xref: /linux/arch/x86/kernel/process_64.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  *
7  *  X86-64 port
8  *	Andi Kleen.
9  *
10  *	CPU hotplug support - ashok.raj@intel.com
11  */
12 
13 /*
14  * This file handles the architecture-dependent parts of process handling..
15  */
16 
17 #include <linux/cpu.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/fs.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/elfcore.h>
26 #include <linux/smp.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/export.h>
32 #include <linux/ptrace.h>
33 #include <linux/notifier.h>
34 #include <linux/kprobes.h>
35 #include <linux/kdebug.h>
36 #include <linux/prctl.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/ftrace.h>
40 #include <linux/syscalls.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/processor.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mmu_context.h>
46 #include <asm/prctl.h>
47 #include <asm/desc.h>
48 #include <asm/proto.h>
49 #include <asm/ia32.h>
50 #include <asm/syscalls.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/vdso.h>
55 #include <asm/intel_rdt_sched.h>
56 #include <asm/unistd.h>
57 #ifdef CONFIG_IA32_EMULATION
58 /* Not included via unistd.h */
59 #include <asm/unistd_32_ia32.h>
60 #endif
61 
62 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
63 
64 /* Prints also some state that isn't saved in the pt_regs */
65 void __show_regs(struct pt_regs *regs, int all)
66 {
67 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
68 	unsigned long d0, d1, d2, d3, d6, d7;
69 	unsigned int fsindex, gsindex;
70 	unsigned int ds, cs, es;
71 
72 	show_iret_regs(regs);
73 
74 	if (regs->orig_ax != -1)
75 		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
76 	else
77 		pr_cont("\n");
78 
79 	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
80 	       regs->ax, regs->bx, regs->cx);
81 	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
82 	       regs->dx, regs->si, regs->di);
83 	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
84 	       regs->bp, regs->r8, regs->r9);
85 	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
86 	       regs->r10, regs->r11, regs->r12);
87 	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
88 	       regs->r13, regs->r14, regs->r15);
89 
90 	if (!all)
91 		return;
92 
93 	asm("movl %%ds,%0" : "=r" (ds));
94 	asm("movl %%cs,%0" : "=r" (cs));
95 	asm("movl %%es,%0" : "=r" (es));
96 	asm("movl %%fs,%0" : "=r" (fsindex));
97 	asm("movl %%gs,%0" : "=r" (gsindex));
98 
99 	rdmsrl(MSR_FS_BASE, fs);
100 	rdmsrl(MSR_GS_BASE, gs);
101 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
102 
103 	cr0 = read_cr0();
104 	cr2 = read_cr2();
105 	cr3 = __read_cr3();
106 	cr4 = __read_cr4();
107 
108 	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
109 	       fs, fsindex, gs, gsindex, shadowgs);
110 	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
111 			es, cr0);
112 	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
113 			cr4);
114 
115 	get_debugreg(d0, 0);
116 	get_debugreg(d1, 1);
117 	get_debugreg(d2, 2);
118 	get_debugreg(d3, 3);
119 	get_debugreg(d6, 6);
120 	get_debugreg(d7, 7);
121 
122 	/* Only print out debug registers if they are in their non-default state. */
123 	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
124 	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
125 		printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
126 		       d0, d1, d2);
127 		printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
128 		       d3, d6, d7);
129 	}
130 
131 	if (boot_cpu_has(X86_FEATURE_OSPKE))
132 		printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
133 }
134 
135 void release_thread(struct task_struct *dead_task)
136 {
137 	if (dead_task->mm) {
138 #ifdef CONFIG_MODIFY_LDT_SYSCALL
139 		if (dead_task->mm->context.ldt) {
140 			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
141 				dead_task->comm,
142 				dead_task->mm->context.ldt->entries,
143 				dead_task->mm->context.ldt->nr_entries);
144 			BUG();
145 		}
146 #endif
147 	}
148 }
149 
150 enum which_selector {
151 	FS,
152 	GS
153 };
154 
155 /*
156  * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
157  * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
158  * It's forcibly inlined because it'll generate better code and this function
159  * is hot.
160  */
161 static __always_inline void save_base_legacy(struct task_struct *prev_p,
162 					     unsigned short selector,
163 					     enum which_selector which)
164 {
165 	if (likely(selector == 0)) {
166 		/*
167 		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
168 		 * be the pre-existing saved base or it could be zero.  On AMD
169 		 * (with X86_BUG_NULL_SEG), the segment base could be almost
170 		 * anything.
