xref: /linux/arch/x86/kernel/setup.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *
6  *  Memory region support
7  *	David Parsons <orc@pell.chi.il.us>, July-August 1999
8  *
9  *  Added E820 sanitization routine (removes overlapping memory regions);
10  *  Brian Moyle <bmoyle@mvista.com>, February 2001
11  *
12  * Moved CPU detection code to cpu/${cpu}.c
13  *    Patrick Mochel <mochel@osdl.org>, March 2002
14  *
15  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
16  *  Alex Achenbach <xela@slit.de>, December 2002.
17  *
18  */
19 
20 /*
21  * This file handles the architecture-dependent parts of initialization
22  */
23 
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/module.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53 
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61 
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67 
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 
73 #include <video/edid.h>
74 
75 #include <asm/mtrr.h>
76 #include <asm/apic.h>
77 #include <asm/realmode.h>
78 #include <asm/e820.h>
79 #include <asm/mpspec.h>
80 #include <asm/setup.h>
81 #include <asm/efi.h>
82 #include <asm/timer.h>
83 #include <asm/i8259.h>
84 #include <asm/sections.h>
85 #include <asm/io_apic.h>
86 #include <asm/ist.h>
87 #include <asm/setup_arch.h>
88 #include <asm/bios_ebda.h>
89 #include <asm/cacheflush.h>
90 #include <asm/processor.h>
91 #include <asm/bugs.h>
92 #include <asm/kasan.h>
93 
94 #include <asm/vsyscall.h>
95 #include <asm/cpu.h>
96 #include <asm/desc.h>
97 #include <asm/dma.h>
98 #include <asm/iommu.h>
99 #include <asm/gart.h>
100 #include <asm/mmu_context.h>
101 #include <asm/proto.h>
102 
103 #include <asm/paravirt.h>
104 #include <asm/hypervisor.h>
105 #include <asm/olpc_ofw.h>
106 
107 #include <asm/percpu.h>
108 #include <asm/topology.h>
109 #include <asm/apicdef.h>
110 #include <asm/amd_nb.h>
111 #include <asm/mce.h>
112 #include <asm/alternative.h>
113 #include <asm/prom.h>
114 
115 /*
116  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
117  * max_pfn_mapped:     highest direct mapped pfn over 4GB
118  *
119  * The direct mapping only covers E820_RAM regions, so the ranges and gaps are
120  * represented by pfn_mapped
121  */
122 unsigned long max_low_pfn_mapped;
123 unsigned long max_pfn_mapped;
124 
125 #ifdef CONFIG_DMI
126 RESERVE_BRK(dmi_alloc, 65536);
127 #endif
128 
129 
130 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
131 unsigned long _brk_end = (unsigned long)__brk_base;
132 
133 #ifdef CONFIG_X86_64
134 int default_cpu_present_to_apicid(int mps_cpu)
135 {
136 	return __default_cpu_present_to_apicid(mps_cpu);
137 }
138 
139 int default_check_phys_apicid_present(int phys_apicid)
140 {
141 	return __default_check_phys_apicid_present(phys_apicid);
142 }
143 #endif
144 
145 struct boot_params boot_params;
146 
147 /*
148  * Machine setup..
149  */
150 static struct resource data_resource = {
151 	.name	= "Kernel data",
152 	.start	= 0,
153 	.end	= 0,
154 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
155 };
156 
157 static struct resource code_resource = {
158 	.name	= "Kernel code",
159 	.start	= 0,
160 	.end	= 0,
161 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
162 };
163 
164 static struct resource bss_resource = {
165 	.name	= "Kernel bss",
166 	.start	= 0,
167 	.end	= 0,
168 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
169 };
170 
171 
172 #ifdef CONFIG_X86_32
173 /* cpu data as detected by the assembly code in head.S */
174 struct cpuinfo_x86 new_cpu_data = {
175 	.wp_works_ok = -1,
176 };
177 /* common cpu data for all cpus */
178 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
179 	.wp_works_ok = -1,
180 };
181 EXPORT_SYMBOL(boot_cpu_data);
182 
183 unsigned int def_to_bigsmp;
184 
185 /* for MCA, but anyone else can use it if they want */
186 unsigned int machine_id;
187 unsigned int machine_submodel_id;
188 unsigned int BIOS_revision;
189 
190 struct apm_info apm_info;
191 EXPORT_SYMBOL(apm_info);
192 
193 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
194 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
195 struct ist_info ist_info;
196 EXPORT_SYMBOL(ist_info);
197 #else
198 struct ist_info ist_info;
199 #endif
200 
201 #else
202 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
203 	.x86_phys_bits = MAX_PHYSMEM_BITS,
204 };
205 EXPORT_SYMBOL(boot_cpu_data);
206 #endif
207 
208 
209 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
210 __visible unsigned long mmu_cr4_features;
211 #else
212 __visible unsigned long mmu_cr4_features = X86_CR4_PAE;
213 #endif
214 
215 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
216 int bootloader_type, bootloader_version;
217 
218 /*
219  * Setup options
220  */
221 struct screen_info screen_info;
222 EXPORT_SYMBOL(screen_info);
223 struct edid_info edid_info;
224 EXPORT_SYMBOL_GPL(edid_info);
225 
226 extern int root_mountflags;
227 
228 unsigned long saved_video_mode;
229 
230 #define RAMDISK_IMAGE_START_MASK	0x07FF
231 #define RAMDISK_PROMPT_FLAG		0x8000
232 #define RAMDISK_LOAD_FLAG		0x4000
233 
234 static char __initdata command_line[COMMAND_LINE_SIZE];
235 #ifdef CONFIG_CMDLINE_BOOL
236 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
237 #endif
238 
239 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
240 struct edd edd;
241 #ifdef CONFIG_EDD_MODULE
242 EXPORT_SYMBOL(edd);
243 #endif
244 /**
245  * copy_edd() - Copy the BIOS EDD information
246  *              from boot_params into a safe place.
