1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 * 7 * X86-64 port 8 * Andi Kleen. 9 * 10 * CPU hotplug support - ashok.raj@intel.com 11 */ 12 13 /* 14 * This file handles the architecture-dependent parts of process handling.. 15 */ 16 17 #include <linux/cpu.h> 18 #include <linux/errno.h> 19 #include <linux/sched.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/fs.h> 23 #include <linux/kernel.h> 24 #include <linux/mm.h> 25 #include <linux/elfcore.h> 26 #include <linux/smp.h> 27 #include <linux/slab.h> 28 #include <linux/user.h> 29 #include <linux/interrupt.h> 30 #include <linux/delay.h> 31 #include <linux/export.h> 32 #include <linux/ptrace.h> 33 #include <linux/notifier.h> 34 #include <linux/kprobes.h> 35 #include <linux/kdebug.h> 36 #include <linux/prctl.h> 37 #include <linux/uaccess.h> 38 #include <linux/io.h> 39 #include <linux/ftrace.h> 40 #include <linux/syscalls.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/processor.h> 44 #include <asm/fpu/internal.h> 45 #include <asm/mmu_context.h> 46 #include <asm/prctl.h> 47 #include <asm/desc.h> 48 #include <asm/proto.h> 49 #include <asm/ia32.h> 50 #include <asm/syscalls.h> 51 #include <asm/debugreg.h> 52 #include <asm/switch_to.h> 53 #include <asm/xen/hypervisor.h> 54 #include <asm/vdso.h> 55 #include <asm/intel_rdt_sched.h> 56 #include <asm/unistd.h> 57 #ifdef CONFIG_IA32_EMULATION 58 /* Not included via unistd.h */ 59 #include <asm/unistd_32_ia32.h> 60 #endif 61 62 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch); 63 64 /* Prints also some state that isn't saved in the pt_regs */ 65 void __show_regs(struct pt_regs *regs, int all) 66 { 67 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; 68 unsigned long d0, d1, d2, d3, d6, d7; 69 unsigned int fsindex, gsindex; 70 unsigned int ds, cs, es; 71 72 show_iret_regs(regs); 73 74 if (regs->orig_ax != -1) 75 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax); 76 else 77 pr_cont("\n"); 78 79 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n", 80 regs->ax, regs->bx, regs->cx); 81 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n", 82 regs->dx, regs->si, regs->di); 83 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n", 84 regs->bp, regs->r8, regs->r9); 85 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n", 86 regs->r10, regs->r11, regs->r12); 87 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n", 88 regs->r13, regs->r14, regs->r15); 89 90 if (!all) 91 return; 92 93 asm("movl %%ds,%0" : "=r" (ds)); 94 asm("movl %%cs,%0" : "=r" (cs)); 95 asm("movl %%es,%0" : "=r" (es)); 96 asm("movl %%fs,%0" : "=r" (fsindex)); 97 asm("movl %%gs,%0" : "=r" (gsindex)); 98 99 rdmsrl(MSR_FS_BASE, fs); 100 rdmsrl(MSR_GS_BASE, gs); 101 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); 102 103 cr0 = read_cr0(); 104 cr2 = read_cr2(); 105 cr3 = __read_cr3(); 106 cr4 = __read_cr4(); 107 108 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", 109 fs, fsindex, gs, gsindex, shadowgs); 110 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, 111 es, cr0); 112 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, 113 cr4); 114 115 get_debugreg(d0, 0); 116 get_debugreg(d1, 1); 117 get_debugreg(d2, 2); 118 get_debugreg(d3, 3); 119 get_debugreg(d6, 6); 120 get_debugreg(d7, 7); 121 122 /* Only print out debug registers if they are in their non-default state. */ 123 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && 124 (d6 == DR6_RESERVED) && (d7 == 0x400))) { 125 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", 126 d0, d1, d2); 127 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", 128 d3, d6, d7); 129 } 130 131 if (boot_cpu_has(X86_FEATURE_OSPKE)) 132 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru()); 133 } 134 135 void release_thread(struct task_struct *dead_task) 136 { 137 if (dead_task->mm) { 138 #ifdef CONFIG_MODIFY_LDT_SYSCALL 139 if (dead_task->mm->context.ldt) { 140 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n", 141 dead_task->comm, 142 dead_task->mm->context.ldt->entries, 143 dead_task->mm->context.ldt->nr_entries); 144 BUG(); 145 } 146 #endif 147 } 148 } 149 150 enum which_selector { 151 FS, 152 GS 153 }; 154 155 /* 156 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are 157 * not available. The goal is to be reasonably fast on non-FSGSBASE systems. 