171 		 *
172 		 * This branch is very hot (it's hit twice on almost every
173 		 * context switch between 64-bit programs), and avoiding
174 		 * the RDMSR helps a lot, so we just assume that whatever
175 		 * value is already saved is correct.  This matches historical
176 		 * Linux behavior, so it won't break existing applications.
177 		 *
178 		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
179 		 * report that the base is zero, it needs to actually be zero:
180 		 * see the corresponding logic in load_seg_legacy.
181 		 */
182 	} else {
183 		/*
184 		 * If the selector is 1, 2, or 3, then the base is zero on
185 		 * !X86_BUG_NULL_SEG CPUs and could be anything on
186 		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
187 		 * has never attempted to preserve the base across context
188 		 * switches.
189 		 *
190 		 * If selector > 3, then it refers to a real segment, and
191 		 * saving the base isn't necessary.
192 		 */
193 		if (which == FS)
194 			prev_p->thread.fsbase = 0;
195 		else
196 			prev_p->thread.gsbase = 0;
197 	}
198 }
199 
200 static __always_inline void save_fsgs(struct task_struct *task)
201 {
202 	savesegment(fs, task->thread.fsindex);
203 	savesegment(gs, task->thread.gsindex);
204 	save_base_legacy(task, task->thread.fsindex, FS);
205 	save_base_legacy(task, task->thread.gsindex, GS);
206 }
207 
208 #if IS_ENABLED(CONFIG_KVM)
209 /*
210  * While a process is running,current->thread.fsbase and current->thread.gsbase
211  * may not match the corresponding CPU registers (see save_base_legacy()). KVM
212  * wants an efficient way to save and restore FSBASE and GSBASE.
213  * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
214  */
215 void save_fsgs_for_kvm(void)
216 {
217 	save_fsgs(current);
218 }
219 EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
220 #endif
221 
222 static __always_inline void loadseg(enum which_selector which,
223 				    unsigned short sel)
224 {
225 	if (which == FS)
226 		loadsegment(fs, sel);
227 	else
228 		load_gs_index(sel);
229 }
230 
231 static __always_inline void load_seg_legacy(unsigned short prev_index,
232 					    unsigned long prev_base,
233 					    unsigned short next_index,
234 					    unsigned long next_base,
235 					    enum which_selector which)
236 {
237 	if (likely(next_index <= 3)) {
238 		/*
239 		 * The next task is using 64-bit TLS, is not using this
240 		 * segment at all, or is having fun with arcane CPU features.
241 		 */
242 		if (next_base == 0) {
243 			/*
244 			 * Nasty case: on AMD CPUs, we need to forcibly zero
245 			 * the base.
246 			 */
247 			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
248 				loadseg(which, __USER_DS);
249 				loadseg(which, next_index);
250 			} else {
251 				/*
252 				 * We could try to exhaustively detect cases
253 				 * under which we can skip the segment load,
254 				 * but there's really only one case that matters
255 				 * for performance: if both the previous and
256 				 * next states are fully zeroed, we can skip
257 				 * the load.
258 				 *
259 				 * (This assumes that prev_base == 0 has no
260 				 * false positives.  This is the case on
261 				 * Intel-style CPUs.)
262 				 */
263 				if (likely(prev_index | next_index | prev_base))
264 					loadseg(which, next_index);
265 			}
266 		} else {
267 			if (prev_index != next_index)
268 				loadseg(which, next_index);
269 			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
270 			       next_base);
271 		}
272 	} else {
273 		/*
274 		 * The next task is using a real segment.  Loading the selector
275 		 * is sufficient.
276 		 */
277 		loadseg(which, next_index);
278 	}
279 }
280 
281 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
282 		unsigned long arg, struct task_struct *p, unsigned long tls)
283 {
284 	int err;
285 	struct pt_regs *childregs;
286 	struct fork_frame *fork_frame;
287 	struct inactive_task_frame *frame;
288 	struct task_struct *me = current;
289 
290 	childregs = task_pt_regs(p);
291 	fork_frame = container_of(childregs, struct fork_frame, regs);
292 	frame = &fork_frame->frame;
293 	frame->bp = 0;
294 	frame->ret_addr = (unsigned long) ret_from_fork;
295 	p->thread.sp = (unsigned long) fork_frame;
296 	p->thread.io_bitmap_ptr = NULL;
297 
298 	savesegment(gs, p->thread.gsindex);
299 	p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
300 	savesegment(fs, p->thread.fsindex);
301 	p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
302 	savesegment(es, p->thread.es);
303 	savesegment(ds, p->thread.ds);
304 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
305 
306 	if (unlikely(p->flags & PF_KTHREAD)) {
307 		/* kernel thread */
308 		memset(childregs, 0, sizeof(struct pt_regs));
309 		frame->bx = sp;		/* function */
310 		frame->r12 = arg;
311 		return 0;
312 	}
313 	frame->bx = 0;
314 	*childregs = *current_pt_regs();
315 
316 	childregs->ax = 0;
317 	if (sp)
318 		childregs->sp = sp;
319 
320 	err = -ENOMEM;
321 	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
322 		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
323 						  IO_BITMAP_BYTES, GFP_KERNEL);
324 		if (!p->thread.io_bitmap_ptr) {
325 			p->thread.io_bitmap_max = 0;
326 			return -ENOMEM;
327 		}
328 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
329 	}
330 
331 	/*
332 	 * Set a new TLS for the child thread?
