
79  * the resource tree so that kdump tools and other debugging tools
80  * recover it:
81  */
82 
83 static struct resource rodata_resource = {
84 	.name	= "Kernel rodata",
85 	.start	= 0,
86 	.end	= 0,
87 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
88 };
89 
90 static struct resource data_resource = {
91 	.name	= "Kernel data",
92 	.start	= 0,
93 	.end	= 0,
94 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
95 };
96 
97 static struct resource code_resource = {
98 	.name	= "Kernel code",
99 	.start	= 0,
100 	.end	= 0,
101 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
102 };
103 
104 static struct resource bss_resource = {
105 	.name	= "Kernel bss",
106 	.start	= 0,
107 	.end	= 0,
108 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
109 };
110 
111 
112 #ifdef CONFIG_X86_32
113 /* CPU data as detected by the assembly code in head_32.S */
114 struct cpuinfo_x86 new_cpu_data;
115 
116 /* Common CPU data for all CPUs */
117 struct cpuinfo_x86 boot_cpu_data __read_mostly;
118 EXPORT_SYMBOL(boot_cpu_data);
119 
120 unsigned int def_to_bigsmp;
121 
122 struct apm_info apm_info;
123 EXPORT_SYMBOL(apm_info);
124 
125 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
126 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
127 struct ist_info ist_info;
128 EXPORT_SYMBOL(ist_info);
129 #else
130 struct ist_info ist_info;
131 #endif
132 
133 #else
134 struct cpuinfo_x86 boot_cpu_data __read_mostly;
135 EXPORT_SYMBOL(boot_cpu_data);
136 #endif
137 
138 
139 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
140 __visible unsigned long mmu_cr4_features __ro_after_init;
141 #else
142 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
143 #endif
144 
145 #ifdef CONFIG_IMA
146 static phys_addr_t ima_kexec_buffer_phys;
147 static size_t ima_kexec_buffer_size;
148 #endif
149 
150 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
151 int bootloader_type, bootloader_version;
152 
153 /*
154  * Setup options
155  */
156 struct screen_info screen_info;
157 EXPORT_SYMBOL(screen_info);
158 struct edid_info edid_info;
159 EXPORT_SYMBOL_GPL(edid_info);
160 
161 extern int root_mountflags;
162 
163 unsigned long saved_video_mode;
164 
165 #define RAMDISK_IMAGE_START_MASK	0x07FF
166 #define RAMDISK_PROMPT_FLAG		0x8000
167 #define RAMDISK_LOAD_FLAG		0x4000
168 
169 static char __initdata command_line[COMMAND_LINE_SIZE];
170 #ifdef CONFIG_CMDLINE_BOOL
171 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
172 #endif
173 
174 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
175 struct edd edd;
176 #ifdef CONFIG_EDD_MODULE
177 EXPORT_SYMBOL(edd);
178 #endif
179 /**
180  * copy_edd() - Copy the BIOS EDD information
181  *              from boot_params into a safe place.
182  *
183  */
184 static inline void __init copy_edd(void)
185 {
186      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
187 	    sizeof(edd.mbr_signature));
188      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
189      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
190      edd.edd_info_nr = boot_params.eddbuf_entries;
191 }
192 #else
193 static inline void __init copy_edd(void)
194 {
195 }
196 #endif
197 
198 void * __init extend_brk(size_t size, size_t align)
199 {
200 	size_t mask = align - 1;
201 	void *ret;
202 
203 	BUG_ON(_brk_start == 0);
204 	BUG_ON(align & mask);
205 
206 	_brk_end = (_brk_end + mask) & ~mask;
207 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
208 
209 	ret = (void *)_brk_end;
210 	_brk_end += size;
211 
212 	memset(ret, 0, size);
213 
214 	return ret;
215 }
216 
217 #ifdef CONFIG_X86_32
218 static void __init cleanup_highmap(void)
219 {
220 }
221 #endif
222 
223 static void __init reserve_brk(void)
224 {
225 	if (_brk_end > _brk_start)
226 		memblock_reserve(__pa_symbol(_brk_start),
227 				 _brk_end - _brk_start);
228 
229 	/* Mark brk area as locked down and no longer taking any
230 	   new allocations */
231 	_brk_start = 0;
232 }
233 
234 u64 relocated_ramdisk;
235 
236 #ifdef CONFIG_BLK_DEV_INITRD
237 
238 static u64 __init get_ramdisk_image(void)
239 {
240 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
241 
242 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
243 
244 	if (ramdisk_image == 0)
245 		ramdisk_image = phys_initrd_start;
246 
247 	return ramdisk_image;
248 }
249 static u64 __init get_ramdisk_size(void)
250 {
251 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
252 
253 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
254 
255 	if (ramdisk_size == 0)
256 		ramdisk_size = phys_initrd_size;
257 
258 	return ramdisk_size;
259 }
260 
261 static void __init relocate_initrd(void)
262 {
263 	/* Assume only end is not page aligned */
264 	u64 ramdisk_image = get_ramdisk_image();
