xref: /linux/arch/x86/kernel/process_64.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  *
8  *  X86-64 port
9  *	Andi Kleen.
10  *
11  *	CPU hotplug support - ashok.raj@intel.com
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of process handling..
16  */
17 
18 #include <linux/cpu.h>
19 #include <linux/errno.h>
20 #include <linux/sched.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/fs.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/elfcore.h>
27 #include <linux/smp.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/export.h>
33 #include <linux/ptrace.h>
34 #include <linux/notifier.h>
35 #include <linux/kprobes.h>
36 #include <linux/kdebug.h>
37 #include <linux/prctl.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/ftrace.h>
41 #include <linux/syscalls.h>
42 #include <linux/iommu.h>
43 
44 #include <asm/processor.h>
45 #include <asm/pkru.h>
46 #include <asm/fpu/sched.h>
47 #include <asm/mmu_context.h>
48 #include <asm/prctl.h>
49 #include <asm/desc.h>
50 #include <asm/proto.h>
51 #include <asm/ia32.h>
52 #include <asm/debugreg.h>
53 #include <asm/switch_to.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/vdso.h>
56 #include <asm/resctrl.h>
57 #include <asm/unistd.h>
58 #include <asm/fsgsbase.h>
59 #include <asm/fred.h>
60 #ifdef CONFIG_IA32_EMULATION
61 /* Not included via unistd.h */
62 #include <asm/unistd_32_ia32.h>
63 #endif
64 
65 #include "process.h"
66 
67 /* Prints also some state that isn't saved in the pt_regs */
68 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
69 		 const char *log_lvl)
70 {
71 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
72 	unsigned long d0, d1, d2, d3, d6, d7;
73 	unsigned int fsindex, gsindex;
74 	unsigned int ds, es;
75 
76 	show_iret_regs(regs, log_lvl);
77 
78 	if (regs->orig_ax != -1)
79 		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
80 	else
81 		pr_cont("\n");
82 
83 	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
84 	       log_lvl, regs->ax, regs->bx, regs->cx);
85 	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
86 	       log_lvl, regs->dx, regs->si, regs->di);
87 	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
88 	       log_lvl, regs->bp, regs->r8, regs->r9);
89 	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
90 	       log_lvl, regs->r10, regs->r11, regs->r12);
91 	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
92 	       log_lvl, regs->r13, regs->r14, regs->r15);
93 
94 	if (mode == SHOW_REGS_SHORT)
95 		return;
96 
97 	if (mode == SHOW_REGS_USER) {
98 		rdmsrl(MSR_FS_BASE, fs);
99 		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
100 		printk("%sFS:  %016lx GS:  %016lx\n",
101 		       log_lvl, fs, shadowgs);
102 		return;
103 	}
104 
105 	asm("movl %%ds,%0" : "=r" (ds));
106 	asm("movl %%es,%0" : "=r" (es));
107 	asm("movl %%fs,%0" : "=r" (fsindex));
108 	asm("movl %%gs,%0" : "=r" (gsindex));
109 
110 	rdmsrl(MSR_FS_BASE, fs);
111 	rdmsrl(MSR_GS_BASE, gs);
112 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
113 
114 	cr0 = read_cr0();
115 	cr2 = read_cr2();
116 	cr3 = __read_cr3();
117 	cr4 = __read_cr4();
118 
119 	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
120 	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
121 	printk("%sCS:  %04x DS: %04x ES: %04x CR0: %016lx\n",
122 		log_lvl, regs->cs, ds, es, cr0);
123 	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
124 		log_lvl, cr2, cr3, cr4);
125 
126 	get_debugreg(d0, 0);
127 	get_debugreg(d1, 1);
128 	get_debugreg(d2, 2);
129 	get_debugreg(d3, 3);
130 	get_debugreg(d6, 6);
131 	get_debugreg(d7, 7);
132 
133 	/* Only print out debug registers if they are in their non-default state. */
134 	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
135 	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
136 		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
137 		       log_lvl, d0, d1, d2);
138 		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
139 		       log_lvl, d3, d6, d7);
140 	}
141 
142 	if (cr4 & X86_CR4_PKE)
143 		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
144 }
145 
146 void release_thread(struct task_struct *dead_task)
147 {
148 	WARN_ON(dead_task->mm);
149 }
150 
151 enum which_selector {
152 	FS,
153 	GS
154 };
155 
156 /*
157  * Out of line to be protected from kprobes and tracing. If this would be
158  * traced or probed than any access to a per CPU variable happens with
159  * the wrong GS.