333 	 */
334 	if (clone_flags & CLONE_SETTLS) {
335 #ifdef CONFIG_IA32_EMULATION
336 		if (in_ia32_syscall())
337 			err = do_set_thread_area(p, -1,
338 				(struct user_desc __user *)tls, 0);
339 		else
340 #endif
341 			err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
342 		if (err)
343 			goto out;
344 	}
345 	err = 0;
346 out:
347 	if (err && p->thread.io_bitmap_ptr) {
348 		kfree(p->thread.io_bitmap_ptr);
349 		p->thread.io_bitmap_max = 0;
350 	}
351 
352 	return err;
353 }
354 
355 static void
356 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
357 		    unsigned long new_sp,
358 		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
359 {
360 	WARN_ON_ONCE(regs != current_pt_regs());
361 
362 	if (static_cpu_has(X86_BUG_NULL_SEG)) {
363 		/* Loading zero below won't clear the base. */
364 		loadsegment(fs, __USER_DS);
365 		load_gs_index(__USER_DS);
366 	}
367 
368 	loadsegment(fs, 0);
369 	loadsegment(es, _ds);
370 	loadsegment(ds, _ds);
371 	load_gs_index(0);
372 
373 	regs->ip		= new_ip;
374 	regs->sp		= new_sp;
375 	regs->cs		= _cs;
376 	regs->ss		= _ss;
377 	regs->flags		= X86_EFLAGS_IF;
378 	force_iret();
379 }
380 
381 void
382 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
383 {
384 	start_thread_common(regs, new_ip, new_sp,
385 			    __USER_CS, __USER_DS, 0);
386 }
387 
388 #ifdef CONFIG_COMPAT
389 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
390 {
391 	start_thread_common(regs, new_ip, new_sp,
392 			    test_thread_flag(TIF_X32)
393 			    ? __USER_CS : __USER32_CS,
394 			    __USER_DS, __USER_DS);
395 }
396 #endif
397 
398 /*
399  *	switch_to(x,y) should switch tasks from x to y.
400  *
401  * This could still be optimized:
402  * - fold all the options into a flag word and test it with a single test.
403  * - could test fs/gs bitsliced
404  *
405  * Kprobes not supported here. Set the probe on schedule instead.
406  * Function graph tracer not supported too.
407  */
408 __visible __notrace_funcgraph struct task_struct *
409 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
410 {
411 	struct thread_struct *prev = &prev_p->thread;
412 	struct thread_struct *next = &next_p->thread;
413 	struct fpu *prev_fpu = &prev->fpu;
414 	struct fpu *next_fpu = &next->fpu;
415 	int cpu = smp_processor_id();
416 	struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
417 
418 	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
419 		     this_cpu_read(irq_count) != -1);
420 
421 	switch_fpu_prepare(prev_fpu, cpu);
422 
423 	/* We must save %fs and %gs before load_TLS() because
424 	 * %fs and %gs may be cleared by load_TLS().
425 	 *
426 	 * (e.g. xen_load_tls())
427 	 */
428 	save_fsgs(prev_p);
429 
430 	/*
431 	 * Load TLS before restoring any segments so that segment loads
432 	 * reference the correct GDT entries.
433 	 */
434 	load_TLS(next, cpu);
435 
436 	/*
437 	 * Leave lazy mode, flushing any hypercalls made here.  This
438 	 * must be done after loading TLS entries in the GDT but before
439 	 * loading segments that might reference them, and and it must
440 	 * be done before fpu__restore(), so the TS bit is up to
441 	 * date.
442 	 */
443 	arch_end_context_switch(next_p);
444 
445 	/* Switch DS and ES.