265 	u64 ramdisk_size  = get_ramdisk_size();
266 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
267 
268 	/* We need to move the initrd down into directly mapped mem */
269 	relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
270 						      PFN_PHYS(max_pfn_mapped));
271 	if (!relocated_ramdisk)
272 		panic("Cannot find place for new RAMDISK of size %lld\n",
273 		      ramdisk_size);
274 
275 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
276 	initrd_end   = initrd_start + ramdisk_size;
277 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
278 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
279 
280 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
281 
282 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
283 		" [mem %#010llx-%#010llx]\n",
284 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
285 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
286 }
287 
288 static void __init early_reserve_initrd(void)
289 {
290 	/* Assume only end is not page aligned */
291 	u64 ramdisk_image = get_ramdisk_image();
292 	u64 ramdisk_size  = get_ramdisk_size();
293 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
294 
295 	if (!boot_params.hdr.type_of_loader ||
296 	    !ramdisk_image || !ramdisk_size)
297 		return;		/* No initrd provided by bootloader */
298 
299 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
300 }
301 
302 static void __init reserve_initrd(void)
303 {
304 	/* Assume only end is not page aligned */
305 	u64 ramdisk_image = get_ramdisk_image();
306 	u64 ramdisk_size  = get_ramdisk_size();
307 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
308 
309 	if (!boot_params.hdr.type_of_loader ||
310 	    !ramdisk_image || !ramdisk_size)
311 		return;		/* No initrd provided by bootloader */
312 
313 	initrd_start = 0;
314 
315 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
316 			ramdisk_end - 1);
317 
318 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
319 				PFN_DOWN(ramdisk_end))) {
320 		/* All are mapped, easy case */
321 		initrd_start = ramdisk_image + PAGE_OFFSET;
322 		initrd_end = initrd_start + ramdisk_size;
323 		return;
324 	}
325 
326 	relocate_initrd();
327 
328 	memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
329 }
330 
331 #else
332 static void __init early_reserve_initrd(void)
333 {
334 }
335 static void __init reserve_initrd(void)
336 {
337 }
338 #endif /* CONFIG_BLK_DEV_INITRD */
339 
340 static void __init add_early_ima_buffer(u64 phys_addr)
341 {
342 #ifdef CONFIG_IMA
343 	struct ima_setup_data *data;
344 
345 	data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
346 	if (!data) {
347 		pr_warn("setup: failed to memremap ima_setup_data entry\n");
348 		return;
349 	}
350 
351 	if (data->size) {
352 		memblock_reserve(data->addr, data->size);
353 		ima_kexec_buffer_phys = data->addr;
354 		ima_kexec_buffer_size = data->size;
355 	}
356 
357 	early_memunmap(data, sizeof(*data));
358 #else
359 	pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
360 #endif
361 }
362 
363 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
364 int __init ima_free_kexec_buffer(void)
365 {
366 	int rc;
367 
368 	if (!ima_kexec_buffer_size)
369 		return -ENOENT;
370 
371 	rc = memblock_phys_free(ima_kexec_buffer_phys,
372 				ima_kexec_buffer_size);
373 	if (rc)
374 		return rc;
375 
376 	ima_kexec_buffer_phys = 0;
377 	ima_kexec_buffer_size = 0;
378 
379 	return 0;
380 }
381 
382 int __init ima_get_kexec_buffer(void **addr, size_t *size)
383 {
384 	if (!ima_kexec_buffer_size)
385 		return -ENOENT;
386 
387 	*addr = __va(ima_kexec_buffer_phys);
388 	*size = ima_kexec_buffer_size;
389 
390 	return 0;
391 }
392 #endif
393 
394 static void __init parse_setup_data(void)
395 {
396 	struct setup_data *data;
397 	u64 pa_data, pa_next;
398 
399 	pa_data = boot_params.hdr.setup_data;
400 	while (pa_data) {
401 		u32 data_len, data_type;
402 
403 		data = early_memremap(pa_data, sizeof(*data));
404 		data_len = data->len + sizeof(struct setup_data);
405 		data_type = data->type;
406 		pa_next = data->next;
407 		early_memunmap(data, sizeof(*data));
408 
409 		switch (data_type) {
410 		case SETUP_E820_EXT:
411 			e820__memory_setup_extended(pa_data, data_len);
412 			break;
413 		case SETUP_DTB:
414 			add_dtb(pa_data);
415 			break;
416 		case SETUP_EFI:
417 			parse_efi_setup(pa_data, data_len);
418 			break;
419 		case SETUP_IMA:
420 			add_early_ima_buffer(pa_data);
421 			break;
422 		case SETUP_RNG_SEED:
423 			data = early_memremap(pa_data, data_len);
424 			add_bootloader_randomness(data->data, data->len);
425 			/* Zero seed for forward secrecy. */
426 			memzero_explicit(data->data, data->len);
427 			/* Zero length in case we find ourselves back here by accident. */