160  *
161  * It is not used on Xen paravirt. When paravirt support is needed, it
162  * needs to be renamed with native_ prefix.
163  */
164 static noinstr unsigned long __rdgsbase_inactive(void)
165 {
166 	unsigned long gsbase;
167 
168 	lockdep_assert_irqs_disabled();
169 
170 	/*
171 	 * SWAPGS is no longer needed thus NOT allowed with FRED because
172 	 * FRED transitions ensure that an operating system can _always_
173 	 * operate with its own GS base address:
174 	 * - For events that occur in ring 3, FRED event delivery swaps
175 	 *   the GS base address with the IA32_KERNEL_GS_BASE MSR.
176 	 * - ERETU (the FRED transition that returns to ring 3) also swaps
177 	 *   the GS base address with the IA32_KERNEL_GS_BASE MSR.
178 	 *
179 	 * And the operating system can still setup the GS segment for a
180 	 * user thread without the need of loading a user thread GS with:
181 	 * - Using LKGS, available with FRED, to modify other attributes
182 	 *   of the GS segment without compromising its ability always to
183 	 *   operate with its own GS base address.
184 	 * - Accessing the GS segment base address for a user thread as
185 	 *   before using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR.
186 	 *
187 	 * Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE
188 	 * MSR instead of the GS segment’s descriptor cache. As such, the
189 	 * operating system never changes its runtime GS base address.
190 	 */
191 	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
192 	    !cpu_feature_enabled(X86_FEATURE_XENPV)) {
193 		native_swapgs();
194 		gsbase = rdgsbase();
195 		native_swapgs();
196 	} else {
197 		instrumentation_begin();
198 		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
199 		instrumentation_end();
200 	}
201 
202 	return gsbase;
203 }
204 
205 /*
206  * Out of line to be protected from kprobes and tracing. If this would be
207  * traced or probed than any access to a per CPU variable happens with
208  * the wrong GS.
209  *
210  * It is not used on Xen paravirt. When paravirt support is needed, it
211  * needs to be renamed with native_ prefix.
212  */
213 static noinstr void __wrgsbase_inactive(unsigned long gsbase)
214 {
215 	lockdep_assert_irqs_disabled();
216 
217 	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
218 	    !cpu_feature_enabled(X86_FEATURE_XENPV)) {
219 		native_swapgs();
220 		wrgsbase(gsbase);
221 		native_swapgs();
222 	} else {
223 		instrumentation_begin();
224 		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
225 		instrumentation_end();
226 	}
227 }
228 
229 /*
230  * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
231  * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
232  * It's forcibly inlined because it'll generate better code and this function
233  * is hot.
234  */
235 static __always_inline void save_base_legacy(struct task_struct *prev_p,
236 					     unsigned short selector,
237 					     enum which_selector which)
238 {
239 	if (likely(selector == 0)) {
240 		/*
241 		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
242 		 * be the pre-existing saved base or it could be zero.  On AMD
243 		 * (with X86_BUG_NULL_SEG), the segment base could be almost
244 		 * anything.
245 		 *
246 		 * This branch is very hot (it's hit twice on almost every
247 		 * context switch between 64-bit programs), and avoiding
248 		 * the RDMSR helps a lot, so we just assume that whatever
249 		 * value is already saved is correct.  This matches historical
250 		 * Linux behavior, so it won't break existing applications.
251 		 *
252 		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
253 		 * report that the base is zero, it needs to actually be zero:
254 		 * see the corresponding logic in load_seg_legacy.
255 		 */
256 	} else {
257 		/*
258 		 * If the selector is 1, 2, or 3, then the base is zero on
259 		 * !X86_BUG_NULL_SEG CPUs and could be anything on
260 		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
261 		 * has never attempted to preserve the base across context
262 		 * switches.