247  *
248  */
249 static inline void __init copy_edd(void)
250 {
251      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
252 	    sizeof(edd.mbr_signature));
253      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
254      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
255      edd.edd_info_nr = boot_params.eddbuf_entries;
256 }
257 #else
258 static inline void __init copy_edd(void)
259 {
260 }
261 #endif
262 
263 void * __init extend_brk(size_t size, size_t align)
264 {
265 	size_t mask = align - 1;
266 	void *ret;
267 
268 	BUG_ON(_brk_start == 0);
269 	BUG_ON(align & mask);
270 
271 	_brk_end = (_brk_end + mask) & ~mask;
272 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
273 
274 	ret = (void *)_brk_end;
275 	_brk_end += size;
276 
277 	memset(ret, 0, size);
278 
279 	return ret;
280 }
281 
282 #ifdef CONFIG_X86_32
283 static void __init cleanup_highmap(void)
284 {
285 }
286 #endif
287 
288 static void __init reserve_brk(void)
289 {
290 	if (_brk_end > _brk_start)
291 		memblock_reserve(__pa_symbol(_brk_start),
292 				 _brk_end - _brk_start);
293 
294 	/* Mark brk area as locked down and no longer taking any
295 	   new allocations */
296 	_brk_start = 0;
297 }
298 
299 u64 relocated_ramdisk;
300 
301 #ifdef CONFIG_BLK_DEV_INITRD
302 
303 static u64 __init get_ramdisk_image(void)
304 {
305 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
306 
307 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
308 
309 	return ramdisk_image;
310 }
311 static u64 __init get_ramdisk_size(void)
312 {
313 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
314 
315 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
316 
317 	return ramdisk_size;
318 }
319 
320 #define MAX_MAP_CHUNK	(NR_FIX_BTMAPS << PAGE_SHIFT)
321 static void __init relocate_initrd(void)
322 {
323 	/* Assume only end is not page aligned */
324 	u64 ramdisk_image = get_ramdisk_image();
325 	u64 ramdisk_size  = get_ramdisk_size();
326 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
327 	unsigned long slop, clen, mapaddr;
328 	char *p, *q;
329 
330 	/* We need to move the initrd down into directly mapped mem */
331 	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
332 						   area_size, PAGE_SIZE);
333 
334 	if (!relocated_ramdisk)
335 		panic("Cannot find place for new RAMDISK of size %lld\n",
336 		      ramdisk_size);
337 
338 	/* Note: this includes all the mem currently occupied by
339 	   the initrd, we rely on that fact to keep the data intact. */
340 	memblock_reserve(relocated_ramdisk, area_size);
341 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
342 	initrd_end   = initrd_start + ramdisk_size;
343 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
344 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
345 
346 	q = (char *)initrd_start;
347 
348 	/* Copy the initrd */
349 	while (ramdisk_size) {
350 		slop = ramdisk_image & ~PAGE_MASK;
351 		clen = ramdisk_size;
352 		if (clen > MAX_MAP_CHUNK-slop)
353 			clen = MAX_MAP_CHUNK-slop;
354 		mapaddr = ramdisk_image & PAGE_MASK;
355 		p = early_memremap(mapaddr, clen+slop);
356 		memcpy(q, p+slop, clen);
357 		early_memunmap(p, clen+slop);
358 		q += clen;
359 		ramdisk_image += clen;
360 		ramdisk_size  -= clen;
361 	}
362 
363 	ramdisk_image = get_ramdisk_image();
364 	ramdisk_size  = get_ramdisk_size();
365 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
366 		" [mem %#010llx-%#010llx]\n",
367 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
368 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
369 }
370 
371 static void __init early_reserve_initrd(void)
372 {
373 	/* Assume only end is not page aligned */
374 	u64 ramdisk_image = get_ramdisk_image();
375 	u64 ramdisk_size  = get_ramdisk_size();