428 			memzero_explicit(&data->len, sizeof(data->len));
429 			early_memunmap(data, data_len);
430 			break;
431 		default:
432 			break;
433 		}
434 		pa_data = pa_next;
435 	}
436 }
437 
438 static void __init memblock_x86_reserve_range_setup_data(void)
439 {
440 	struct setup_indirect *indirect;
441 	struct setup_data *data;
442 	u64 pa_data, pa_next;
443 	u32 len;
444 
445 	pa_data = boot_params.hdr.setup_data;
446 	while (pa_data) {
447 		data = early_memremap(pa_data, sizeof(*data));
448 		if (!data) {
449 			pr_warn("setup: failed to memremap setup_data entry\n");
450 			return;
451 		}
452 
453 		len = sizeof(*data);
454 		pa_next = data->next;
455 
456 		memblock_reserve(pa_data, sizeof(*data) + data->len);
457 
458 		if (data->type == SETUP_INDIRECT) {
459 			len += data->len;
460 			early_memunmap(data, sizeof(*data));
461 			data = early_memremap(pa_data, len);
462 			if (!data) {
463 				pr_warn("setup: failed to memremap indirect setup_data\n");
464 				return;
465 			}
466 
467 			indirect = (struct setup_indirect *)data->data;
468 
469 			if (indirect->type != SETUP_INDIRECT)
470 				memblock_reserve(indirect->addr, indirect->len);
471 		}
472 
473 		pa_data = pa_next;
474 		early_memunmap(data, len);
475 	}
476 }
477 
478 /*
479  * --------- Crashkernel reservation ------------------------------
480  */
481 
482 /* 16M alignment for crash kernel regions */
483 #define CRASH_ALIGN		SZ_16M
484 
485 /*
486  * Keep the crash kernel below this limit.
487  *
488  * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
489  * due to mapping restrictions.
490  *
491  * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
492  * the upper limit of system RAM in 4-level paging mode. Since the kdump
493  * jump could be from 5-level paging to 4-level paging, the jump will fail if
494  * the kernel is put above 64 TB, and during the 1st kernel bootup there's
495  * no good way to detect the paging mode of the target kernel which will be
496  * loaded for dumping.
497  */
498 #ifdef CONFIG_X86_32
499 # define CRASH_ADDR_LOW_MAX	SZ_512M
500 # define CRASH_ADDR_HIGH_MAX	SZ_512M
501 #else
502 # define CRASH_ADDR_LOW_MAX	SZ_4G
503 # define CRASH_ADDR_HIGH_MAX	SZ_64T
504 #endif
505 
506 static int __init reserve_crashkernel_low(void)
507 {
508 #ifdef CONFIG_X86_64
509 	unsigned long long base, low_base = 0, low_size = 0;
510 	unsigned long low_mem_limit;
511 	int ret;
512 
513 	low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
514 
515 	/* crashkernel=Y,low */
516 	ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
517 	if (ret) {
518 		/*
519 		 * two parts from kernel/dma/swiotlb.c:
520 		 * -swiotlb size: user-specified with swiotlb= or default.
521 		 *
522 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
523 		 * to 8M for other buffers that may need to stay low too. Also
524 		 * make sure we allocate enough extra low memory so that we
525 		 * don't run out of DMA buffers for 32-bit devices.
526 		 */
527 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
528 	} else {
529 		/* passed with crashkernel=0,low ? */
530 		if (!low_size)
531 			return 0;
532 	}
533 
534 	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
535 	if (!low_base) {
536 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
537 		       (unsigned long)(low_size >> 20));
538 		return -ENOMEM;
539 	}
540 
541 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
542 		(unsigned long)(low_size >> 20),
543 		(unsigned long)(low_base >> 20),
544 		(unsigned long)(low_mem_limit >> 20));
545 
546 	crashk_low_res.start = low_base;
547 	crashk_low_res.end   = low_base + low_size - 1;
548 	insert_resource(&iomem_resource, &crashk_low_res);
549 #endif
550 	return 0;
551 }
552 
553 static void __init reserve_crashkernel(void)
554 {
555 	unsigned long long crash_size, crash_base, total_mem;
556 	bool high = false;
557 	int ret;
558 
559 	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
560 		return;
561 
562 	total_mem = memblock_phys_mem_size();
563 
564 	/* crashkernel=XM */
565 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
566 	if (ret != 0 || crash_size <= 0) {
567 		/* crashkernel=X,high */
568 		ret = parse_crashkernel_high(boot_command_line, total_mem,
569 					     &crash_size, &crash_base);
570 		if (ret != 0 || crash_size <= 0)
571 			return;
572 		high = true;
573 	}
574 
575 	if (xen_pv_domain()) {
576 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
577 		return;
578 	}
579 
580 	/* 0 means: find the address automatically */
581 	if (!crash_base) {
582 		/*
583 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
584 		 * crashkernel=x,high reserves memory over 4G, also allocates
585 		 * 256M extra low memory for DMA buffers and swiotlb.