263 		 *
264 		 * If selector > 3, then it refers to a real segment, and
265 		 * saving the base isn't necessary.
266 		 */
267 		if (which == FS)
268 			prev_p->thread.fsbase = 0;
269 		else
270 			prev_p->thread.gsbase = 0;
271 	}
272 }
273 
274 static __always_inline void save_fsgs(struct task_struct *task)
275 {
276 	savesegment(fs, task->thread.fsindex);
277 	savesegment(gs, task->thread.gsindex);
278 	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
279 		/*
280 		 * If FSGSBASE is enabled, we can't make any useful guesses
281 		 * about the base, and user code expects us to save the current
282 		 * value.  Fortunately, reading the base directly is efficient.
283 		 */
284 		task->thread.fsbase = rdfsbase();
285 		task->thread.gsbase = __rdgsbase_inactive();
286 	} else {
287 		save_base_legacy(task, task->thread.fsindex, FS);
288 		save_base_legacy(task, task->thread.gsindex, GS);
289 	}
290 }
291 
292 /*
293  * While a process is running,current->thread.fsbase and current->thread.gsbase
294  * may not match the corresponding CPU registers (see save_base_legacy()).
295  */
296 void current_save_fsgs(void)
297 {
298 	unsigned long flags;
299 
300 	/* Interrupts need to be off for FSGSBASE */
301 	local_irq_save(flags);
302 	save_fsgs(current);
303 	local_irq_restore(flags);
304 }
305 #if IS_ENABLED(CONFIG_KVM)
306 EXPORT_SYMBOL_GPL(current_save_fsgs);
307 #endif
308 
309 static __always_inline void loadseg(enum which_selector which,
310 				    unsigned short sel)
311 {
312 	if (which == FS)
313 		loadsegment(fs, sel);
314 	else
315 		load_gs_index(sel);
316 }
317 
318 static __always_inline void load_seg_legacy(unsigned short prev_index,
319 					    unsigned long prev_base,
320 					    unsigned short next_index,
321 					    unsigned long next_base,
322 					    enum which_selector which)
323 {
324 	if (likely(next_index <= 3)) {
325 		/*
326 		 * The next task is using 64-bit TLS, is not using this
327 		 * segment at all, or is having fun with arcane CPU features.
328 		 */
329 		if (next_base == 0) {
330 			/*
331 			 * Nasty case: on AMD CPUs, we need to forcibly zero
332 			 * the base.
333 			 */
334 			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
335 				loadseg(which, __USER_DS);
336 				loadseg(which, next_index);
337 			} else {
338 				/*
339 				 * We could try to exhaustively detect cases
340 				 * under which we can skip the segment load,
341 				 * but there's really only one case that matters
342 				 * for performance: if both the previous and
343 				 * next states are fully zeroed, we can skip
344 				 * the load.
345 				 *
346 				 * (This assumes that prev_base == 0 has no
347 				 * false positives.  This is the case on
348 				 * Intel-style CPUs.)
349 				 */
350 				if (likely(prev_index | next_index | prev_base))
351 					loadseg(which, next_index);
352 			}
353 		} else {
354 			if (prev_index != next_index)
355 				loadseg(which, next_index);
356 			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
357 			       next_base);
358 		}
359 	} else {
360 		/*
361 		 * The next task is using a real segment.  Loading the selector
362 		 * is sufficient.
363 		 */
364 		loadseg(which, next_index);
365 	}
366 }
367 
368 /*
369  * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
370  * is not XSTATE managed on context switch because that would require a
371  * lookup in the task's FPU xsave buffer and require to keep that updated
372  * in various places.