158 * It's forcibly inlined because it'll generate better code and this function 159 * is hot. 160 */ 161 static __always_inline void save_base_legacy(struct task_struct *prev_p, 162 unsigned short selector, 163 enum which_selector which) 164 { 165 if (likely(selector == 0)) { 166 /* 167 * On Intel (without X86_BUG_NULL_SEG), the segment base could 168 * be the pre-existing saved base or it could be zero. On AMD 169 * (with X86_BUG_NULL_SEG), the segment base could be almost 170 * anything. 171 * 172 * This branch is very hot (it's hit twice on almost every 173 * context switch between 64-bit programs), and avoiding 174 * the RDMSR helps a lot, so we just assume that whatever 175 * value is already saved is correct. This matches historical 176 * Linux behavior, so it won't break existing applications. 177 * 178 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we 179 * report that the base is zero, it needs to actually be zero: 180 * see the corresponding logic in load_seg_legacy. 181 */ 182 } else { 183 /* 184 * If the selector is 1, 2, or 3, then the base is zero on 185 * !X86_BUG_NULL_SEG CPUs and could be anything on 186 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux 187 * has never attempted to preserve the base across context 188 * switches. 189 * 190 * If selector > 3, then it refers to a real segment, and 191 * saving the base isn't necessary. 192 */ 193 if (which == FS) 194 prev_p->thread.fsbase = 0; 195 else 196 prev_p->thread.gsbase = 0; 197 } 198 } 199 200 static __always_inline void save_fsgs(struct task_struct *task) 201 { 202 savesegment(fs, task->thread.fsindex); 203 savesegment(gs, task->thread.gsindex); 204 save_base_legacy(task, task->thread.fsindex, FS); 205 save_base_legacy(task, task->thread.gsindex, GS); 206 } 207 208 #if IS_ENABLED(CONFIG_KVM) 209 /* 210 * While a process is running,current->thread.fsbase and current->thread.gsbase 211 * may not match the corresponding CPU registers (see save_base_legacy()). KVM 212 * wants an efficient way to save and restore FSBASE and GSBASE. 213 * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE. 214 */ 215 void save_fsgs_for_kvm(void) 216 { 217 save_fsgs(current); 218 } 219 EXPORT_SYMBOL_GPL(save_fsgs_for_kvm); 220 #endif 221 222 static __always_inline void loadseg(enum which_selector which, 223 unsigned short sel) 224 { 225 if (which == FS) 226 loadsegment(fs, sel); 227 else 228 load_gs_index(sel); 229 } 230 231 static __always_inline void load_seg_legacy(unsigned short prev_index, 232 unsigned long prev_base, 233 unsigned short next_index, 234 unsigned long next_base, 235 enum which_selector which) 236 { 237 if (likely(next_index <= 3)) { 238 /* 239 * The next task is using 64-bit TLS, is not using this 240 * segment at all, or is having fun with arcane CPU features. 241 */ 242 if (next_base == 0) { 243 /* 244 * Nasty case: on AMD CPUs, we need to forcibly zero 245 * the base. 246 */ 247 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { 248 loadseg(which, __USER_DS); 249 loadseg(which, next_index); 250 } else { 251 /* 252 * We could try to exhaustively detect cases 253 * under which we can skip the segment load, 254 * but there's really only one case that matters 255 * for performance: if both the previous and 256 * next states are fully zeroed, we can skip 257 * the load. 258 * 259 * (This assumes that prev_base == 0 has no 260 * false positives. This is the case on 261 * Intel-style CPUs.) 262 */ 263 if (likely(prev_index | next_index | prev_base)) 264 loadseg(which, next_index); 265 } 266 } else { 267 if (prev_index != next_index) 268 loadseg(which, next_index); 269 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE, 270 next_base); 271 } 272 } else { 273 /* 274 * The next task is using a real segment. Loading the selector 275 * is sufficient. 