1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 * 8 * X86-64 port 9 * Andi Kleen. 10 * 11 * CPU hotplug support - ashok.raj@intel.com 12 */ 13 14 /* 15 * This file handles the architecture-dependent parts of process handling.. 16 */ 17 18 #include <linux/cpu.h> 19 #include <linux/errno.h> 20 #include <linux/sched.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/task_stack.h> 23 #include <linux/fs.h> 24 #include <linux/kernel.h> 25 #include <linux/mm.h> 26 #include <linux/elfcore.h> 27 #include <linux/smp.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/interrupt.h> 31 #include <linux/delay.h> 32 #include <linux/export.h> 33 #include <linux/ptrace.h> 34 #include <linux/notifier.h> 35 #include <linux/kprobes.h> 36 #include <linux/kdebug.h> 37 #include <linux/prctl.h> 38 #include <linux/uaccess.h> 39 #include <linux/io.h> 40 #include <linux/ftrace.h> 41 #include <linux/syscalls.h> 42 #include <linux/iommu.h> 43 44 #include <asm/processor.h> 45 #include <asm/pkru.h> 46 #include <asm/fpu/sched.h> 47 #include <asm/mmu_context.h> 48 #include <asm/prctl.h> 49 #include <asm/desc.h> 50 #include <asm/proto.h> 51 #include <asm/ia32.h> 52 #include <asm/debugreg.h> 53 #include <asm/switch_to.h> 54 #include <asm/xen/hypervisor.h> 55 #include <asm/vdso.h> 56 #include <asm/resctrl.h> 57 #include <asm/unistd.h> 58 #include <asm/fsgsbase.h> 59 #include <asm/fred.h> 60 #ifdef CONFIG_IA32_EMULATION 61 /* Not included via unistd.h */ 62 #include <asm/unistd_32_ia32.h> 63 #endif 64 65 #include "process.h" 66 67 /* Prints also some state that isn't saved in the pt_regs */ 68 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode, 69 const char *log_lvl) 70 { 71 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; 72 unsigned long d0, d1, d2, d3, d6, d7; 73 unsigned int fsindex, gsindex; 74 unsigned int ds, es; 75 76 show_iret_regs(regs, log_lvl); 77 78 if (regs->orig_ax != -1) 79 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax); 80 else 81 pr_cont("\n"); 82 83 printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n", 84 log_lvl, regs->ax, regs->bx, regs->cx); 85 printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n", 86 log_lvl, regs->dx, regs->si, regs->di); 87 printk("%sRBP: %016lx R08: %016lx R09: %016lx\n", 88 log_lvl, regs->bp, regs->r8, regs->r9); 89 printk("%sR10: %016lx R11: %016lx R12: %016lx\n", 90 log_lvl, regs->r10, regs->r11, regs->r12); 91 printk("%sR13: %016lx R14: %016lx R15: %016lx\n", 92 log_lvl, regs->r13, regs->r14, regs->r15); 93 94 if (mode == SHOW_REGS_SHORT) 95 return; 96 97 if (mode == SHOW_REGS_USER) { 98 rdmsrl(MSR_FS_BASE, fs); 99 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); 100 printk("%sFS: %016lx GS: %016lx\n", 101 log_lvl, fs, shadowgs); 102 return; 103 } 104 105 asm("movl %%ds,%0" : "=r" (ds)); 106 asm("movl %%es,%0" : "=r" (es)); 107 asm("movl %%fs,%0" : "=r" (fsindex)); 108 asm("movl %%gs,%0" : "=r" (gsindex)); 109 110 rdmsrl(MSR_FS_BASE, fs); 111 rdmsrl(MSR_GS_BASE, gs); 112 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); 113 114 cr0 = read_cr0(); 115 cr2 = read_cr2(); 116 cr3 = __read_cr3(); 117 cr4 = __read_cr4(); 118 119 printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", 120 log_lvl, fs, fsindex, gs, gsindex, shadowgs); 121 printk("%sCS: %04x DS: %04x ES: %04x CR0: %016lx\n", 122 log_lvl, regs->cs, ds, es, cr0); 123 printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n", 124 log_lvl, cr2, cr3, cr4); 125 126 get_debugreg(d0, 0); 127 get_debugreg(d1, 1); 128 get_debugreg(d2, 2); 129 get_debugreg(d3, 3); 130 get_debugreg(d6, 6); 131 get_debugreg(d7, 7); 132 133 /* Only print out debug registers if they are in their non-default state. */ 134 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && 135 (d6 == DR6_RESERVED) && (d7 == 0x400))) { 136 printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n", 137 log_lvl, d0, d1, d2); 138 printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n", 139 log_lvl, d3, d6, d7); 140 } 141 142 if (cr4 & X86_CR4_PKE) 143 printk("%sPKRU: %08x\n", log_lvl, read_pkru()); 144 } 145 146 void release_thread(struct task_struct *dead_task) 147 { 148 WARN_ON(dead_task->mm); 149 } 150 151 enum which_selector { 152 FS, 153 GS 154 }; 155 156 /* 157 * Out of line to be protected from kprobes and tracing. If this would be 158 * traced or probed than any access to a per CPU variable happens with 159 * the wrong GS. 160 * 161 * It is not used on Xen paravirt. When paravirt support is needed, it 162 * needs to be renamed with native_ prefix. 