586 		 * But the extra memory is not required for all machines.
587 		 * So try low memory first and fall back to high memory
588 		 * unless "crashkernel=size[KMG],high" is specified.
589 		 */
590 		if (!high)
591 			crash_base = memblock_phys_alloc_range(crash_size,
592 						CRASH_ALIGN, CRASH_ALIGN,
593 						CRASH_ADDR_LOW_MAX);
594 		if (!crash_base)
595 			crash_base = memblock_phys_alloc_range(crash_size,
596 						CRASH_ALIGN, CRASH_ALIGN,
597 						CRASH_ADDR_HIGH_MAX);
598 		if (!crash_base) {
599 			pr_info("crashkernel reservation failed - No suitable area found.\n");
600 			return;
601 		}
602 	} else {
603 		unsigned long long start;
604 
605 		start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
606 						  crash_base + crash_size);
607 		if (start != crash_base) {
608 			pr_info("crashkernel reservation failed - memory is in use.\n");
609 			return;
610 		}
611 	}
612 
613 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
614 		memblock_phys_free(crash_base, crash_size);
615 		return;
616 	}
617 
618 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
619 		(unsigned long)(crash_size >> 20),
620 		(unsigned long)(crash_base >> 20),
621 		(unsigned long)(total_mem >> 20));
622 
623 	crashk_res.start = crash_base;
624 	crashk_res.end   = crash_base + crash_size - 1;
625 	insert_resource(&iomem_resource, &crashk_res);
626 }
627 
628 static struct resource standard_io_resources[] = {
629 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
630 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 	{ .name = "pic1", .start = 0x20, .end = 0x21,
632 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
633 	{ .name = "timer0", .start = 0x40, .end = 0x43,
634 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 	{ .name = "timer1", .start = 0x50, .end = 0x53,
636 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
638 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
640 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
642 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
644 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
645 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
646 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
647 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
648 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
649 };
650 
651 void __init reserve_standard_io_resources(void)
652 {
653 	int i;
654 
655 	/* request I/O space for devices used on all i[345]86 PCs */
656 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
657 		request_resource(&ioport_resource, &standard_io_resources[i]);
658 
659 }
660 
661 static bool __init snb_gfx_workaround_needed(void)
662 {
663 #ifdef CONFIG_PCI
664 	int i;
665 	u16 vendor, devid;
666 	static const __initconst u16 snb_ids[] = {
667 		0x0102,
668 		0x0112,
669 		0x0122,
670 		0x0106,
671 		0x0116,
672 		0x0126,
673 		0x010a,
674 	};
675 
676 	/* Assume no if something weird is going on with PCI */
677 	if (!early_pci_allowed())
678 		return false;
679 
680 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
681 	if (vendor != 0x8086)
682 		return false;
683 
684 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
685 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
686 		if (devid == snb_ids[i])
687 			return true;
688 #endif
689 
690 	return false;
691 }
692 
693 /*
694  * Sandy Bridge graphics has trouble with certain ranges, exclude
695  * them from allocation.
696  */
697 static void __init trim_snb_memory(void)
698 {
699 	static const __initconst unsigned long bad_pages[] = {
700 		0x20050000,
701 		0x20110000,
702 		0x20130000,
703 		0x20138000,
704 		0x40004000,
705 	};
706 	int i;
707 
708 	if (!snb_gfx_workaround_needed())
709 		return;
710 
711 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
712 
713 	/*
714 	 * SandyBridge integrated graphics devices have a bug that prevents
715 	 * them from accessing certain memory ranges, namely anything below
716 	 * 1M and in the pages listed in bad_pages[] above.
717 	 *
718 	 * To avoid these pages being ever accessed by SNB gfx devices reserve
719 	 * bad_pages that have not already been reserved at boot time.
720 	 * All memory below the 1 MB mark is anyway reserved later during
721 	 * setup_arch(), so there is no need to reserve it here.
722 	 */
723 
724 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
725 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
726 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
727 			       bad_pages[i]);
728 	}
729 }
730 
731 static void __init trim_bios_range(void)
732 {
733 	/*
734 	 * A special case is the first 4Kb of memory;
735 	 * This is a BIOS owned area, not kernel ram, but generally
736 	 * not listed as such in the E820 table.
737 	 *
738 	 * This typically reserves additional memory (64KiB by default)
739 	 * since some BIOSes are known to corrupt low memory.  See the
740 	 * Kconfig help text for X86_RESERVE_LOW.
741 	 */
742 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
743 
744 	/*
745 	 * special case: Some BIOSes report the PC BIOS
746 	 * area (640Kb -> 1Mb) as RAM even though it is not.
747 	 * take them out.