376 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
377 
378 	if (!boot_params.hdr.type_of_loader ||
379 	    !ramdisk_image || !ramdisk_size)
380 		return;		/* No initrd provided by bootloader */
381 
382 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
383 }
384 static void __init reserve_initrd(void)
385 {
386 	/* Assume only end is not page aligned */
387 	u64 ramdisk_image = get_ramdisk_image();
388 	u64 ramdisk_size  = get_ramdisk_size();
389 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
390 	u64 mapped_size;
391 
392 	if (!boot_params.hdr.type_of_loader ||
393 	    !ramdisk_image || !ramdisk_size)
394 		return;		/* No initrd provided by bootloader */
395 
396 	initrd_start = 0;
397 
398 	mapped_size = memblock_mem_size(max_pfn_mapped);
399 	if (ramdisk_size >= (mapped_size>>1))
400 		panic("initrd too large to handle, "
401 		       "disabling initrd (%lld needed, %lld available)\n",
402 		       ramdisk_size, mapped_size>>1);
403 
404 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
405 			ramdisk_end - 1);
406 
407 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
408 				PFN_DOWN(ramdisk_end))) {
409 		/* All are mapped, easy case */
410 		initrd_start = ramdisk_image + PAGE_OFFSET;
411 		initrd_end = initrd_start + ramdisk_size;
412 		return;
413 	}
414 
415 	relocate_initrd();
416 
417 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
418 }
419 #else
420 static void __init early_reserve_initrd(void)
421 {
422 }
423 static void __init reserve_initrd(void)
424 {
425 }
426 #endif /* CONFIG_BLK_DEV_INITRD */
427 
428 static void __init parse_setup_data(void)
429 {
430 	struct setup_data *data;
431 	u64 pa_data, pa_next;
432 
433 	pa_data = boot_params.hdr.setup_data;
434 	while (pa_data) {
435 		u32 data_len, data_type;
436 
437 		data = early_memremap(pa_data, sizeof(*data));
438 		data_len = data->len + sizeof(struct setup_data);
439 		data_type = data->type;
440 		pa_next = data->next;
441 		early_memunmap(data, sizeof(*data));
442 
443 		switch (data_type) {
444 		case SETUP_E820_EXT:
445 			parse_e820_ext(pa_data, data_len);
446 			break;
447 		case SETUP_DTB:
448 			add_dtb(pa_data);
449 			break;
450 		case SETUP_EFI:
451 			parse_efi_setup(pa_data, data_len);
452 			break;
453 		default:
454 			break;
455 		}
456 		pa_data = pa_next;
457 	}
458 }
459 
460 static void __init e820_reserve_setup_data(void)
461 {
462 	struct setup_data *data;
463 	u64 pa_data;
464 
465 	pa_data = boot_params.hdr.setup_data;
466 	if (!pa_data)
467 		return;
468 
469 	while (pa_data) {
470 		data = early_memremap(pa_data, sizeof(*data));
471 		e820_update_range(pa_data, sizeof(*data)+data->len,
472 			 E820_RAM, E820_RESERVED_KERN);
473 		pa_data = data->next;
474 		early_memunmap(data, sizeof(*data));
475 	}
476 
477 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
478 	memcpy(&e820_saved, &e820, sizeof(struct e820map));
479 	printk(KERN_INFO "extended physical RAM map:\n");
480 	e820_print_map("reserve setup_data");
481 }
482 
483 static void __init memblock_x86_reserve_range_setup_data(void)
484 {
485 	struct setup_data *data;
486 	u64 pa_data;
487 
488 	pa_data = boot_params.hdr.setup_data;
489 	while (pa_data) {
490 		data = early_memremap(pa_data, sizeof(*data));
491 		memblock_reserve(pa_data, sizeof(*data) + data->len);
492 		pa_data = data->next;
493 		early_memunmap(data, sizeof(*data));
494 	}
495 }
496 
497 /*
498  * --------- Crashkernel reservation ------------------------------
499  */
500 
501 #ifdef CONFIG_KEXEC
502 
503 /*
504  * Keep the crash kernel below this limit.  On 32 bits earlier kernels
505  * would limit the kernel to the low 512 MiB due to mapping restrictions.
506  * On 64bit, old kexec-tools need to under 896MiB.
