1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 * 7 * X86-64 port 8 * Andi Kleen. 9 * 10 * CPU hotplug support - ashok.raj@intel.com 11 */ 12 13 /* 14 * This file handles the architecture-dependent parts of process handling.. 15 */ 16 17 #include <linux/cpu.h> 18 #include <linux/errno.h> 19 #include <linux/sched.h> 20 #include <linux/fs.h> 21 #include <linux/kernel.h> 22 #include <linux/mm.h> 23 #include <linux/elfcore.h> 24 #include <linux/smp.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/module.h> 30 #include <linux/ptrace.h> 31 #include <linux/notifier.h> 32 #include <linux/kprobes.h> 33 #include <linux/kdebug.h> 34 #include <linux/prctl.h> 35 #include <linux/uaccess.h> 36 #include <linux/io.h> 37 #include <linux/ftrace.h> 38 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 #include <asm/fpu/internal.h> 42 #include <asm/mmu_context.h> 43 #include <asm/prctl.h> 44 #include <asm/desc.h> 45 #include <asm/proto.h> 46 #include <asm/ia32.h> 47 #include <asm/idle.h> 48 #include <asm/syscalls.h> 49 #include <asm/debugreg.h> 50 #include <asm/switch_to.h> 51 52 asmlinkage extern void ret_from_fork(void); 53 54 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch); 55 56 /* Prints also some state that isn't saved in the pt_regs */ 57 void __show_regs(struct pt_regs *regs, int all) 58 { 59 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; 60 unsigned long d0, d1, d2, d3, d6, d7; 61 unsigned int fsindex, gsindex; 62 unsigned int ds, cs, es; 63 64 printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip); 65 printk_address(regs->ip); 66 printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss, 67 regs->sp, regs->flags); 68 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n", 69 regs->ax, regs->bx, regs->cx); 70 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n", 71 regs->dx, regs->si, regs->di); 72 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n", 73 regs->bp, regs->r8, regs->r9); 74 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n", 75 regs->r10, regs->r11, regs->r12); 76 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n", 77 regs->r13, regs->r14, regs->r15); 78 79 asm("movl %%ds,%0" : "=r" (ds)); 80 asm("movl %%cs,%0" : "=r" (cs)); 81 asm("movl %%es,%0" : "=r" (es)); 82 asm("movl %%fs,%0" : "=r" (fsindex)); 83 asm("movl %%gs,%0" : "=r" (gsindex)); 84 85 rdmsrl(MSR_FS_BASE, fs); 86 rdmsrl(MSR_GS_BASE, gs); 87 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); 88 89 if (!all) 90 return; 91 92 cr0 = read_cr0(); 93 cr2 = read_cr2(); 94 cr3 = read_cr3(); 95 cr4 = __read_cr4(); 96 97 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", 98 fs, fsindex, gs, gsindex, shadowgs); 99 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, 100 es, cr0); 101 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, 102 cr4); 103 104 get_debugreg(d0, 0); 105 get_debugreg(d1, 1); 106 get_debugreg(d2, 2); 107 get_debugreg(d3, 3); 108 get_debugreg(d6, 6); 109 get_debugreg(d7, 7); 110 111 /* Only print out debug registers if they are in their non-default state. */ 112 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && 113 (d6 == DR6_RESERVED) && (d7 == 0x400)) 114 return; 115 116 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2); 117 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7); 118 119 } 120 121 void release_thread(struct task_struct *dead_task) 122 { 123 if (dead_task->mm) { 124 if (dead_task->mm->context.ldt) { 125 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n", 126 dead_task->comm, 127 dead_task->mm->context.ldt, 128 dead_task->mm->context.ldt->size); 129 BUG(); 130 } 131 } 132 } 133 134 static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr) 