748 	 */
749 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
750 
751 	e820__update_table(e820_table);
752 }
753 
754 /* called before trim_bios_range() to spare extra sanitize */
755 static void __init e820_add_kernel_range(void)
756 {
757 	u64 start = __pa_symbol(_text);
758 	u64 size = __pa_symbol(_end) - start;
759 
760 	/*
761 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
762 	 * attempt to fix it by adding the range. We may have a confused BIOS,
763 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
764 	 * exclude kernel range. If we really are running on top non-RAM,
765 	 * we will crash later anyways.
766 	 */
767 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
768 		return;
769 
770 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
771 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
772 	e820__range_add(start, size, E820_TYPE_RAM);
773 }
774 
775 static void __init early_reserve_memory(void)
776 {
777 	/*
778 	 * Reserve the memory occupied by the kernel between _text and
779 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
780 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
781 	 * separate memblock_reserve() or they will be discarded.
782 	 */
783 	memblock_reserve(__pa_symbol(_text),
784 			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
785 
786 	/*
787 	 * The first 4Kb of memory is a BIOS owned area, but generally it is
788 	 * not listed as such in the E820 table.
789 	 *
790 	 * Reserve the first 64K of memory since some BIOSes are known to
791 	 * corrupt low memory. After the real mode trampoline is allocated the
792 	 * rest of the memory below 640k is reserved.
793 	 *
794 	 * In addition, make sure page 0 is always reserved because on
795 	 * systems with L1TF its contents can be leaked to user processes.
796 	 */
797 	memblock_reserve(0, SZ_64K);
798 
799 	early_reserve_initrd();
800 
801 	memblock_x86_reserve_range_setup_data();
802 
803 	reserve_ibft_region();
804 	reserve_bios_regions();
805 	trim_snb_memory();
806 }
807 
808 /*
809  * Dump out kernel offset information on panic.
810  */
811 static int
812 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
813 {
814 	if (kaslr_enabled()) {
815 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
816 			 kaslr_offset(),
817 			 __START_KERNEL,
818 			 __START_KERNEL_map,
819 			 MODULES_VADDR-1);
820 	} else {
821 		pr_emerg("Kernel Offset: disabled\n");
822 	}
823 
824 	return 0;
825 }
826 
827 void x86_configure_nx(void)
828 {
829 	if (boot_cpu_has(X86_FEATURE_NX))
830 		__supported_pte_mask |= _PAGE_NX;
831 	else
832 		__supported_pte_mask &= ~_PAGE_NX;
833 }
834 
835 static void __init x86_report_nx(void)
836 {
837 	if (!boot_cpu_has(X86_FEATURE_NX)) {
838 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
839 		       "missing in CPU!\n");
840 	} else {
841 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
842 		printk(KERN_INFO "NX (Execute Disable) protection: active\n");
843 #else
844 		/* 32bit non-PAE kernel, NX cannot be used */
845 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
846 		       "cannot be enabled: non-PAE kernel!\n");
847 #endif
848 	}
849 }
850 
851 /*
852  * Determine if we were loaded by an EFI loader.  If so, then we have also been
853  * passed the efi memmap, systab, etc., so we should use these data structures
854  * for initialization.  Note, the efi init code path is determined by the
855  * global efi_enabled. This allows the same kernel image to be used on existing
856  * systems (with a traditional BIOS) as well as on EFI systems.
857  */
858 /*
859  * setup_arch - architecture-specific boot-time initializations
860  *
861  * Note: On x86_64, fixmaps are ready for use even before this is called.
862  */
863 
864 void __init setup_arch(char **cmdline_p)
865 {
866 #ifdef CONFIG_X86_32
867 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
868 
869 	/*
870 	 * copy kernel address range established so far and switch
871 	 * to the proper swapper page table
872 	 */
873 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
874 			initial_page_table + KERNEL_PGD_BOUNDARY,
875 			KERNEL_PGD_PTRS);
876 
877 	load_cr3(swapper_pg_dir);
878 	/*
879 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
880 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
881 	 * will not flush anything because the CPU quirk which clears
882 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
883 	 * load_cr3() above the TLB has been flushed already. The
884 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
885 	 * so proper operation is guaranteed.
886 	 */
887 	__flush_tlb_all();
888 #else
889 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
890 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
891 #endif
892 
893 	/*
894 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
895 	 * reserve_top(), so do this before touching the ioremap area.