373  */
374 static __always_inline void x86_pkru_load(struct thread_struct *prev,
375 					  struct thread_struct *next)
376 {
377 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
378 		return;
379 
380 	/* Stash the prev task's value: */
381 	prev->pkru = rdpkru();
382 
383 	/*
384 	 * PKRU writes are slightly expensive.  Avoid them when not
385 	 * strictly necessary:
386 	 */
387 	if (prev->pkru != next->pkru)
388 		wrpkru(next->pkru);
389 }
390 
391 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
392 					      struct thread_struct *next)
393 {
394 	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
395 		/* Update the FS and GS selectors if they could have changed. */
396 		if (unlikely(prev->fsindex || next->fsindex))
397 			loadseg(FS, next->fsindex);
398 		if (unlikely(prev->gsindex || next->gsindex))
399 			loadseg(GS, next->gsindex);
400 
401 		/* Update the bases. */
402 		wrfsbase(next->fsbase);
403 		__wrgsbase_inactive(next->gsbase);
404 	} else {
405 		load_seg_legacy(prev->fsindex, prev->fsbase,
406 				next->fsindex, next->fsbase, FS);
407 		load_seg_legacy(prev->gsindex, prev->gsbase,
408 				next->gsindex, next->gsbase, GS);
409 	}
410 }
411 
412 unsigned long x86_fsgsbase_read_task(struct task_struct *task,
413 				     unsigned short selector)
414 {
415 	unsigned short idx = selector >> 3;
416 	unsigned long base;
417 
418 	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
419 		if (unlikely(idx >= GDT_ENTRIES))
420 			return 0;
421 
422 		/*
423 		 * There are no user segments in the GDT with nonzero bases
424 		 * other than the TLS segments.
425 		 */
426 		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
427 			return 0;
428 
429 		idx -= GDT_ENTRY_TLS_MIN;
430 		base = get_desc_base(&task->thread.tls_array[idx]);
431 	} else {
432 #ifdef CONFIG_MODIFY_LDT_SYSCALL
433 		struct ldt_struct *ldt;
434 
435 		/*
436 		 * If performance here mattered, we could protect the LDT
437 		 * with RCU.  This is a slow path, though, so we can just
438 		 * take the mutex.
439 		 */
440 		mutex_lock(&task->mm->context.lock);
441 		ldt = task->mm->context.ldt;
442 		if (unlikely(!ldt || idx >= ldt->nr_entries))
443 			base = 0;
444 		else
445 			base = get_desc_base(ldt->entries + idx);
446 		mutex_unlock(&task->mm->context.lock);
447 #else
448 		base = 0;
449 #endif
450 	}
451 
452 	return base;
453 }
454 
455 unsigned long x86_gsbase_read_cpu_inactive(void)
456 {
457 	unsigned long gsbase;
458 
459 	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
460 		unsigned long flags;
461 
462 		local_irq_save(flags);
463 		gsbase = __rdgsbase_inactive();
464 		local_irq_restore(flags);
465 	} else {
466 		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
467 	}
468 
469 	return gsbase;
470 }
471 
472 void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
473 {
474 	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
475 		unsigned long flags;
476 
477 		local_irq_save(flags);
478 		__wrgsbase_inactive(gsbase);
479 		local_irq_restore(flags);
480 	} else {
481 		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
482 	}
483 }
484 
485 unsigned long x86_fsbase_read_task(struct task_struct *task)
486 {
487 	unsigned long fsbase;
488 
489 	if (task == current)
490 		fsbase = x86_fsbase_read_cpu();
491 	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
492 		 (task->thread.fsindex == 0))
493 		fsbase = task->thread.fsbase;
494 	else
495 		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
496 
497 	return fsbase;
498 }
499 
500 unsigned long x86_gsbase_read_task(struct task_struct *task)
501 {
502 	unsigned long gsbase;
503 
504 	if (task == current)
505 		gsbase = x86_gsbase_read_cpu_inactive();
506 	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
507 		 (task->thread.gsindex == 0))
508 		gsbase = task->thread.gsbase;
509 	else
510 		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
511 
512 	return gsbase;
513 }
514 
515 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
516 {
517 	WARN_ON_ONCE(task == current);
518 
519 	task->thread.fsbase = fsbase;
520 }
521 
522 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
523 {
524 	WARN_ON_ONCE(task == current);
525 
526 	task->thread.gsbase = gsbase;
527 }
528 
529 static void
530 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
531 		    unsigned long new_sp,
532 		    u16 _cs, u16 _ss, u16 _ds)
533 {
534 	WARN_ON_ONCE(regs != current_pt_regs());
535 
536 	if (static_cpu_has(X86_BUG_NULL_SEG)) {
537 		/* Loading zero below won't clear the base. */
538 		loadsegment(fs, __USER_DS);
539 		load_gs_index(__USER_DS);
540 	}
541 
542 	reset_thread_features();
543 
544 	loadsegment(fs, 0);
545 	loadsegment(es, _ds);
546 	loadsegment(ds, _ds);
547 	load_gs_index(0);
548 
549 	regs->ip	= new_ip;
550 	regs->sp	= new_sp;
551 	regs->csx	= _cs;
552 	regs->ssx	= _ss;
553 	/*
554 	 * Allow single-step trap and NMI when starting a new task, thus
555 	 * once the new task enters user space, single-step trap and NMI
556 	 * are both enabled immediately.