163 */ 164 static noinstr unsigned long __rdgsbase_inactive(void) 165 { 166 unsigned long gsbase; 167 168 lockdep_assert_irqs_disabled(); 169 170 /* 171 * SWAPGS is no longer needed thus NOT allowed with FRED because 172 * FRED transitions ensure that an operating system can _always_ 173 * operate with its own GS base address: 174 * - For events that occur in ring 3, FRED event delivery swaps 175 * the GS base address with the IA32_KERNEL_GS_BASE MSR. 176 * - ERETU (the FRED transition that returns to ring 3) also swaps 177 * the GS base address with the IA32_KERNEL_GS_BASE MSR. 178 * 179 * And the operating system can still setup the GS segment for a 180 * user thread without the need of loading a user thread GS with: 181 * - Using LKGS, available with FRED, to modify other attributes 182 * of the GS segment without compromising its ability always to 183 * operate with its own GS base address. 184 * - Accessing the GS segment base address for a user thread as 185 * before using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR. 186 * 187 * Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE 188 * MSR instead of the GS segment’s descriptor cache. As such, the 189 * operating system never changes its runtime GS base address. 190 */ 191 if (!cpu_feature_enabled(X86_FEATURE_FRED) && 192 !cpu_feature_enabled(X86_FEATURE_XENPV)) { 193 native_swapgs(); 194 gsbase = rdgsbase(); 195 native_swapgs(); 196 } else { 197 instrumentation_begin(); 198 rdmsrl(MSR_KERNEL_GS_BASE, gsbase); 199 instrumentation_end(); 200 } 201 202 return gsbase; 203 } 204 205 /* 206 * Out of line to be protected from kprobes and tracing. If this would be 207 * traced or probed than any access to a per CPU variable happens with 208 * the wrong GS. 209 * 210 * It is not used on Xen paravirt. When paravirt support is needed, it 211 * needs to be renamed with native_ prefix. 212 */ 213 static noinstr void __wrgsbase_inactive(unsigned long gsbase) 214 { 215 lockdep_assert_irqs_disabled(); 216 217 if (!cpu_feature_enabled(X86_FEATURE_FRED) && 218 !cpu_feature_enabled(X86_FEATURE_XENPV)) { 219 native_swapgs(); 220 wrgsbase(gsbase); 221 native_swapgs(); 222 } else { 223 instrumentation_begin(); 224 wrmsrl(MSR_KERNEL_GS_BASE, gsbase); 225 instrumentation_end(); 226 } 227 } 228 229 /* 230 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are 231 * not available. The goal is to be reasonably fast on non-FSGSBASE systems. 232 * It's forcibly inlined because it'll generate better code and this function 233 * is hot. 234 */ 235 static __always_inline void save_base_legacy(struct task_struct *prev_p, 236 unsigned short selector, 237 enum which_selector which) 238 { 239 if (likely(selector == 0)) { 240 /* 241 * On Intel (without X86_BUG_NULL_SEG), the segment base could 242 * be the pre-existing saved base or it could be zero. On AMD 243 * (with X86_BUG_NULL_SEG), the segment base could be almost 244 * anything. 245 * 246 * This branch is very hot (it's hit twice on almost every 247 * context switch between 64-bit programs), and avoiding 248 * the RDMSR helps a lot, so we just assume that whatever 249 * value is already saved is correct. This matches historical 250 * Linux behavior, so it won't break existing applications. 251 * 252 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we 253 * report that the base is zero, it needs to actually be zero: 254 * see the corresponding logic in load_seg_legacy. 255 */ 256 } else { 257 /* 258 * If the selector is 1, 2, or 3, then the base is zero on 259 * !X86_BUG_NULL_SEG CPUs and could be anything on 260 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux 261 * has never attempted to preserve the base across context 262 * switches. 263 * 264 * If selector > 3, then it refers to a real segment, and 265 * saving the base isn't necessary. 