896 	 */
897 	olpc_ofw_detect();
898 
899 	idt_setup_early_traps();
900 	early_cpu_init();
901 	jump_label_init();
902 	static_call_init();
903 	early_ioremap_init();
904 
905 	setup_olpc_ofw_pgd();
906 
907 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
908 	screen_info = boot_params.screen_info;
909 	edid_info = boot_params.edid_info;
910 #ifdef CONFIG_X86_32
911 	apm_info.bios = boot_params.apm_bios_info;
912 	ist_info = boot_params.ist_info;
913 #endif
914 	saved_video_mode = boot_params.hdr.vid_mode;
915 	bootloader_type = boot_params.hdr.type_of_loader;
916 	if ((bootloader_type >> 4) == 0xe) {
917 		bootloader_type &= 0xf;
918 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
919 	}
920 	bootloader_version  = bootloader_type & 0xf;
921 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
922 
923 #ifdef CONFIG_BLK_DEV_RAM
924 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
925 #endif
926 #ifdef CONFIG_EFI
927 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
928 		     EFI32_LOADER_SIGNATURE, 4)) {
929 		set_bit(EFI_BOOT, &efi.flags);
930 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
931 		     EFI64_LOADER_SIGNATURE, 4)) {
932 		set_bit(EFI_BOOT, &efi.flags);
933 		set_bit(EFI_64BIT, &efi.flags);
934 	}
935 #endif
936 
937 	x86_init.oem.arch_setup();
938 
939 	/*
940 	 * Do some memory reservations *before* memory is added to memblock, so
941 	 * memblock allocations won't overwrite it.
942 	 *
943 	 * After this point, everything still needed from the boot loader or
944 	 * firmware or kernel text should be early reserved or marked not RAM in
945 	 * e820. All other memory is free game.
946 	 *
947 	 * This call needs to happen before e820__memory_setup() which calls the
948 	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
949 	 * early reservations have happened already.
950 	 */
951 	early_reserve_memory();
952 
953 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
954 	e820__memory_setup();
955 	parse_setup_data();
956 
957 	copy_edd();
958 
959 	if (!boot_params.hdr.root_flags)
960 		root_mountflags &= ~MS_RDONLY;
961 	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
962 
963 	code_resource.start = __pa_symbol(_text);
964 	code_resource.end = __pa_symbol(_etext)-1;
965 	rodata_resource.start = __pa_symbol(__start_rodata);
966 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
967 	data_resource.start = __pa_symbol(_sdata);
968 	data_resource.end = __pa_symbol(_edata)-1;
969 	bss_resource.start = __pa_symbol(__bss_start);
970 	bss_resource.end = __pa_symbol(__bss_stop)-1;
971 
972 #ifdef CONFIG_CMDLINE_BOOL
973 #ifdef CONFIG_CMDLINE_OVERRIDE
974 	strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
975 #else
976 	if (builtin_cmdline[0]) {
977 		/* append boot loader cmdline to builtin */
978 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
979 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
980 		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
981 	}
982 #endif
983 #endif
984 
985 	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
986 	*cmdline_p = command_line;
987 
988 	/*
989 	 * x86_configure_nx() is called before parse_early_param() to detect
990 	 * whether hardware doesn't support NX (so that the early EHCI debug
991 	 * console setup can safely call set_fixmap()).
992 	 */
993 	x86_configure_nx();
994 
995 	parse_early_param();
996 
997 	if (efi_enabled(EFI_BOOT))
998 		efi_memblock_x86_reserve_range();
999 
1000 #ifdef CONFIG_MEMORY_HOTPLUG
1001 	/*
1002 	 * Memory used by the kernel cannot be hot-removed because Linux
1003 	 * cannot migrate the kernel pages. When memory hotplug is
1004 	 * enabled, we should prevent memblock from allocating memory
1005 	 * for the kernel.
1006 	 *
1007 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1008 	 * SRAT is parsed, we don't know about it.
1009 	 *
1010 	 * The kernel image is loaded into memory at very early time. We
1011 	 * cannot prevent this anyway. So on NUMA system, we set any
1012 	 * node the kernel resides in as un-hotpluggable.
1013 	 *
1014 	 * Since on modern servers, one node could have double-digit
1015 	 * gigabytes memory, we can assume the memory around the kernel
1016 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1017 	 * allocate memory near the kernel image to try the best to keep
1018 	 * the kernel away from hotpluggable memory.
1019 	 */
1020 	if (movable_node_is_enabled())
1021 		memblock_set_bottom_up(true);
1022 #endif
1023 
1024 	x86_report_nx();
1025 
1026 	if (acpi_mps_check()) {
1027 #ifdef CONFIG_X86_LOCAL_APIC
1028 		disable_apic = 1;
1029 #endif
1030 		setup_clear_cpu_cap(X86_FEATURE_APIC);
1031 	}
1032 
1033 	e820__reserve_setup_data();
1034 	e820__finish_early_params();
1035 
1036 	if (efi_enabled(EFI_BOOT))
1037 		efi_init();
1038 
1039 	dmi_setup();
1040 
1041 	/*
1042 	 * VMware detection requires dmi to be available, so this
1043 	 * needs to be done after dmi_setup(), for the boot CPU.