276 */ 277 loadseg(which, next_index); 278 } 279 } 280 281 int copy_thread_tls(unsigned long clone_flags, unsigned long sp, 282 unsigned long arg, struct task_struct *p, unsigned long tls) 283 { 284 int err; 285 struct pt_regs *childregs; 286 struct fork_frame *fork_frame; 287 struct inactive_task_frame *frame; 288 struct task_struct *me = current; 289 290 childregs = task_pt_regs(p); 291 fork_frame = container_of(childregs, struct fork_frame, regs); 292 frame = &fork_frame->frame; 293 frame->bp = 0; 294 frame->ret_addr = (unsigned long) ret_from_fork; 295 p->thread.sp = (unsigned long) fork_frame; 296 p->thread.io_bitmap_ptr = NULL; 297 298 savesegment(gs, p->thread.gsindex); 299 p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase; 300 savesegment(fs, p->thread.fsindex); 301 p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase; 302 savesegment(es, p->thread.es); 303 savesegment(ds, p->thread.ds); 304 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 305 306 if (unlikely(p->flags & PF_KTHREAD)) { 307 /* kernel thread */ 308 memset(childregs, 0, sizeof(struct pt_regs)); 309 frame->bx = sp; /* function */ 310 frame->r12 = arg; 311 return 0; 312 } 313 frame->bx = 0; 314 *childregs = *current_pt_regs(); 315 316 childregs->ax = 0; 317 if (sp) 318 childregs->sp = sp; 319 320 err = -ENOMEM; 321 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) { 322 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr, 323 IO_BITMAP_BYTES, GFP_KERNEL); 324 if (!p->thread.io_bitmap_ptr) { 325 p->thread.io_bitmap_max = 0; 326 return -ENOMEM; 327 } 328 set_tsk_thread_flag(p, TIF_IO_BITMAP); 329 } 330 331 /* 332 * Set a new TLS for the child thread? 333 */ 334 if (clone_flags & CLONE_SETTLS) { 335 #ifdef CONFIG_IA32_EMULATION 336 if (in_ia32_syscall()) 337 err = do_set_thread_area(p, -1, 338 (struct user_desc __user *)tls, 0); 339 else 340 #endif 341 err = do_arch_prctl_64(p, ARCH_SET_FS, tls); 342 if (err) 343 goto out; 344 } 345 err = 0; 346 out: 347 if (err && p->thread.io_bitmap_ptr) { 348 kfree(p->thread.io_bitmap_ptr); 349 p->thread.io_bitmap_max = 0; 350 } 351 352 return err; 353 } 354 355 static void 356 start_thread_common(struct pt_regs *regs, unsigned long new_ip, 357 unsigned long new_sp, 358 unsigned int _cs, unsigned int _ss, unsigned int _ds) 359 { 360 WARN_ON_ONCE(regs != current_pt_regs()); 361 362 if (static_cpu_has(X86_BUG_NULL_SEG)) { 363 /* Loading zero below won't clear the base. */ 364 loadsegment(fs, __USER_DS); 365 load_gs_index(__USER_DS); 366 } 367 368 loadsegment(fs, 0); 369 loadsegment(es, _ds); 370 loadsegment(ds, _ds); 371 load_gs_index(0); 372 373 regs->ip = new_ip; 374 regs->sp = new_sp; 375 regs->cs = _cs; 376 regs->ss = _ss; 377 regs->flags = X86_EFLAGS_IF; 378 force_iret(); 379 } 380 381 void 382 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 383 { 384 start_thread_common(regs, new_ip, new_sp, 385 __USER_CS, __USER_DS, 0); 386 } 387 388 #ifdef CONFIG_COMPAT 389 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp) 390 { 391 start_thread_common(regs, new_ip, new_sp, 392 test_thread_flag(TIF_X32) 393 ? __USER_CS : __USER32_CS, 394 __USER_DS, __USER_DS); 395 } 396 #endif 397 398 /* 399 * switch_to(x,y) should switch tasks from x to y. 400 * 401 * This could still be optimized: 402 * - fold all the options into a flag word and test it with a single test. 403 * - could test fs/gs bitsliced 404 * 405 * Kprobes not supported here. Set the probe on schedule instead. 406 * Function graph tracer not supported too. 407 */ 408 __visible __notrace_funcgraph struct task_struct * 409 __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 410 { 411 struct thread_struct *prev = &prev_p->thread; 412 struct thread_struct *next = &next_p->thread; 413 struct fpu *prev_fpu = &prev->fpu; 414 struct fpu *next_fpu = &next->fpu; 415 int cpu = smp_processor_id(); 416 struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu); 417 418 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) && 419 this_cpu_read(irq_count) != -1); 420 421 switch_fpu_prepare(prev_fpu, cpu); 422 423 /* We must save %fs and %gs before load_TLS() because 424 * %fs and %gs may be cleared by load_TLS(). 425 * 426 * (e.g. xen_load_tls()) 427 */ 428 save_fsgs(prev_p); 429 430 /* 431 * Load TLS before restoring any segments so that segment loads 432 * reference the correct GDT entries. 