446 	 *
447 	 * Reading them only returns the selectors, but writing them (if
448 	 * nonzero) loads the full descriptor from the GDT or LDT.  The
449 	 * LDT for next is loaded in switch_mm, and the GDT is loaded
450 	 * above.
451 	 *
452 	 * We therefore need to write new values to the segment
453 	 * registers on every context switch unless both the new and old
454 	 * values are zero.
455 	 *
456 	 * Note that we don't need to do anything for CS and SS, as
457 	 * those are saved and restored as part of pt_regs.
458 	 */
459 	savesegment(es, prev->es);
460 	if (unlikely(next->es | prev->es))
461 		loadsegment(es, next->es);
462 
463 	savesegment(ds, prev->ds);
464 	if (unlikely(next->ds | prev->ds))
465 		loadsegment(ds, next->ds);
466 
467 	load_seg_legacy(prev->fsindex, prev->fsbase,
468 			next->fsindex, next->fsbase, FS);
469 	load_seg_legacy(prev->gsindex, prev->gsbase,
470 			next->gsindex, next->gsbase, GS);
471 
472 	switch_fpu_finish(next_fpu, cpu);
473 
474 	/*
475 	 * Switch the PDA and FPU contexts.
476 	 */
477 	this_cpu_write(current_task, next_p);
478 	this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
479 
480 	/* Reload sp0. */
481 	update_sp0(next_p);
482 
483 	/*
484 	 * Now maybe reload the debug registers and handle I/O bitmaps
485 	 */
486 	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
487 		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
488 		__switch_to_xtra(prev_p, next_p, tss);
489 
490 #ifdef CONFIG_XEN_PV
491 	/*
492 	 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
493 	 * current_pt_regs()->flags may not match the current task's
494 	 * intended IOPL.  We need to switch it manually.
495 	 */
496 	if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
497 		     prev->iopl != next->iopl))
498 		xen_set_iopl_mask(next->iopl);
499 #endif
500 
501 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
502 		/*
503 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
504 		 * does not update the cached descriptor.  As a result, if we
505 		 * do SYSRET while SS is NULL, we'll end up in user mode with
506 		 * SS apparently equal to __USER_DS but actually unusable.
507 		 *
508 		 * The straightforward workaround would be to fix it up just
509 		 * before SYSRET, but that would slow down the system call
510 		 * fast paths.  Instead, we ensure that SS is never NULL in
511 		 * system call context.  We do this by replacing NULL SS
512 		 * selectors at every context switch.  SYSCALL sets up a valid
513 		 * SS, so the only way to get NULL is to re-enter the kernel
514 		 * from CPL 3 through an interrupt.  Since that can't happen
515 		 * in the same task as a running syscall, we are guaranteed to
516 		 * context switch between every interrupt vector entry and a
517 		 * subsequent SYSRET.
518 		 *
519 		 * We read SS first because SS reads are much faster than
520 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
521 		 * it previously had a different non-NULL value.
522 		 */
523 		unsigned short ss_sel;
524 		savesegment(ss, ss_sel);
525 		if (ss_sel != __KERNEL_DS)
526 			loadsegment(ss, __KERNEL_DS);
527 	}
528 
529 	/* Load the Intel cache allocation PQR MSR. */
530 	intel_rdt_sched_in();
531 
532 	return prev_p;
533 }
534 
535 void set_personality_64bit(void)
536 {
537 	/* inherit personality from parent */
538 
539 	/* Make sure to be in 64bit mode */
540 	clear_thread_flag(TIF_IA32);
541 	clear_thread_flag(TIF_ADDR32);
542 	clear_thread_flag(TIF_X32);
543 	/* Pretend that this comes from a 64bit execve */
544 	task_pt_regs(current)->orig_ax = __NR_execve;
545 	current_thread_info()->status &= ~TS_COMPAT;
546 
547 	/* Ensure the corresponding mm is not marked. */
548 	if (current->mm)
549 		current->mm->context.ia32_compat = 0;
550 
551 	/* TBD: overwrites user setup. Should have two bits.
552 	   But 64bit processes have always behaved this way,
553 	   so it's not too bad. The main problem is just that
554 	   32bit childs are affected again. */
555 	current->personality &= ~READ_IMPLIES_EXEC;
556 }
557 
558 static void __set_personality_x32(void)
559 {
560 #ifdef CONFIG_X86_X32
561 	clear_thread_flag(TIF_IA32);
562 	set_thread_flag(TIF_X32);
563 	if (current->mm)
564 		current->mm->context.ia32_compat = TIF_X32;
565 	current->personality &= ~READ_IMPLIES_EXEC;
566 	/*
567 	 * in_compat_syscall() uses the presence of the x32 syscall bit
568 	 * flag to determine compat status.  The x86 mmap() code relies on
569 	 * the syscall bitness so set x32 syscall bit right here to make
570 	 * in_compat_syscall() work during exec().