1044 	 */
1045 	init_hypervisor_platform();
1046 
1047 	tsc_early_init();
1048 	x86_init.resources.probe_roms();
1049 
1050 	/* after parse_early_param, so could debug it */
1051 	insert_resource(&iomem_resource, &code_resource);
1052 	insert_resource(&iomem_resource, &rodata_resource);
1053 	insert_resource(&iomem_resource, &data_resource);
1054 	insert_resource(&iomem_resource, &bss_resource);
1055 
1056 	e820_add_kernel_range();
1057 	trim_bios_range();
1058 #ifdef CONFIG_X86_32
1059 	if (ppro_with_ram_bug()) {
1060 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1061 				  E820_TYPE_RESERVED);
1062 		e820__update_table(e820_table);
1063 		printk(KERN_INFO "fixed physical RAM map:\n");
1064 		e820__print_table("bad_ppro");
1065 	}
1066 #else
1067 	early_gart_iommu_check();
1068 #endif
1069 
1070 	/*
1071 	 * partially used pages are not usable - thus
1072 	 * we are rounding upwards:
1073 	 */
1074 	max_pfn = e820__end_of_ram_pfn();
1075 
1076 	/* update e820 for memory not covered by WB MTRRs */
1077 	if (IS_ENABLED(CONFIG_MTRR))
1078 		mtrr_bp_init();
1079 	else
1080 		pat_disable("PAT support disabled because CONFIG_MTRR is disabled in the kernel.");
1081 
1082 	if (mtrr_trim_uncached_memory(max_pfn))
1083 		max_pfn = e820__end_of_ram_pfn();
1084 
1085 	max_possible_pfn = max_pfn;
1086 
1087 	/*
1088 	 * This call is required when the CPU does not support PAT. If
1089 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1090 	 * effect.
1091 	 */
1092 	init_cache_modes();
1093 
1094 	/*
1095 	 * Define random base addresses for memory sections after max_pfn is
1096 	 * defined and before each memory section base is used.
1097 	 */
1098 	kernel_randomize_memory();
1099 
1100 #ifdef CONFIG_X86_32
1101 	/* max_low_pfn get updated here */
1102 	find_low_pfn_range();
1103 #else
1104 	check_x2apic();
1105 
1106 	/* How many end-of-memory variables you have, grandma! */
1107 	/* need this before calling reserve_initrd */
1108 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1109 		max_low_pfn = e820__end_of_low_ram_pfn();
1110 	else
1111 		max_low_pfn = max_pfn;
1112 
1113 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1114 #endif
1115 
1116 	/*
1117 	 * Find and reserve possible boot-time SMP configuration:
1118 	 */
1119 	find_smp_config();
1120 
1121 	early_alloc_pgt_buf();
1122 
1123 	/*
1124 	 * Need to conclude brk, before e820__memblock_setup()
1125 	 * it could use memblock_find_in_range, could overlap with
1126 	 * brk area.
1127 	 */
1128 	reserve_brk();
1129 
1130 	cleanup_highmap();
1131 
1132 	memblock_set_current_limit(ISA_END_ADDRESS);
1133 	e820__memblock_setup();
1134 
1135 	/*
1136 	 * Needs to run after memblock setup because it needs the physical
1137 	 * memory size.
1138 	 */
1139 	sev_setup_arch();
1140 
1141 	efi_fake_memmap();
1142 	efi_find_mirror();
1143 	efi_esrt_init();
1144 	efi_mokvar_table_init();
1145 
1146 	/*
1147 	 * The EFI specification says that boot service code won't be
1148 	 * called after ExitBootServices(). This is, in fact, a lie.
1149 	 */
1150 	efi_reserve_boot_services();
1151 
1152 	/* preallocate 4k for mptable mpc */
1153 	e820__memblock_alloc_reserved_mpc_new();
1154 
1155 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1156 	setup_bios_corruption_check();
1157 #endif
1158 
1159 #ifdef CONFIG_X86_32
1160 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1161 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1162 #endif
1163 
1164 	/*
1165 	 * Find free memory for the real mode trampoline and place it there. If
1166 	 * there is not enough free memory under 1M, on EFI-enabled systems
1167 	 * there will be additional attempt to reclaim the memory for the real
1168 	 * mode trampoline at efi_free_boot_services().
1169 	 *
1170 	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1171 	 * are known to corrupt low memory and several hundred kilobytes are not
1172 	 * worth complex detection what memory gets clobbered. Windows does the
1173 	 * same thing for very similar reasons.
1174 	 *
1175 	 * Moreover, on machines with SandyBridge graphics or in setups that use
1176 	 * crashkernel the entire 1M is reserved anyway.
1177 	 */
1178 	reserve_real_mode();
1179 
1180 	init_mem_mapping();
1181 
1182 	idt_setup_early_pf();
1183 
1184 	/*
1185 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1186 	 * with the current CR4 value.  This may not be necessary, but
1187 	 * auditing all the early-boot CR4 manipulation would be needed to
1188 	 * rule it out.
1189 	 *
1190 	 * Mask off features that don't work outside long mode (just
1191 	 * PCIDE for now).