433 */ 434 load_TLS(next, cpu); 435 436 /* 437 * Leave lazy mode, flushing any hypercalls made here. This 438 * must be done after loading TLS entries in the GDT but before 439 * loading segments that might reference them, and and it must 440 * be done before fpu__restore(), so the TS bit is up to 441 * date. 442 */ 443 arch_end_context_switch(next_p); 444 445 /* Switch DS and ES. 446 * 447 * Reading them only returns the selectors, but writing them (if 448 * nonzero) loads the full descriptor from the GDT or LDT. The 449 * LDT for next is loaded in switch_mm, and the GDT is loaded 450 * above. 451 * 452 * We therefore need to write new values to the segment 453 * registers on every context switch unless both the new and old 454 * values are zero. 455 * 456 * Note that we don't need to do anything for CS and SS, as 457 * those are saved and restored as part of pt_regs. 458 */ 459 savesegment(es, prev->es); 460 if (unlikely(next->es | prev->es)) 461 loadsegment(es, next->es); 462 463 savesegment(ds, prev->ds); 464 if (unlikely(next->ds | prev->ds)) 465 loadsegment(ds, next->ds); 466 467 load_seg_legacy(prev->fsindex, prev->fsbase, 468 next->fsindex, next->fsbase, FS); 469 load_seg_legacy(prev->gsindex, prev->gsbase, 470 next->gsindex, next->gsbase, GS); 471 472 switch_fpu_finish(next_fpu, cpu); 473 474 /* 475 * Switch the PDA and FPU contexts. 476 */ 477 this_cpu_write(current_task, next_p); 478 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p)); 479 480 /* Reload sp0. */ 481 update_sp0(next_p); 482 483 /* 484 * Now maybe reload the debug registers and handle I/O bitmaps 485 */ 486 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT || 487 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV)) 488 __switch_to_xtra(prev_p, next_p, tss); 489 490 #ifdef CONFIG_XEN_PV 491 /* 492 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and 493 * current_pt_regs()->flags may not match the current task's 494 * intended IOPL. We need to switch it manually. 495 */ 496 if (unlikely(static_cpu_has(X86_FEATURE_XENPV) && 497 prev->iopl != next->iopl)) 498 xen_set_iopl_mask(next->iopl); 499 #endif 500 501 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { 502 /* 503 * AMD CPUs have a misfeature: SYSRET sets the SS selector but 504 * does not update the cached descriptor. As a result, if we 505 * do SYSRET while SS is NULL, we'll end up in user mode with 506 * SS apparently equal to __USER_DS but actually unusable. 507 * 508 * The straightforward workaround would be to fix it up just 509 * before SYSRET, but that would slow down the system call 510 * fast paths. Instead, we ensure that SS is never NULL in 511 * system call context. We do this by replacing NULL SS 512 * selectors at every context switch. SYSCALL sets up a valid 513 * SS, so the only way to get NULL is to re-enter the kernel 514 * from CPL 3 through an interrupt. Since that can't happen 515 * in the same task as a running syscall, we are guaranteed to 516 * context switch between every interrupt vector entry and a 517 * subsequent SYSRET. 518 * 519 * We read SS first because SS reads are much faster than 520 * writes. Out of caution, we force SS to __KERNEL_DS even if 521 * it previously had a different non-NULL value. 522 */ 523 unsigned short ss_sel; 524 savesegment(ss, ss_sel); 525 if (ss_sel != __KERNEL_DS) 526 loadsegment(ss, __KERNEL_DS); 527 } 528 529 /* Load the Intel cache allocation PQR MSR. */ 530 intel_rdt_sched_in(); 531 532 return prev_p; 533 } 534 535 void set_personality_64bit(void) 536 { 537 /* inherit personality from parent */ 538 539 /* Make sure to be in 64bit mode */ 540 clear_thread_flag(TIF_IA32); 541 clear_thread_flag(TIF_ADDR32); 542 clear_thread_flag(TIF_X32); 543 /* Pretend that this comes from a 64bit execve */ 544 task_pt_regs(current)->orig_ax = __NR_execve; 545 current_thread_info()->status &= ~TS_COMPAT; 546 547 /* Ensure the corresponding mm is not marked. */ 548 if (current->mm) 549 current->mm->context.ia32_compat = 0; 550 551 /* TBD: overwrites user setup. Should have two