266 */ 267 if (which == FS) 268 prev_p->thread.fsbase = 0; 269 else 270 prev_p->thread.gsbase = 0; 271 } 272 } 273 274 static __always_inline void save_fsgs(struct task_struct *task) 275 { 276 savesegment(fs, task->thread.fsindex); 277 savesegment(gs, task->thread.gsindex); 278 if (static_cpu_has(X86_FEATURE_FSGSBASE)) { 279 /* 280 * If FSGSBASE is enabled, we can't make any useful guesses 281 * about the base, and user code expects us to save the current 282 * value. Fortunately, reading the base directly is efficient. 283 */ 284 task->thread.fsbase = rdfsbase(); 285 task->thread.gsbase = __rdgsbase_inactive(); 286 } else { 287 save_base_legacy(task, task->thread.fsindex, FS); 288 save_base_legacy(task, task->thread.gsindex, GS); 289 } 290 } 291 292 /* 293 * While a process is running,current->thread.fsbase and current->thread.gsbase 294 * may not match the corresponding CPU registers (see save_base_legacy()). 295 */ 296 void current_save_fsgs(void) 297 { 298 unsigned long flags; 299 300 /* Interrupts need to be off for FSGSBASE */ 301 local_irq_save(flags); 302 save_fsgs(current); 303 local_irq_restore(flags); 304 } 305 #if IS_ENABLED(CONFIG_KVM) 306 EXPORT_SYMBOL_GPL(current_save_fsgs); 307 #endif 308 309 static __always_inline void loadseg(enum which_selector which, 310 unsigned short sel) 311 { 312 if (which == FS) 313 loadsegment(fs, sel); 314 else 315 load_gs_index(sel); 316 } 317 318 static __always_inline void load_seg_legacy(unsigned short prev_index, 319 unsigned long prev_base, 320 unsigned short next_index, 321 unsigned long next_base, 322 enum which_selector which) 323 { 324 if (likely(next_index <= 3)) { 325 /* 326 * The next task is using 64-bit TLS, is not using this 327 * segment at all, or is having fun with arcane CPU features. 328 */ 329 if (next_base == 0) { 330 /* 331 * Nasty case: on AMD CPUs, we need to forcibly zero 332 * the base. 333 */ 334 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { 335 loadseg(which, __USER_DS); 336 loadseg(which, next_index); 337 } else { 338 /* 339 * We could try to exhaustively detect cases 340 * under which we can skip the segment load, 341 * but there's really only one case that matters 342 * for performance: if both the previous and 343 * next states are fully zeroed, we can skip 344 * the load. 345 * 346 * (This assumes that prev_base == 0 has no 347 * false positives. This is the case on 348 * Intel-style CPUs.) 349 */ 350 if (likely(prev_index | next_index | prev_base)) 351 loadseg(which, next_index); 352 } 353 } else { 354 if (prev_index != next_index) 355 loadseg(which, next_index); 356 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE, 357 next_base); 358 } 359 } else { 360 /* 361 * The next task is using a real segment. Loading the selector 362 * is sufficient. 363 */ 364 loadseg(which, next_index); 365 } 366 } 367 368 /* 369 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU 370 * is not XSTATE managed on context switch because that would require a 371 * lookup in the task's FPU xsave buffer and require to keep that updated 372 * in various places. 373 */ 374 static __always_inline void x86_pkru_load(struct thread_struct *prev, 375 struct thread_struct *next) 376 { 377 if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) 378 return; 379 380 /* Stash the prev task's value: */ 381 prev->pkru = rdpkru(); 382 383 /* 384 * PKRU writes are slightly expensive. Avoid them when not 385 * strictly necessary: 386 */ 387 if (prev->pkru != next->pkru) 388 wrpkru(next->pkru); 389 } 390 391 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev, 392 struct thread_struct *next) 393 { 394 if (static_cpu_has(X86_FEATURE_FSGSBASE)) { 395 /* Update the FS and GS selectors if they could have changed. */ 396 if (unlikely(prev->fsindex || next->fsindex)) 397 loadseg(FS, next->fsindex); 398 if (unlikely(prev->gsindex || next->gsindex)) 399 loadseg(GS, next->gsindex); 400 401 /* Update the bases. */ 402 wrfsbase(next->fsbase); 403 __wrgsbase_inactive(next->gsbase); 404 } else { 405 load_seg_legacy(prev->fsindex, prev->fsbase, 406 next->fsindex, next->fsbase, FS); 407 load_seg_legacy(prev->gsindex, prev->gsbase, 408 next->gsindex, next->gsbase, GS); 409 } 410 } 411 412 unsigned long x86_fsgsbase_read_task(struct task_struct *task, 413 unsigned short selector) 414 { 415 unsigned short idx = selector >> 3; 416 unsigned long base; 417 418 if (likely((selector & SEGMENT_TI_MASK) == 0)) { 419 if (unlikely(idx >= GDT_ENTRIES)) 420 return 0; 421 422 /* 423 * There are no user segments in the GDT with nonzero bases 424 * other than the TLS segments. 