135 { 136 struct user_desc ud = { 137 .base_addr = addr, 138 .limit = 0xfffff, 139 .seg_32bit = 1, 140 .limit_in_pages = 1, 141 .useable = 1, 142 }; 143 struct desc_struct *desc = t->thread.tls_array; 144 desc += tls; 145 fill_ldt(desc, &ud); 146 } 147 148 static inline u32 read_32bit_tls(struct task_struct *t, int tls) 149 { 150 return get_desc_base(&t->thread.tls_array[tls]); 151 } 152 153 int copy_thread_tls(unsigned long clone_flags, unsigned long sp, 154 unsigned long arg, struct task_struct *p, unsigned long tls) 155 { 156 int err; 157 struct pt_regs *childregs; 158 struct task_struct *me = current; 159 160 p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE; 161 childregs = task_pt_regs(p); 162 p->thread.sp = (unsigned long) childregs; 163 set_tsk_thread_flag(p, TIF_FORK); 164 p->thread.io_bitmap_ptr = NULL; 165 166 savesegment(gs, p->thread.gsindex); 167 p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs; 168 savesegment(fs, p->thread.fsindex); 169 p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs; 170 savesegment(es, p->thread.es); 171 savesegment(ds, p->thread.ds); 172 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 173 174 if (unlikely(p->flags & PF_KTHREAD)) { 175 /* kernel thread */ 176 memset(childregs, 0, sizeof(struct pt_regs)); 177 childregs->sp = (unsigned long)childregs; 178 childregs->ss = __KERNEL_DS; 179 childregs->bx = sp; /* function */ 180 childregs->bp = arg; 181 childregs->orig_ax = -1; 182 childregs->cs = __KERNEL_CS | get_kernel_rpl(); 183 childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED; 184 return 0; 185 } 186 *childregs = *current_pt_regs(); 187 188 childregs->ax = 0; 189 if (sp) 190 childregs->sp = sp; 191 192 err = -ENOMEM; 193 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) { 194 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr, 195 IO_BITMAP_BYTES, GFP_KERNEL); 196 if (!p->thread.io_bitmap_ptr) { 197 p->thread.io_bitmap_max = 0; 198 return -ENOMEM; 199 } 200 set_tsk_thread_flag(p, TIF_IO_BITMAP); 201 } 202 203 /* 204 * Set a new TLS for the child thread? 205 */ 206 if (clone_flags & CLONE_SETTLS) { 207 #ifdef CONFIG_IA32_EMULATION 208 if (is_ia32_task()) 209 err = do_set_thread_area(p, -1, 210 (struct user_desc __user *)tls, 0); 211 else 212 #endif 213 err = do_arch_prctl(p, ARCH_SET_FS, tls); 214 if (err) 215 goto out; 216 } 217 err = 0; 218 out: 219 if (err && p->thread.io_bitmap_ptr) { 220 kfree(p->thread.io_bitmap_ptr); 221 p->thread.io_bitmap_max = 0; 222 } 223 224 return err; 225 } 226 227 static void 228 start_thread_common(struct pt_regs *regs, unsigned long new_ip, 229 unsigned long new_sp, 230 unsigned int _cs, unsigned int _ss, unsigned int _ds) 231 { 232 loadsegment(fs, 0); 233 loadsegment(es, _ds); 234 loadsegment(ds, _ds); 235 load_gs_index(0); 236 regs->ip = new_ip; 237 regs->sp = new_sp; 238 regs->cs = _cs; 239 regs->ss = _ss; 240 regs->flags = X86_EFLAGS_IF; 241 force_iret(); 242 } 243 244 void 245 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 246 { 247 start_thread_common(regs, new_ip, new_sp, 248 __USER_CS, __USER_DS, 0); 249 } 250 251 #ifdef CONFIG_IA32_EMULATION 252 void start_thread_ia32(struct pt_regs *regs, u32 new_ip, u32 new_sp) 253 { 254 start_thread_common(regs, new_ip, new_sp, 255 test_thread_flag(TIF_X32) 256 ? __USER_CS : __USER32_CS, 257 __USER_DS, __USER_DS); 258 } 259 #endif 260 261 /* 262 * switch_to(x,y) should switch tasks from x to y. 263 * 264 * This could still be optimized: 265 * - fold all the options into a flag word and test it with a single test. 266 * - could test fs/gs bitsliced 267 * 268 * Kprobes not supported here. Set the probe on schedule instead. 