bits. 552 But 64bit processes have always behaved this way, 553 so it's not too bad. The main problem is just that 554 32bit childs are affected again. */ 555 current->personality &= ~READ_IMPLIES_EXEC; 556 } 557 558 static void __set_personality_x32(void) 559 { 560 #ifdef CONFIG_X86_X32 561 clear_thread_flag(TIF_IA32); 562 set_thread_flag(TIF_X32); 563 if (current->mm) 564 current->mm->context.ia32_compat = TIF_X32; 565 current->personality &= ~READ_IMPLIES_EXEC; 566 /* 567 * in_compat_syscall() uses the presence of the x32 syscall bit 568 * flag to determine compat status. The x86 mmap() code relies on 569 * the syscall bitness so set x32 syscall bit right here to make 570 * in_compat_syscall() work during exec(). 571 * 572 * Pretend to come from a x32 execve. 573 */ 574 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT; 575 current_thread_info()->status &= ~TS_COMPAT; 576 #endif 577 } 578 579 static void __set_personality_ia32(void) 580 { 581 #ifdef CONFIG_IA32_EMULATION 582 set_thread_flag(TIF_IA32); 583 clear_thread_flag(TIF_X32); 584 if (current->mm) 585 current->mm->context.ia32_compat = TIF_IA32; 586 current->personality |= force_personality32; 587 /* Prepare the first "return" to user space */ 588 task_pt_regs(current)->orig_ax = __NR_ia32_execve; 589 current_thread_info()->status |= TS_COMPAT; 590 #endif 591 } 592 593 void set_personality_ia32(bool x32) 594 { 595 /* Make sure to be in 32bit mode */ 596 set_thread_flag(TIF_ADDR32); 597 598 if (x32) 599 __set_personality_x32(); 600 else 601 __set_personality_ia32(); 602 } 603 EXPORT_SYMBOL_GPL(set_personality_ia32); 604 605 #ifdef CONFIG_CHECKPOINT_RESTORE 606 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr) 607 { 608 int ret; 609 610 ret = map_vdso_once(image, addr); 611 if (ret) 612 return ret; 613 614 return (long)image->size; 615 } 616 #endif 617 618 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2) 619 { 620 int ret = 0; 621 int doit = task == current; 622 int cpu; 623 624 switch (option) { 625 case ARCH_SET_GS: 626 if (arg2 >= TASK_SIZE_MAX) 627 return -EPERM; 628 cpu = get_cpu(); 629 task->thread.gsindex = 0; 630 task->thread.gsbase = arg2; 631 if (doit) { 632 load_gs_index(0); 633 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2); 634 } 635 put_cpu(); 636 break; 637 case ARCH_SET_FS: 638 /* Not strictly needed for fs, but do it for symmetry 639 with gs */ 640 if (arg2 >= TASK_SIZE_MAX) 641 return -EPERM; 642 cpu = get_cpu(); 643 task->thread.fsindex = 0; 644 task->thread.fsbase = arg2; 645 if (doit) { 646 /* set the selector to 0 to not confuse __switch_to */ 647 loadsegment(fs, 0); 648 ret = wrmsrl_safe(MSR_FS_BASE, arg2); 649 } 650 put_cpu(); 651 break; 652 case ARCH_GET_FS: { 653 unsigned long base; 654 655 if (doit) 656 rdmsrl(MSR_FS_BASE, base); 657 else 658 base = task->thread.fsbase; 659 ret = put_user(base, (unsigned long __user *)arg2); 660 break; 661 } 662 case ARCH_GET_GS: { 663 unsigned long base; 664 665 if (doit) 666 rdmsrl(MSR_KERNEL_GS_BASE, base); 667 else 668 base = task->thread.gsbase; 669 ret = put_user(base, (unsigned long __user *)arg2); 670 break; 671 } 672 673 #ifdef CONFIG_CHECKPOINT_RESTORE 674 # ifdef CONFIG_X86_X32_ABI 675 case ARCH_MAP_VDSO_X32: 676 return prctl_map_vdso(&vdso_image_x32, arg2); 677 # endif 678 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION 679 case ARCH_MAP_VDSO_32: 680 return prctl_map_vdso(&vdso_image_32, arg2); 681 # endif 682 case ARCH_MAP_VDSO_64: 683 return prctl_map_vdso(&vdso_image_64, arg2); 684 #endif 685 686 default: 687 ret = -EINVAL; 688 break; 689 } 690 691 return ret; 692 } 693 694 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) 695 { 696 long ret; 697 698 ret = do_arch_prctl_64(current, option, arg2); 699 if (ret == -EINVAL) 700 ret = do_arch_prctl_common(current, option, arg2); 701 702 return ret; 703 } 704 705 #ifdef CONFIG_IA32_EMULATION 706 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) 707 { 708 return do_arch_prctl_common(current, option, arg2); 709 } 710 #endif 711 712 unsigned long KSTK_ESP(struct task_struct *task) 713 { 714 return task_pt_regs(task)->sp; 715 } 716