507  */
508 #ifdef CONFIG_X86_32
509 # define CRASH_KERNEL_ADDR_LOW_MAX	(512 << 20)
510 # define CRASH_KERNEL_ADDR_HIGH_MAX	(512 << 20)
511 #else
512 # define CRASH_KERNEL_ADDR_LOW_MAX	(896UL<<20)
513 # define CRASH_KERNEL_ADDR_HIGH_MAX	MAXMEM
514 #endif
515 
516 static void __init reserve_crashkernel_low(void)
517 {
518 #ifdef CONFIG_X86_64
519 	const unsigned long long alignment = 16<<20;	/* 16M */
520 	unsigned long long low_base = 0, low_size = 0;
521 	unsigned long total_low_mem;
522 	unsigned long long base;
523 	bool auto_set = false;
524 	int ret;
525 
526 	total_low_mem = memblock_mem_size(1UL<<(32-PAGE_SHIFT));
527 	/* crashkernel=Y,low */
528 	ret = parse_crashkernel_low(boot_command_line, total_low_mem,
529 						&low_size, &base);
530 	if (ret != 0) {
531 		/*
532 		 * two parts from lib/swiotlb.c:
533 		 * -swiotlb size: user-specified with swiotlb= or default.
534 		 *
535 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
536 		 * to 8M for other buffers that may need to stay low too. Also
537 		 * make sure we allocate enough extra low memory so that we
538 		 * don't run out of DMA buffers for 32-bit devices.
539 		 */
540 		low_size = max(swiotlb_size_or_default() + (8UL<<20), 256UL<<20);
541 		auto_set = true;
542 	} else {
543 		/* passed with crashkernel=0,low ? */
544 		if (!low_size)
545 			return;
546 	}
547 
548 	low_base = memblock_find_in_range(low_size, (1ULL<<32),
549 					low_size, alignment);
550 
551 	if (!low_base) {
552 		if (!auto_set)
553 			pr_info("crashkernel low reservation failed - No suitable area found.\n");
554 
555 		return;
556 	}
557 
558 	memblock_reserve(low_base, low_size);
559 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
560 			(unsigned long)(low_size >> 20),
561 			(unsigned long)(low_base >> 20),
562 			(unsigned long)(total_low_mem >> 20));
563 	crashk_low_res.start = low_base;
564 	crashk_low_res.end   = low_base + low_size - 1;
565 	insert_resource(&iomem_resource, &crashk_low_res);
566 #endif
567 }
568 
569 static void __init reserve_crashkernel(void)
570 {
571 	const unsigned long long alignment = 16<<20;	/* 16M */
572 	unsigned long long total_mem;
573 	unsigned long long crash_size, crash_base;
574 	bool high = false;
575 	int ret;
576 
577 	total_mem = memblock_phys_mem_size();
578 
579 	/* crashkernel=XM */
580 	ret = parse_crashkernel(boot_command_line, total_mem,
581 			&crash_size, &crash_base);
582 	if (ret != 0 || crash_size <= 0) {
583 		/* crashkernel=X,high */
584 		ret = parse_crashkernel_high(boot_command_line, total_mem,
585 				&crash_size, &crash_base);
586 		if (ret != 0 || crash_size <= 0)
587 			return;
588 		high = true;
589 	}
590 
591 	/* 0 means: find the address automatically */
592 	if (crash_base <= 0) {
593 		/*
594 		 *  kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
595 		 */
596 		crash_base = memblock_find_in_range(alignment,
597 					high ? CRASH_KERNEL_ADDR_HIGH_MAX :
598 					       CRASH_KERNEL_ADDR_LOW_MAX,
599 					crash_size, alignment);
600 
601 		if (!crash_base) {
602 			pr_info("crashkernel reservation failed - No suitable area found.\n");
603 			return;
604 		}
605 
606 	} else {
607 		unsigned long long start;
608 
609 		start = memblock_find_in_range(crash_base,
610 				 crash_base + crash_size, crash_size, 1<<20);
611 		if (start != crash_base) {
612 			pr_info("crashkernel reservation failed - memory is in use.\n");
613 			return;
614 		}
615 	}
616 	memblock_reserve(crash_base, crash_size);
617 
618 	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
619 			"for crashkernel (System RAM: %ldMB)\n",
620 			(unsigned long)(crash_size >> 20),
621 			(unsigned long)(crash_base >> 20),
622 			(unsigned long)(total_mem >> 20));
623 
624 	crashk_res.start = crash_base;
625 	crashk_res.end   = crash_base + crash_size - 1;
626 	insert_resource(&iomem_resource, &crashk_res);
627 
628 	if (crash_base >= (1ULL<<32))
629 		reserve_crashkernel_low();
630 }
631 #else
632 static void __init reserve_crashkernel(void)
633 {
634 }
635 #endif
636 
637 static struct resource standard_io_resources[] = {
638 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
639 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
640 	{ .name = "pic1", .start = 0x20, .end = 0x21,
641 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
642 	{ .name = "timer0", .start = 0x40, .end = 0x43,
643 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
644 	{ .name = "timer1", .start = 0x50, .end = 0x53,
645 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
646 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
647 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
648 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
649 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
650 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
651 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
652 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
653 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
654 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
655 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
656 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
657 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
658 };
659 
660 void __init reserve_standard_io_resources(void)
661 {
662 	int i;
663 
664 	/* request I/O space for devices used on all i[345]86 PCs */
665 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
666 		request_resource(&ioport_resource, &standard_io_resources[i]);
667 
668 }
669 
670 static __init void reserve_ibft_region(void)
671 {
672 	unsigned long addr, size = 0;
673 
674 	addr = find_ibft_region(&size);
675 
676 	if (size)
677 		memblock_reserve(addr, size);
678 }
679 
680 static bool __init snb_gfx_workaround_needed(void)
681 {
682 #ifdef CONFIG_PCI
683 	int i;
684 	u16 vendor, devid;
685 	static const __initconst u16 snb_ids[] = {
686 		0x0102,
687 		0x0112,
688 		0x0122,
689 		0x0106,
690 		0x0116,
691 		0x0126,
692 		0x010a,
693 	};
694 
695 	/* Assume no if something weird is going on with PCI */
696 	if (!early_pci_allowed())
697 		return false;
698 
699 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
700 	if (vendor != 0x8086)
701 		return false;
702 
703 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
704 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
705 		if (devid == snb_ids[i])
706 			return true;
707 #endif
708 
709 	return false;
710 }
711 
712 /*
713  * Sandy Bridge graphics has trouble with certain ranges, exclude
714  * them from allocation.