269 * Function graph tracer not supported too. 270 */ 271 __visible __notrace_funcgraph struct task_struct * 272 __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 273 { 274 struct thread_struct *prev = &prev_p->thread; 275 struct thread_struct *next = &next_p->thread; 276 struct fpu *prev_fpu = &prev->fpu; 277 struct fpu *next_fpu = &next->fpu; 278 int cpu = smp_processor_id(); 279 struct tss_struct *tss = &per_cpu(cpu_tss, cpu); 280 unsigned fsindex, gsindex; 281 fpu_switch_t fpu_switch; 282 283 fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu); 284 285 /* We must save %fs and %gs before load_TLS() because 286 * %fs and %gs may be cleared by load_TLS(). 287 * 288 * (e.g. xen_load_tls()) 289 */ 290 savesegment(fs, fsindex); 291 savesegment(gs, gsindex); 292 293 /* 294 * Load TLS before restoring any segments so that segment loads 295 * reference the correct GDT entries. 296 */ 297 load_TLS(next, cpu); 298 299 /* 300 * Leave lazy mode, flushing any hypercalls made here. This 301 * must be done after loading TLS entries in the GDT but before 302 * loading segments that might reference them, and and it must 303 * be done before fpu__restore(), so the TS bit is up to 304 * date. 305 */ 306 arch_end_context_switch(next_p); 307 308 /* Switch DS and ES. 309 * 310 * Reading them only returns the selectors, but writing them (if 311 * nonzero) loads the full descriptor from the GDT or LDT. The 312 * LDT for next is loaded in switch_mm, and the GDT is loaded 313 * above. 314 * 315 * We therefore need to write new values to the segment 316 * registers on every context switch unless both the new and old 317 * values are zero. 318 * 319 * Note that we don't need to do anything for CS and SS, as 320 * those are saved and restored as part of pt_regs. 321 */ 322 savesegment(es, prev->es); 323 if (unlikely(next->es | prev->es)) 324 loadsegment(es, next->es); 325 326 savesegment(ds, prev->ds); 327 if (unlikely(next->ds | prev->ds)) 328 loadsegment(ds, next->ds); 329 330 /* 331 * Switch FS and GS. 332 * 333 * These are even more complicated than FS and GS: they have 334 * 64-bit bases are that controlled by arch_prctl. Those bases 335 * only differ from the values in the GDT or LDT if the selector 336 * is 0. 337 * 338 * Loading the segment register resets the hidden base part of 339 * the register to 0 or the value from the GDT / LDT. If the 340 * next base address zero, writing 0 to the segment register is 341 * much faster than using wrmsr to explicitly zero the base. 342 * 343 * The thread_struct.fs and thread_struct.gs values are 0 344 * if the fs and gs bases respectively are not overridden 345 * from the values implied by fsindex and gsindex. They 346 * are nonzero, and store the nonzero base addresses, if 347 * the bases are overridden. 348 * 349 * (fs != 0 && fsindex != 0) || (gs != 0 && gsindex != 0) should 350 * be impossible. 351 * 352 * Therefore we need to reload the segment registers if either 353 * the old or new selector is nonzero, and we need to override 354 * the base address if next thread expects it to be overridden. 355 * 356 * This code is unnecessarily slow in the case where the old and 357 * new indexes are zero and the new base is nonzero -- it will 358 * unnecessarily write 0 to the selector before writing the new 359 * base address. 360 * 361 * Note: This all depends on arch_prctl being the only way that 362 * user code can override the segment base. Once wrfsbase and 363 * wrgsbase are enabled, most of this code will need to change. 364 */ 365 if (unlikely(fsindex | next->fsindex | prev->fs)) { 366 loadsegment(fs, next->fsindex); 367 368 /* 369 * If user code wrote a nonzero value to FS, then it also 370 * cleared the overridden base address. 