557 	 *
558 	 * Entering a new task is logically speaking a return from a
559 	 * system call (exec, fork, clone, etc.). As such, if ptrace
560 	 * enables single stepping a single step exception should be
561 	 * allowed to trigger immediately upon entering user space.
562 	 * This is not optional.
563 	 *
564 	 * NMI should *never* be disabled in user space. As such, this
565 	 * is an optional, opportunistic way to catch errors.
566 	 *
567 	 * Paranoia: High-order 48 bits above the lowest 16 bit SS are
568 	 * discarded by the legacy IRET instruction on all Intel, AMD,
569 	 * and Cyrix/Centaur/VIA CPUs, thus can be set unconditionally,
570 	 * even when FRED is not enabled. But we choose the safer side
571 	 * to use these bits only when FRED is enabled.
572 	 */
573 	if (cpu_feature_enabled(X86_FEATURE_FRED)) {
574 		regs->fred_ss.swevent	= true;
575 		regs->fred_ss.nmi	= true;
576 	}
577 
578 	regs->flags	= X86_EFLAGS_IF | X86_EFLAGS_FIXED;
579 }
580 
581 void
582 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
583 {
584 	start_thread_common(regs, new_ip, new_sp,
585 			    __USER_CS, __USER_DS, 0);
586 }
587 EXPORT_SYMBOL_GPL(start_thread);
588 
589 #ifdef CONFIG_COMPAT
590 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
591 {
592 	start_thread_common(regs, new_ip, new_sp,
593 			    x32 ? __USER_CS : __USER32_CS,
594 			    __USER_DS, __USER_DS);
595 }
596 #endif
597 
598 /*
599  *	switch_to(x,y) should switch tasks from x to y.
600  *
601  * This could still be optimized:
602  * - fold all the options into a flag word and test it with a single test.
603  * - could test fs/gs bitsliced
604  *
605  * Kprobes not supported here. Set the probe on schedule instead.
606  * Function graph tracer not supported too.
607  */
608 __no_kmsan_checks
609 __visible __notrace_funcgraph struct task_struct *
610 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
611 {
612 	struct thread_struct *prev = &prev_p->thread;
613 	struct thread_struct *next = &next_p->thread;
614 	int cpu = smp_processor_id();
615 
616 	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
617 		     this_cpu_read(pcpu_hot.hardirq_stack_inuse));
618 
619 	if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD))
620 		switch_fpu_prepare(prev_p, cpu);
621 
622 	/* We must save %fs and %gs before load_TLS() because
623 	 * %fs and %gs may be cleared by load_TLS().
624 	 *
625 	 * (e.g. xen_load_tls())
626 	 */
627 	save_fsgs(prev_p);
628 
629 	/*
630 	 * Load TLS before restoring any segments so that segment loads
631 	 * reference the correct GDT entries.
632 	 */
633 	load_TLS(next, cpu);
634 
635 	/*
636 	 * Leave lazy mode, flushing any hypercalls made here.  This
637 	 * must be done after loading TLS entries in the GDT but before
638 	 * loading segments that might reference them.
639 	 */
640 	arch_end_context_switch(next_p);
641 
642 	/* Switch DS and ES.