715  */
716 static void __init trim_snb_memory(void)
717 {
718 	static const __initconst unsigned long bad_pages[] = {
719 		0x20050000,
720 		0x20110000,
721 		0x20130000,
722 		0x20138000,
723 		0x40004000,
724 	};
725 	int i;
726 
727 	if (!snb_gfx_workaround_needed())
728 		return;
729 
730 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
731 
732 	/*
733 	 * Reserve all memory below the 1 MB mark that has not
734 	 * already been reserved.
735 	 */
736 	memblock_reserve(0, 1<<20);
737 
738 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
739 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
740 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
741 			       bad_pages[i]);
742 	}
743 }
744 
745 /*
746  * Here we put platform-specific memory range workarounds, i.e.
747  * memory known to be corrupt or otherwise in need to be reserved on
748  * specific platforms.
749  *
750  * If this gets used more widely it could use a real dispatch mechanism.
751  */
752 static void __init trim_platform_memory_ranges(void)
753 {
754 	trim_snb_memory();
755 }
756 
757 static void __init trim_bios_range(void)
758 {
759 	/*
760 	 * A special case is the first 4Kb of memory;
761 	 * This is a BIOS owned area, not kernel ram, but generally
762 	 * not listed as such in the E820 table.
763 	 *
764 	 * This typically reserves additional memory (64KiB by default)
765 	 * since some BIOSes are known to corrupt low memory.  See the
766 	 * Kconfig help text for X86_RESERVE_LOW.
767 	 */
768 	e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
769 
770 	/*
771 	 * special case: Some BIOSen report the PC BIOS
772 	 * area (640->1Mb) as ram even though it is not.
773 	 * take them out.
774 	 */
775 	e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
776 
777 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
778 }
779 
780 /* called before trim_bios_range() to spare extra sanitize */
781 static void __init e820_add_kernel_range(void)
782 {
783 	u64 start = __pa_symbol(_text);
784 	u64 size = __pa_symbol(_end) - start;
785 
786 	/*
787 	 * Complain if .text .data and .bss are not marked as E820_RAM and
788 	 * attempt to fix it by adding the range. We may have a confused BIOS,
789 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
790 	 * exclude kernel range. If we really are running on top non-RAM,
791 	 * we will crash later anyways.
792 	 */
793 	if (e820_all_mapped(start, start + size, E820_RAM))
794 		return;
795 
796 	pr_warn(".text .data .bss are not marked as E820_RAM!\n");
797 	e820_remove_range(start, size, E820_RAM, 0);
798 	e820_add_region(start, size, E820_RAM);
799 }
800 
801 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
802 
803 static int __init parse_reservelow(char *p)
804 {
805 	unsigned long long size;
806 
807 	if (!p)
808 		return -EINVAL;
809 
810 	size = memparse(p, &p);
811 
812 	if (size < 4096)
813 		size = 4096;
814 
815 	if (size > 640*1024)
816 		size = 640*1024;
817 
818 	reserve_low = size;
819 
820 	return 0;
821 }
822 
823 early_param("reservelow", parse_reservelow);
824 
825 static void __init trim_low_memory_range(void)
826 {
827 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
828 }
829 
830 /*
831  * Dump out kernel offset information on panic.