1192 	 */
1193 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1194 
1195 	memblock_set_current_limit(get_max_mapped());
1196 
1197 	/*
1198 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1199 	 */
1200 
1201 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1202 	if (init_ohci1394_dma_early)
1203 		init_ohci1394_dma_on_all_controllers();
1204 #endif
1205 	/* Allocate bigger log buffer */
1206 	setup_log_buf(1);
1207 
1208 	if (efi_enabled(EFI_BOOT)) {
1209 		switch (boot_params.secure_boot) {
1210 		case efi_secureboot_mode_disabled:
1211 			pr_info("Secure boot disabled\n");
1212 			break;
1213 		case efi_secureboot_mode_enabled:
1214 			pr_info("Secure boot enabled\n");
1215 			break;
1216 		default:
1217 			pr_info("Secure boot could not be determined\n");
1218 			break;
1219 		}
1220 	}
1221 
1222 	reserve_initrd();
1223 
1224 	acpi_table_upgrade();
1225 	/* Look for ACPI tables and reserve memory occupied by them. */
1226 	acpi_boot_table_init();
1227 
1228 	vsmp_init();
1229 
1230 	io_delay_init();
1231 
1232 	early_platform_quirks();
1233 
1234 	early_acpi_boot_init();
1235 
1236 	initmem_init();
1237 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1238 
1239 	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1240 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1241 
1242 	/*
1243 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1244 	 * won't consume hotpluggable memory.
1245 	 */
1246 	reserve_crashkernel();
1247 
1248 	memblock_find_dma_reserve();
1249 
1250 	if (!early_xdbc_setup_hardware())
1251 		early_xdbc_register_console();
1252 
1253 	x86_init.paging.pagetable_init();
1254 
1255 	kasan_init();
1256 
1257 	/*
1258 	 * Sync back kernel address range.
1259 	 *
1260 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1261 	 * this call?
1262 	 */
1263 	sync_initial_page_table();
1264 
1265 	tboot_probe();
1266 
1267 	map_vsyscall();
1268 
1269 	generic_apic_probe();
1270 
1271 	early_quirks();
1272 
1273 	/*
1274 	 * Read APIC and some other early information from ACPI tables.
1275 	 */
1276 	acpi_boot_init();
1277 	x86_dtb_init();
1278 
1279 	/*
1280 	 * get boot-time SMP configuration:
1281 	 */
1282 	get_smp_config();
1283 
1284 	/*
1285 	 * Systems w/o ACPI and mptables might not have it mapped the local
1286 	 * APIC yet, but prefill_possible_map() might need to access it.
1287 	 */
1288 	init_apic_mappings();
1289 
1290 	prefill_possible_map();
1291 
1292 	init_cpu_to_node();
1293 	init_gi_nodes();
1294 
1295 	io_apic_init_mappings();
1296 
1297 	x86_init.hyper.guest_late_init();
1298 
1299 	e820__reserve_resources();
1300 	e820__register_nosave_regions(max_pfn);
1301 
1302 	x86_init.resources.reserve_resources();
1303 
1304 	e820__setup_pci_gap();
1305 
1306 #ifdef CONFIG_VT
1307 #if defined(CONFIG_VGA_CONSOLE)
1308 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1309 		conswitchp = &vga_con;
1310 #endif
1311 #endif
1312 	x86_init.oem.banner();
1313 
1314 	x86_init.timers.wallclock_init();
1315 
1316 	/*
1317 	 * This needs to run before setup_local_APIC() which soft-disables the
1318 	 * local APIC temporarily and that masks the thermal LVT interrupt,
1319 	 * leading to softlockups on machines which have configured SMI
1320 	 * interrupt delivery.
1321 	 */
1322 	therm_lvt_init();
1323 
1324 	mcheck_init();
1325 
1326 	register_refined_jiffies(CLOCK_TICK_RATE);
1327 
1328 #ifdef CONFIG_EFI
1329 	if (efi_enabled(EFI_BOOT))
1330 		efi_apply_memmap_quirks();
1331 #endif
1332 
1333 	unwind_init();
1334 }
1335 
1336 #ifdef CONFIG_X86_32
1337 
1338 static struct resource video_ram_resource = {
1339 	.name	= "Video RAM area",
1340 	.start	= 0xa0000,
1341 	.end	= 0xbffff,
1342 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1343 };
1344 
1345 void __init i386_reserve_resources(void)
1346 {
1347 	request_resource(&iomem_resource, &video_ram_resource);
1348 	reserve_standard_io_resources();
1349 }
1350 
1351 #endif /* CONFIG_X86_32 */
1352 
1353 static struct notifier_block kernel_offset_notifier = {
1354 	.notifier_call = dump_kernel_offset
1355 };
1356 
1357 static int __init register_kernel_offset_dumper(void)
1358 {
1359 	atomic_notifier_chain_register(&panic_notifier_list,
1360 					&kernel_offset_notifier);
1361 	return 0;
1362 }
1363 __initcall(register_kernel_offset_dumper);
1364