371 * 372 * XXX: if user code wrote 0 to FS and cleared the base 373 * address itself, we won't notice and we'll incorrectly 374 * restore the prior base address next time we reschdule 375 * the process. 376 */ 377 if (fsindex) 378 prev->fs = 0; 379 } 380 if (next->fs) 381 wrmsrl(MSR_FS_BASE, next->fs); 382 prev->fsindex = fsindex; 383 384 if (unlikely(gsindex | next->gsindex | prev->gs)) { 385 load_gs_index(next->gsindex); 386 387 /* This works (and fails) the same way as fsindex above. */ 388 if (gsindex) 389 prev->gs = 0; 390 } 391 if (next->gs) 392 wrmsrl(MSR_KERNEL_GS_BASE, next->gs); 393 prev->gsindex = gsindex; 394 395 switch_fpu_finish(next_fpu, fpu_switch); 396 397 /* 398 * Switch the PDA and FPU contexts. 399 */ 400 this_cpu_write(current_task, next_p); 401 402 /* 403 * If it were not for PREEMPT_ACTIVE we could guarantee that the 404 * preempt_count of all tasks was equal here and this would not be 405 * needed. 406 */ 407 task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count); 408 this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count); 409 410 /* Reload esp0 and ss1. This changes current_thread_info(). */ 411 load_sp0(tss, next); 412 413 /* 414 * Now maybe reload the debug registers and handle I/O bitmaps 415 */ 416 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT || 417 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV)) 418 __switch_to_xtra(prev_p, next_p, tss); 419 420 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { 421 /* 422 * AMD CPUs have a misfeature: SYSRET sets the SS selector but 423 * does not update the cached descriptor. As a result, if we 424 * do SYSRET while SS is NULL, we'll end up in user mode with 425 * SS apparently equal to __USER_DS but actually unusable. 426 * 427 * The straightforward workaround would be to fix it up just 428 * before SYSRET, but that would slow down the system call 429 * fast paths. Instead, we ensure that SS is never NULL in 430 * system call context. We do this by replacing NULL SS 431 * selectors at every context switch. SYSCALL sets up a valid 432 * SS, so the only way to get NULL is to re-enter the kernel 433 * from CPL 3 through an interrupt. Since that can't happen 434 * in the same task as a running syscall, we are guaranteed to 435 * context switch between every interrupt vector entry and a 436 * subsequent SYSRET. 437 * 438 * We read SS first because SS reads are much faster than 439 * writes. Out of caution, we force SS to __KERNEL_DS even if 440 * it previously had a different non-NULL value. 441 */ 442 unsigned short ss_sel; 443 savesegment(ss, ss_sel); 444 if (ss_sel != __KERNEL_DS) 445 loadsegment(ss, __KERNEL_DS); 446 } 447 448 return prev_p; 449 } 450 451 void set_personality_64bit(void) 452 { 453 /* inherit personality from parent */ 454 455 /* Make sure to be in 64bit mode */ 456 clear_thread_flag(TIF_IA32); 457 clear_thread_flag(TIF_ADDR32); 458 clear_thread_flag(TIF_X32); 459 460 /* Ensure the corresponding mm is not marked. */ 461 if (current->mm) 462 current->mm->context.ia32_compat = 0; 463 464 /* TBD: overwrites user setup. Should have two bits. 465 But 64bit processes have always behaved this way, 466 so it's not too bad. The main problem is just that 467 32bit childs are affected again. */ 468 current->personality &= ~READ_IMPLIES_EXEC; 469 } 470 471 void set_personality_ia32(bool x32) 472 { 473 /* inherit personality from parent */ 474 475 /* Make sure to be in 32bit mode */ 476 set_thread_flag(TIF_ADDR32); 477 478 /* Mark the associated mm as containing 32-bit tasks. */ 479 if (x32) { 480 clear_thread_flag(TIF_IA32); 481 set_thread_flag(TIF_X32); 482 if (current->mm) 483 current->mm->context.ia32_compat = TIF_X32; 484 current->personality &= ~READ_IMPLIES_EXEC; 485 /* is_compat_task() uses the presence of the x32 486 syscall bit flag to determine compat status */ 487 current_thread_info()->status &= ~TS_COMPAT; 488 } else { 489 set_thread_flag(TIF_IA32); 490 clear_thread_flag(TIF_X32); 491 if (current->mm) 492 current->mm->context.ia32_compat = TIF_IA32; 493 current->personality |= force_personality32; 494 /* Prepare the first "return" to user space */ 495 current_thread_info()->status |= TS_COMPAT; 496 } 497 } 498 EXPORT_SYMBOL_GPL(set_personality_ia32); 499 500 unsigned long get_wchan(struct task_struct *p) 501 { 502 unsigned long stack; 503 u64 fp, ip; 504 int count = 0; 505 506 if (!p || p == current || p->state == TASK_RUNNING) 507 return 0; 508 stack = (unsigned long)task_stack_page(p); 509 if (p->thread.sp < stack || p->thread.sp >= stack+THREAD_SIZE) 510 return 0; 511 fp = *(u64 *)(p->thread.sp); 512 do { 513 if (fp < (unsigned long)stack || 514 fp >= (unsigned long)stack+THREAD_SIZE) 515 return 0; 516 ip = *(u64 *)(fp+8); 517 if (!in_sched_functions(ip)) 518 return ip; 519 fp = *(u64 *)fp; 520 } while (count++ < 16); 521 return 0; 522 } 523 524 long do_arch_prctl(struct task_struct *task, int code, unsigned long addr) 525 { 526 int ret = 0; 527 int doit = task == current; 528 int cpu; 529 530 switch (code) { 531 case ARCH_SET_GS: 532 if (addr >= TASK_SIZE_OF(task)) 533 return -EPERM; 534 cpu = get_cpu(); 535 /* handle small bases via the GDT because that's faster to 536 switch. */ 537 if (addr <= 0xffffffff) { 538 set_32bit_tls(task, GS_TLS, addr); 539 if (doit) { 540 load_TLS(&task->thread, cpu); 541 load_gs_index(GS_TLS_SEL); 542 } 543 task->thread.gsindex = GS_TLS_SEL; 544 task->thread.gs = 0; 545 } else { 546 task->thread.gsindex = 0; 547 task->thread.gs = addr; 548 if (doit) { 549 load_gs_index(0); 550 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr); 551 } 552 } 553 put_cpu(); 554 break; 555 case ARCH_SET_FS: 556 /* Not strictly needed for fs, but do it for symmetry 557 with gs */ 558 if (addr >= TASK_SIZE_OF(task)) 559 return -EPERM; 560 cpu = get_cpu(); 561 /* handle small bases via the GDT because that's faster to 562 switch. */ 563 if (addr <= 0xffffffff) { 564 set_32bit_tls(task, FS_TLS, addr); 565 if (doit) { 566 load_TLS(&task->thread, cpu); 567 loadsegment(fs, FS_TLS_SEL); 568 } 569 task->thread.fsindex = FS_TLS_SEL; 570 task->thread.fs = 0; 571 } else { 572 task->thread.fsindex = 0; 573 task->thread.fs = addr; 574 if (doit) { 575 /* set the selector to 0 to not confuse 576 __switch_to */ 577 loadsegment(fs, 0); 578 ret = wrmsrl_safe(MSR_FS_BASE, addr); 579 } 580 } 581 put_cpu(); 582 break; 583 case ARCH_GET_FS: { 584 unsigned long base; 585 if (task->thread.fsindex == FS_TLS_SEL) 586 base = read_32bit_tls(task, FS_TLS); 587 else if (doit) 588 rdmsrl(MSR_FS_BASE, base); 589 else 590 base = task->thread.fs; 591 ret = put_user(base, (unsigned long __user *)addr); 592 break; 593 } 594 case ARCH_GET_GS: { 595 unsigned long base; 596 unsigned gsindex; 597 if (task->thread.gsindex == GS_TLS_SEL) 598 base = read_32bit_tls(task, GS_TLS); 599 else if (doit) { 600 savesegment(gs, gsindex); 601 if (gsindex) 602 rdmsrl(MSR_KERNEL_GS_BASE, base); 603 else 604 base = task->thread.gs; 605 } else 606 base = task->thread.gs; 607 ret = put_user(base, (unsigned long __user *)addr); 608 break; 609 } 610 611 default: 612 ret = -EINVAL; 613 break; 614 } 615 616 return ret; 617 } 618 619 long sys_arch_prctl(int code, unsigned long addr) 620 { 621 return do_arch_prctl(current, code, addr); 622 } 623 624 unsigned long KSTK_ESP(struct task_struct *task) 625 { 626 return task_pt_regs(task)->sp; 627 } 628