832  */
833 static int
834 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
835 {
836 	if (kaslr_enabled()) {
837 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
838 			 kaslr_offset(),
839 			 __START_KERNEL,
840 			 __START_KERNEL_map,
841 			 MODULES_VADDR-1);
842 	} else {
843 		pr_emerg("Kernel Offset: disabled\n");
844 	}
845 
846 	return 0;
847 }
848 
849 /*
850  * Determine if we were loaded by an EFI loader.  If so, then we have also been
851  * passed the efi memmap, systab, etc., so we should use these data structures
852  * for initialization.  Note, the efi init code path is determined by the
853  * global efi_enabled. This allows the same kernel image to be used on existing
854  * systems (with a traditional BIOS) as well as on EFI systems.
855  */
856 /*
857  * setup_arch - architecture-specific boot-time initializations
858  *
859  * Note: On x86_64, fixmaps are ready for use even before this is called.
860  */
861 
862 void __init setup_arch(char **cmdline_p)
863 {
864 	memblock_reserve(__pa_symbol(_text),
865 			 (unsigned long)__bss_stop - (unsigned long)_text);
866 
867 	early_reserve_initrd();
868 
869 	/*
870 	 * At this point everything still needed from the boot loader
871 	 * or BIOS or kernel text should be early reserved or marked not
872 	 * RAM in e820. All other memory is free game.
873 	 */
874 
875 #ifdef CONFIG_X86_32
876 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
877 
878 	/*
879 	 * copy kernel address range established so far and switch
880 	 * to the proper swapper page table
881 	 */
882 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
883 			initial_page_table + KERNEL_PGD_BOUNDARY,
884 			KERNEL_PGD_PTRS);
885 
886 	load_cr3(swapper_pg_dir);
887 	/*
888 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
889 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
890 	 * will not flush anything because the cpu quirk which clears
891 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
892 	 * load_cr3() above the TLB has been flushed already. The
893 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
894 	 * so proper operation is guaranteed.
895 	 */
896 	__flush_tlb_all();
897 #else
898 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
899 #endif
900 
901 	/*
902 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
903 	 * reserve_top(), so do this before touching the ioremap area.
904 	 */
905 	olpc_ofw_detect();
906 
907 	early_trap_init();
908 	early_cpu_init();
909 	early_ioremap_init();
910 
911 	setup_olpc_ofw_pgd();
912 
913 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
914 	screen_info = boot_params.screen_info;
915 	edid_info = boot_params.edid_info;
916 #ifdef CONFIG_X86_32
917 	apm_info.bios = boot_params.apm_bios_info;
918 	ist_info = boot_params.ist_info;
919 	if (boot_params.sys_desc_table.length != 0) {
920 		machine_id = boot_params.sys_desc_table.table[0];
921 		machine_submodel_id = boot_params.sys_desc_table.table[1];
922 		BIOS_revision = boot_params.sys_desc_table.table[2];
923 	}
924 #endif
925 	saved_video_mode = boot_params.hdr.vid_mode;
926 	bootloader_type = boot_params.hdr.type_of_loader;
927 	if ((bootloader_type >> 4) == 0xe) {
928 		bootloader_type &= 0xf;
929 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
930 	}
931 	bootloader_version  = bootloader_type & 0xf;
932 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
933 
934 #ifdef CONFIG_BLK_DEV_RAM
935 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
936 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
937 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
938 #endif
939 #ifdef CONFIG_EFI
940 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
941 		     EFI32_LOADER_SIGNATURE, 4)) {
942 		set_bit(EFI_BOOT, &efi.flags);
943 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
944 		     EFI64_LOADER_SIGNATURE, 4)) {
945 		set_bit(EFI_BOOT, &efi.flags);
946 		set_bit(EFI_64BIT, &efi.flags);
947 	}
948 
949 	if (efi_enabled(EFI_BOOT))
950 		efi_memblock_x86_reserve_range();
951 #endif
952 
953 	x86_init.oem.arch_setup();
954 
955 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
956 	setup_memory_map();
957 	parse_setup_data();
958 
959 	copy_edd();
960 
961 	if (!boot_params.hdr.root_flags)
962 		root_mountflags &= ~MS_RDONLY;
963 	init_mm.start_code = (unsigned long) _text;
964 	init_mm.end_code = (unsigned long) _etext;
965 	init_mm.end_data = (unsigned long) _edata;
966 	init_mm.brk = _brk_end;
967 
968 	mpx_mm_init(&init_mm);
969 
970 	code_resource.start = __pa_symbol(_text);
971 	code_resource.end = __pa_symbol(_etext)-1;
972 	data_resource.start = __pa_symbol(_etext);
973 	data_resource.end = __pa_symbol(_edata)-1;
974 	bss_resource.start = __pa_symbol(__bss_start);
975 	bss_resource.end = __pa_symbol(__bss_stop)-1;
976 
977 #ifdef CONFIG_CMDLINE_BOOL
978 #ifdef CONFIG_CMDLINE_OVERRIDE
979 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
980 #else
981 	if (builtin_cmdline[0]) {
982 		/* append boot loader cmdline to builtin */
983 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
984 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
985 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
986 	}
987 #endif
988 #endif
989 
990 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
991 	*cmdline_p = command_line;
992 
993 	/*
994 	 * x86_configure_nx() is called before parse_early_param() to detect
995 	 * whether hardware doesn't support NX (so that the early EHCI debug
996 	 * console setup can safely call set_fixmap()). It may then be called
997 	 * again from within noexec_setup() during parsing early parameters
998 	 * to honor the respective command line option.