571 	 *
572 	 * Pretend to come from a x32 execve.
573 	 */
574 	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
575 	current_thread_info()->status &= ~TS_COMPAT;
576 #endif
577 }
578 
579 static void __set_personality_ia32(void)
580 {
581 #ifdef CONFIG_IA32_EMULATION
582 	set_thread_flag(TIF_IA32);
583 	clear_thread_flag(TIF_X32);
584 	if (current->mm)
585 		current->mm->context.ia32_compat = TIF_IA32;
586 	current->personality |= force_personality32;
587 	/* Prepare the first "return" to user space */
588 	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
589 	current_thread_info()->status |= TS_COMPAT;
590 #endif
591 }
592 
593 void set_personality_ia32(bool x32)
594 {
595 	/* Make sure to be in 32bit mode */
596 	set_thread_flag(TIF_ADDR32);
597 
598 	if (x32)
599 		__set_personality_x32();
600 	else
601 		__set_personality_ia32();
602 }
603 EXPORT_SYMBOL_GPL(set_personality_ia32);
604 
605 #ifdef CONFIG_CHECKPOINT_RESTORE
606 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
607 {
608 	int ret;
609 
610 	ret = map_vdso_once(image, addr);
611 	if (ret)
612 		return ret;
613 
614 	return (long)image->size;
615 }
616 #endif
617 
618 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
619 {
620 	int ret = 0;
621 	int doit = task == current;
622 	int cpu;
623 
624 	switch (option) {
625 	case ARCH_SET_GS:
626 		if (arg2 >= TASK_SIZE_MAX)
627 			return -EPERM;
628 		cpu = get_cpu();
629 		task->thread.gsindex = 0;
630 		task->thread.gsbase = arg2;
631 		if (doit) {
632 			load_gs_index(0);
633 			ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2);
634 		}
635 		put_cpu();
636 		break;
637 	case ARCH_SET_FS:
638 		/* Not strictly needed for fs, but do it for symmetry
639 		   with gs */
640 		if (arg2 >= TASK_SIZE_MAX)
641 			return -EPERM;
642 		cpu = get_cpu();
643 		task->thread.fsindex = 0;
644 		task->thread.fsbase = arg2;
645 		if (doit) {
646 			/* set the selector to 0 to not confuse __switch_to */
647 			loadsegment(fs, 0);
648 			ret = wrmsrl_safe(MSR_FS_BASE, arg2);
649 		}
650 		put_cpu();
651 		break;
652 	case ARCH_GET_FS: {
653 		unsigned long base;
654 
655 		if (doit)
656 			rdmsrl(MSR_FS_BASE, base);
657 		else
658 			base = task->thread.fsbase;
659 		ret = put_user(base, (unsigned long __user *)arg2);
660 		break;
661 	}
662 	case ARCH_GET_GS: {
663 		unsigned long base;
664 
665 		if (doit)
666 			rdmsrl(MSR_KERNEL_GS_BASE, base);
667 		else
668 			base = task->thread.gsbase;
669 		ret = put_user(base, (unsigned long __user *)arg2);
670 		break;
671 	}
672 
673 #ifdef CONFIG_CHECKPOINT_RESTORE
674 # ifdef CONFIG_X86_X32_ABI
675 	case ARCH_MAP_VDSO_X32:
676 		return prctl_map_vdso(&vdso_image_x32, arg2);
677 # endif
678 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
679 	case ARCH_MAP_VDSO_32:
680 		return prctl_map_vdso(&vdso_image_32, arg2);
681 # endif
682 	case ARCH_MAP_VDSO_64:
683 		return prctl_map_vdso(&vdso_image_64, arg2);
684 #endif
685 
686 	default:
687 		ret = -EINVAL;
688 		break;
689 	}
690 
691 	return ret;
692 }
693 
694 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
695 {
696 	long ret;
697 
698 	ret = do_arch_prctl_64(current, option, arg2);
699 	if (ret == -EINVAL)
700 		ret = do_arch_prctl_common(current, option, arg2);
701 
702 	return ret;
703 }
704 
705 #ifdef CONFIG_IA32_EMULATION
706 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
707 {
708 	return do_arch_prctl_common(current, option, arg2);
709 }
710 #endif
711 
712 unsigned long KSTK_ESP(struct task_struct *task)
713 {
714 	return task_pt_regs(task)->sp;
715 }
716