643 	 *
644 	 * Reading them only returns the selectors, but writing them (if
645 	 * nonzero) loads the full descriptor from the GDT or LDT.  The
646 	 * LDT for next is loaded in switch_mm, and the GDT is loaded
647 	 * above.
648 	 *
649 	 * We therefore need to write new values to the segment
650 	 * registers on every context switch unless both the new and old
651 	 * values are zero.
652 	 *
653 	 * Note that we don't need to do anything for CS and SS, as
654 	 * those are saved and restored as part of pt_regs.
655 	 */
656 	savesegment(es, prev->es);
657 	if (unlikely(next->es | prev->es))
658 		loadsegment(es, next->es);
659 
660 	savesegment(ds, prev->ds);
661 	if (unlikely(next->ds | prev->ds))
662 		loadsegment(ds, next->ds);
663 
664 	x86_fsgsbase_load(prev, next);
665 
666 	x86_pkru_load(prev, next);
667 
668 	/*
669 	 * Switch the PDA and FPU contexts.
670 	 */
671 	raw_cpu_write(pcpu_hot.current_task, next_p);
672 	raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
673 
674 	switch_fpu_finish(next_p);
675 
676 	/* Reload sp0. */
677 	update_task_stack(next_p);
678 
679 	switch_to_extra(prev_p, next_p);
680 
681 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
682 		/*
683 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
684 		 * does not update the cached descriptor.  As a result, if we
685 		 * do SYSRET while SS is NULL, we'll end up in user mode with
686 		 * SS apparently equal to __USER_DS but actually unusable.
687 		 *
688 		 * The straightforward workaround would be to fix it up just
689 		 * before SYSRET, but that would slow down the system call
690 		 * fast paths.  Instead, we ensure that SS is never NULL in
691 		 * system call context.  We do this by replacing NULL SS
692 		 * selectors at every context switch.  SYSCALL sets up a valid
693 		 * SS, so the only way to get NULL is to re-enter the kernel
694 		 * from CPL 3 through an interrupt.  Since that can't happen
695 		 * in the same task as a running syscall, we are guaranteed to
696 		 * context switch between every interrupt vector entry and a
697 		 * subsequent SYSRET.
698 		 *
699 		 * We read SS first because SS reads are much faster than
700 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
701 		 * it previously had a different non-NULL value.
702 		 */
703 		unsigned short ss_sel;
704 		savesegment(ss, ss_sel);
705 		if (ss_sel != __KERNEL_DS)
706 			loadsegment(ss, __KERNEL_DS);
707 	}
708 
709 	/* Load the Intel cache allocation PQR MSR. */
710 	resctrl_sched_in(next_p);
711 
712 	return prev_p;
713 }
714 
715 void set_personality_64bit(void)
716 {
717 	/* inherit personality from parent */
718 
719 	/* Make sure to be in 64bit mode */
720 	clear_thread_flag(TIF_ADDR32);
721 	/* Pretend that this comes from a 64bit execve */
722 	task_pt_regs(current)->orig_ax = __NR_execve;
723 	current_thread_info()->status &= ~TS_COMPAT;
724 	if (current->mm)
725 		__set_bit(MM_CONTEXT_HAS_VSYSCALL, &current->mm->context.flags);
726 
727 	/* TBD: overwrites user setup. Should have two bits.
728 	   But 64bit processes have always behaved this way,
729 	   so it's not too bad. The main problem is just that
730 	   32bit children are affected again. */
731 	current->personality &= ~READ_IMPLIES_EXEC;
732 }
733 
734 static void __set_personality_x32(void)
735 {
736 #ifdef CONFIG_X86_X32_ABI
737 	if (current->mm)
738 		current->mm->context.flags = 0;
739 
740 	current->personality &= ~READ_IMPLIES_EXEC;
741 	/*
742 	 * in_32bit_syscall() uses the presence of the x32 syscall bit
743 	 * flag to determine compat status.  The x86 mmap() code relies on
744 	 * the syscall bitness so set x32 syscall bit right here to make
745 	 * in_32bit_syscall() work during exec().