999 	 */
1000 	x86_configure_nx();
1001 
1002 	parse_early_param();
1003 
1004 	x86_report_nx();
1005 
1006 	/* after early param, so could get panic from serial */
1007 	memblock_x86_reserve_range_setup_data();
1008 
1009 	if (acpi_mps_check()) {
1010 #ifdef CONFIG_X86_LOCAL_APIC
1011 		disable_apic = 1;
1012 #endif
1013 		setup_clear_cpu_cap(X86_FEATURE_APIC);
1014 	}
1015 
1016 #ifdef CONFIG_PCI
1017 	if (pci_early_dump_regs)
1018 		early_dump_pci_devices();
1019 #endif
1020 
1021 	/* update the e820_saved too */
1022 	e820_reserve_setup_data();
1023 	finish_e820_parsing();
1024 
1025 	if (efi_enabled(EFI_BOOT))
1026 		efi_init();
1027 
1028 	dmi_scan_machine();
1029 	dmi_memdev_walk();
1030 	dmi_set_dump_stack_arch_desc();
1031 
1032 	/*
1033 	 * VMware detection requires dmi to be available, so this
1034 	 * needs to be done after dmi_scan_machine, for the BP.
1035 	 */
1036 	init_hypervisor_platform();
1037 
1038 	x86_init.resources.probe_roms();
1039 
1040 	/* after parse_early_param, so could debug it */
1041 	insert_resource(&iomem_resource, &code_resource);
1042 	insert_resource(&iomem_resource, &data_resource);
1043 	insert_resource(&iomem_resource, &bss_resource);
1044 
1045 	e820_add_kernel_range();
1046 	trim_bios_range();
1047 #ifdef CONFIG_X86_32
1048 	if (ppro_with_ram_bug()) {
1049 		e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
1050 				  E820_RESERVED);
1051 		sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
1052 		printk(KERN_INFO "fixed physical RAM map:\n");
1053 		e820_print_map("bad_ppro");
1054 	}
1055 #else
1056 	early_gart_iommu_check();
1057 #endif
1058 
1059 	/*
1060 	 * partially used pages are not usable - thus
1061 	 * we are rounding upwards:
1062 	 */
1063 	max_pfn = e820_end_of_ram_pfn();
1064 
1065 	/* update e820 for memory not covered by WB MTRRs */
1066 	mtrr_bp_init();
1067 	if (mtrr_trim_uncached_memory(max_pfn))
1068 		max_pfn = e820_end_of_ram_pfn();
1069 
1070 #ifdef CONFIG_X86_32
1071 	/* max_low_pfn get updated here */
1072 	find_low_pfn_range();
1073 #else
1074 	check_x2apic();
1075 
1076 	/* How many end-of-memory variables you have, grandma! */
1077 	/* need this before calling reserve_initrd */
1078 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1079 		max_low_pfn = e820_end_of_low_ram_pfn();
1080 	else
1081 		max_low_pfn = max_pfn;
1082 
1083 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1084 #endif
1085 
1086 	/*
1087 	 * Find and reserve possible boot-time SMP configuration:
1088 	 */
1089 	find_smp_config();
1090 
1091 	reserve_ibft_region();
1092 
1093 	early_alloc_pgt_buf();
1094 
1095 	/*
1096 	 * Need to conclude brk, before memblock_x86_fill()
1097 	 *  it could use memblock_find_in_range, could overlap with
1098 	 *  brk area.
1099 	 */
1100 	reserve_brk();
1101 
1102 	cleanup_highmap();
1103 
1104 	memblock_set_current_limit(ISA_END_ADDRESS);
1105 	memblock_x86_fill();
1106 
1107 	if (efi_enabled(EFI_BOOT))
1108 		efi_find_mirror();
1109 
1110 	/*
1111 	 * The EFI specification says that boot service code won't be called
1112 	 * after ExitBootServices(). This is, in fact, a lie.