746 	 *
747 	 * Pretend to come from a x32 execve.
748 	 */
749 	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
750 	current_thread_info()->status &= ~TS_COMPAT;
751 #endif
752 }
753 
754 static void __set_personality_ia32(void)
755 {
756 #ifdef CONFIG_IA32_EMULATION
757 	if (current->mm) {
758 		/*
759 		 * uprobes applied to this MM need to know this and
760 		 * cannot use user_64bit_mode() at that time.
761 		 */
762 		__set_bit(MM_CONTEXT_UPROBE_IA32, &current->mm->context.flags);
763 	}
764 
765 	current->personality |= force_personality32;
766 	/* Prepare the first "return" to user space */
767 	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
768 	current_thread_info()->status |= TS_COMPAT;
769 #endif
770 }
771 
772 void set_personality_ia32(bool x32)
773 {
774 	/* Make sure to be in 32bit mode */
775 	set_thread_flag(TIF_ADDR32);
776 
777 	if (x32)
778 		__set_personality_x32();
779 	else
780 		__set_personality_ia32();
781 }
782 EXPORT_SYMBOL_GPL(set_personality_ia32);
783 
784 #ifdef CONFIG_CHECKPOINT_RESTORE
785 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
786 {
787 	int ret;
788 
789 	ret = map_vdso_once(image, addr);
790 	if (ret)
791 		return ret;
792 
793 	return (long)image->size;
794 }
795 #endif
796 
797 #ifdef CONFIG_ADDRESS_MASKING
798 
799 #define LAM_U57_BITS 6
800 
801 static void enable_lam_func(void *__mm)
802 {
803 	struct mm_struct *mm = __mm;
804 	unsigned long lam;
805 
806 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) {
807 		lam = mm_lam_cr3_mask(mm);
808 		write_cr3(__read_cr3() | lam);
809 		cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
810 	}
811 }
812 
813 static void mm_enable_lam(struct mm_struct *mm)
814 {
815 	mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
816 	mm->context.untag_mask =  ~GENMASK(62, 57);
817 
818 	/*
819 	 * Even though the process must still be single-threaded at this
820 	 * point, kernel threads may be using the mm.  IPI those kernel
821 	 * threads if they exist.
822 	 */
823 	on_each_cpu_mask(mm_cpumask(mm), enable_lam_func, mm, true);
824 	set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
825 }
826 
827 static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
828 {
829 	if (!cpu_feature_enabled(X86_FEATURE_LAM))
830 		return -ENODEV;
831 
832 	/* PTRACE_ARCH_PRCTL */
833 	if (current->mm != mm)
834 		return -EINVAL;
835 
836 	if (mm_valid_pasid(mm) &&
837 	    !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
838 		return -EINVAL;
839 
840 	if (mmap_write_lock_killable(mm))
841 		return -EINTR;
842 
843 	/*
844 	 * MM_CONTEXT_LOCK_LAM is set on clone.  Prevent LAM from
845 	 * being enabled unless the process is single threaded:
846 	 */
847 	if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
848 		mmap_write_unlock(mm);
849 		return -EBUSY;
850 	}
851 
852 	if (!nr_bits || nr_bits > LAM_U57_BITS) {
853 		mmap_write_unlock(mm);
854 		return -EINVAL;
855 	}
856 
857 	mm_enable_lam(mm);
858 
859 	mmap_write_unlock(mm);
860 
861 	return 0;
862 }
863 #endif
864 
865 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
866 {
867 	int ret = 0;
868 
869 	switch (option) {
870 	case ARCH_SET_GS: {
871 		if (unlikely(arg2 >= TASK_SIZE_MAX))
872 			return -EPERM;
873 
874 		preempt_disable();
875 		/*
876 		 * ARCH_SET_GS has always overwritten the index
877 		 * and the base. Zero is the most sensible value
878 		 * to put in the index, and is the only value that
879 		 * makes any sense if FSGSBASE is unavailable.
880 		 */
881 		if (task == current) {
882 			loadseg(GS, 0);
883 			x86_gsbase_write_cpu_inactive(arg2);
884 
885 			/*
886 			 * On non-FSGSBASE systems, save_base_legacy() expects
887 			 * that we also fill in thread.gsbase.
888 			 */
889 			task->thread.gsbase = arg2;
890 
891 		} else {
892 			task->thread.gsindex = 0;
893 			x86_gsbase_write_task(task, arg2);
894 		}
895 		preempt_enable();
896 		break;
897 	}
898 	case ARCH_SET_FS: {
899 		/*
900 		 * Not strictly needed for %fs, but do it for symmetry
901 		 * with %gs
902 		 */
903 		if (unlikely(arg2 >= TASK_SIZE_MAX))
904 			return -EPERM;
905 
906 		preempt_disable();
907 		/*
908 		 * Set the selector to 0 for the same reason
909 		 * as %gs above.
910 		 */
911 		if (task == current) {
912 			loadseg(FS, 0);
913 			x86_fsbase_write_cpu(arg2);
914 
915 			/*
916 			 * On non-FSGSBASE systems, save_base_legacy() expects
917 			 * that we also fill in thread.fsbase.
918 			 */
919 			task->thread.fsbase = arg2;
920 		} else {
921 			task->thread.fsindex = 0;
922 			x86_fsbase_write_task(task, arg2);
923 		}
924 		preempt_enable();
925 		break;
926 	}
927 	case ARCH_GET_FS: {
928 		unsigned long base = x86_fsbase_read_task(task);
929 
930 		ret = put_user(base, (unsigned long __user *)arg2);
931 		break;
932 	}
933 	case ARCH_GET_GS: {
934 		unsigned long base = x86_gsbase_read_task(task);
935 
936 		ret = put_user(base, (unsigned long __user *)arg2);
937 		break;
938 	}
939 
940 #ifdef CONFIG_CHECKPOINT_RESTORE
941 # ifdef CONFIG_X86_X32_ABI
942 	case ARCH_MAP_VDSO_X32:
943 		return prctl_map_vdso(&vdso_image_x32, arg2);
944 # endif
945 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
946 	case ARCH_MAP_VDSO_32:
947 		return prctl_map_vdso(&vdso_image_32, arg2);
948 # endif
949 	case ARCH_MAP_VDSO_64:
950 		return prctl_map_vdso(&vdso_image_64, arg2);
951 #endif
952 #ifdef CONFIG_ADDRESS_MASKING
953 	case ARCH_GET_UNTAG_MASK:
954 		return put_user(task->mm->context.untag_mask,
955 				(unsigned long __user *)arg2);
956 	case ARCH_ENABLE_TAGGED_ADDR:
957 		return prctl_enable_tagged_addr(task->mm, arg2);
958 	case ARCH_FORCE_TAGGED_SVA:
959 		if (current != task)
960 			return -EINVAL;
961 		set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
962 		return 0;
963 	case ARCH_GET_MAX_TAG_BITS:
964 		if (!cpu_feature_enabled(X86_FEATURE_LAM))
965 			return put_user(0, (unsigned long __user *)arg2);
966 		else
967 			return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
968 #endif
969 	case ARCH_SHSTK_ENABLE:
970 	case ARCH_SHSTK_DISABLE:
971 	case ARCH_SHSTK_LOCK:
972 	case ARCH_SHSTK_UNLOCK:
973 	case ARCH_SHSTK_STATUS:
974 		return shstk_prctl(task, option, arg2);
975 	default:
976 		ret = -EINVAL;
977 		break;
978 	}
979 
980 	return ret;
981 }
982 
983 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
984 {
985 	long ret;
986 
987 	ret = do_arch_prctl_64(current, option, arg2);
988 	if (ret == -EINVAL)
989 		ret = do_arch_prctl_common(option, arg2);
990 
991 	return ret;
992 }
993 
994 #ifdef CONFIG_IA32_EMULATION
995 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
996 {
997 	return do_arch_prctl_common(option, arg2);
998 }
999 #endif
1000 
1001 unsigned long KSTK_ESP(struct task_struct *task)
1002 {
1003 	return task_pt_regs(task)->sp;
1004 }
1005