1113 	 */
1114 	if (efi_enabled(EFI_MEMMAP))
1115 		efi_reserve_boot_services();
1116 
1117 	/* preallocate 4k for mptable mpc */
1118 	early_reserve_e820_mpc_new();
1119 
1120 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1121 	setup_bios_corruption_check();
1122 #endif
1123 
1124 #ifdef CONFIG_X86_32
1125 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1126 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1127 #endif
1128 
1129 	reserve_real_mode();
1130 
1131 	trim_platform_memory_ranges();
1132 	trim_low_memory_range();
1133 
1134 	init_mem_mapping();
1135 
1136 	early_trap_pf_init();
1137 
1138 	setup_real_mode();
1139 
1140 	memblock_set_current_limit(get_max_mapped());
1141 
1142 	/*
1143 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1144 	 */
1145 
1146 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1147 	if (init_ohci1394_dma_early)
1148 		init_ohci1394_dma_on_all_controllers();
1149 #endif
1150 	/* Allocate bigger log buffer */
1151 	setup_log_buf(1);
1152 
1153 	reserve_initrd();
1154 
1155 #if defined(CONFIG_ACPI) && defined(CONFIG_BLK_DEV_INITRD)
1156 	acpi_initrd_override((void *)initrd_start, initrd_end - initrd_start);
1157 #endif
1158 
1159 	vsmp_init();
1160 
1161 	io_delay_init();
1162 
1163 	/*
1164 	 * Parse the ACPI tables for possible boot-time SMP configuration.
1165 	 */
1166 	acpi_boot_table_init();
1167 
1168 	early_acpi_boot_init();
1169 
1170 	initmem_init();
1171 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1172 
1173 	/*
1174 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1175 	 * won't consume hotpluggable memory.
1176 	 */
1177 	reserve_crashkernel();
1178 
1179 	memblock_find_dma_reserve();
1180 
1181 #ifdef CONFIG_KVM_GUEST
1182 	kvmclock_init();
1183 #endif
1184 
1185 	x86_init.paging.pagetable_init();
1186 
1187 	kasan_init();
1188 
1189 	if (boot_cpu_data.cpuid_level >= 0) {
1190 		/* A CPU has %cr4 if and only if it has CPUID */
1191 		mmu_cr4_features = __read_cr4();
1192 		if (trampoline_cr4_features)
1193 			*trampoline_cr4_features = mmu_cr4_features;
1194 	}
1195 
1196 #ifdef CONFIG_X86_32
1197 	/* sync back kernel address range */
1198 	clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1199 			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1200 			KERNEL_PGD_PTRS);
1201 #endif
1202 
1203 	tboot_probe();
1204 
1205 	map_vsyscall();
1206 
1207 	generic_apic_probe();
1208 
1209 	early_quirks();
1210 
1211 	/*
1212 	 * Read APIC and some other early information from ACPI tables.
1213 	 */
1214 	acpi_boot_init();
1215 	sfi_init();
1216 	x86_dtb_init();
1217 
1218 	/*
1219 	 * get boot-time SMP configuration:
1220 	 */
1221 	if (smp_found_config)
1222 		get_smp_config();
1223 
1224 	prefill_possible_map();
1225 
1226 	init_cpu_to_node();
1227 
1228 	init_apic_mappings();
1229 	io_apic_init_mappings();
1230 
1231 	kvm_guest_init();
1232 
1233 	e820_reserve_resources();
1234 	e820_mark_nosave_regions(max_low_pfn);
1235 
1236 	x86_init.resources.reserve_resources();
1237 
1238 	e820_setup_gap();
1239 
1240 #ifdef CONFIG_VT
1241 #if defined(CONFIG_VGA_CONSOLE)
1242 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1243 		conswitchp = &vga_con;
1244 #elif defined(CONFIG_DUMMY_CONSOLE)
1245 	conswitchp = &dummy_con;
1246 #endif
1247 #endif
1248 	x86_init.oem.banner();
1249 
1250 	x86_init.timers.wallclock_init();
1251 
1252 	mcheck_init();
1253 
1254 	arch_init_ideal_nops();
1255 
1256 	register_refined_jiffies(CLOCK_TICK_RATE);
1257 
1258 #ifdef CONFIG_EFI
1259 	if (efi_enabled(EFI_BOOT))
1260 		efi_apply_memmap_quirks();
1261 #endif
1262 }
1263 
1264 #ifdef CONFIG_X86_32
1265 
1266 static struct resource video_ram_resource = {
1267 	.name	= "Video RAM area",
1268 	.start	= 0xa0000,
1269 	.end	= 0xbffff,
1270 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1271 };
1272 
1273 void __init i386_reserve_resources(void)
1274 {
1275 	request_resource(&iomem_resource, &video_ram_resource);
1276 	reserve_standard_io_resources();
1277 }
1278 
1279 #endif /* CONFIG_X86_32 */
1280 
1281 static struct notifier_block kernel_offset_notifier = {
1282 	.notifier_call = dump_kernel_offset
1283 };
1284 
1285 static int __init register_kernel_offset_dumper(void)
1286 {
1287 	atomic_notifier_chain_register(&panic_notifier_list,
1288 					&kernel_offset_notifier);
1289 	return 0;
1290 }
1291 __initcall(register_kernel_offset_dumper);
1292