425 */ 426 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) 427 return 0; 428 429 idx -= GDT_ENTRY_TLS_MIN; 430 base = get_desc_base(&task->thread.tls_array[idx]); 431 } else { 432 #ifdef CONFIG_MODIFY_LDT_SYSCALL 433 struct ldt_struct *ldt; 434 435 /* 436 * If performance here mattered, we could protect the LDT 437 * with RCU. This is a slow path, though, so we can just 438 * take the mutex. 439 */ 440 mutex_lock(&task->mm->context.lock); 441 ldt = task->mm->context.ldt; 442 if (unlikely(!ldt || idx >= ldt->nr_entries)) 443 base = 0; 444 else 445 base = get_desc_base(ldt->entries + idx); 446 mutex_unlock(&task->mm->context.lock); 447 #else 448 base = 0; 449 #endif 450 } 451 452 return base; 453 } 454 455 unsigned long x86_gsbase_read_cpu_inactive(void) 456 { 457 unsigned long gsbase; 458 459 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) { 460 unsigned long flags; 461 462 local_irq_save(flags); 463 gsbase = __rdgsbase_inactive(); 464 local_irq_restore(flags); 465 } else { 466 rdmsrl(MSR_KERNEL_GS_BASE, gsbase); 467 } 468 469 return gsbase; 470 } 471 472 void x86_gsbase_write_cpu_inactive(unsigned long gsbase) 473 { 474 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) { 475 unsigned long flags; 476 477 local_irq_save(flags); 478 __wrgsbase_inactive(gsbase); 479 local_irq_restore(flags); 480 } else { 481 wrmsrl(MSR_KERNEL_GS_BASE, gsbase); 482 } 483 } 484 485 unsigned long x86_fsbase_read_task(struct task_struct *task) 486 { 487 unsigned long fsbase; 488 489 if (task == current) 490 fsbase = x86_fsbase_read_cpu(); 491 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) || 492 (task->thread.fsindex == 0)) 493 fsbase = task->thread.fsbase; 494 else 495 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex); 496 497 return fsbase; 498 } 499 500 unsigned long x86_gsbase_read_task(struct task_struct *task) 501 { 502 unsigned long gsbase; 503 504 if (task == current) 505 gsbase = x86_gsbase_read_cpu_inactive(); 506 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) || 507 (task->thread.gsindex == 0)) 508 gsbase = task->thread.gsbase; 509 else 510 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex); 511 512 return gsbase; 513 } 514 515 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase) 516 { 517 WARN_ON_ONCE(task == current); 518 519 task->thread.fsbase = fsbase; 520 } 521 522 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase) 523 { 524 WARN_ON_ONCE(task == current); 525 526 task->thread.gsbase = gsbase; 527 } 528 529 static void 530 start_thread_common(struct pt_regs *regs, unsigned long new_ip, 531 unsigned long new_sp, 532 u16 _cs, u16 _ss, u16 _ds) 533 { 534 WARN_ON_ONCE(regs != current_pt_regs()); 535 536 if (static_cpu_has(X86_BUG_NULL_SEG)) { 537 /* Loading zero below won't clear the base. */ 538 loadsegment(fs, __USER_DS); 539 load_gs_index(__USER_DS); 540 } 541 542 reset_thread_features(); 543 544 loadsegment(fs, 0); 545 loadsegment(es, _ds); 546 loadsegment(ds, _ds); 547 load_gs_index(0); 548 549 regs->ip = new_ip; 550 regs->sp = new_sp; 551 regs->csx = _cs; 552 regs->ssx = _ss; 553 /* 554 * Allow single-step trap and NMI when starting a new task, thus 555 * once the new task enters user space, single-step trap and NMI 556 * are both enabled immediately. 557 * 558 * Entering a new task is logically speaking a return from a 559 * system call (exec, fork, clone, etc.). As such, if ptrace 560 * enables single stepping a single step exception should be 561 * allowed to trigger immediately upon entering user space. 562 * This is not optional. 563 * 564 * NMI should *never* be disabled in user space. As such, this 565 * is an optional, opportunistic way to catch errors. 566 * 567 * Paranoia: High-order 48 bits above the lowest 16 bit SS are 568 * discarded by the legacy IRET instruction on all Intel, AMD, 569 * and Cyrix/Centaur/VIA CPUs, thus can be set unconditionally, 570 * even when FRED is not enabled. But we choose the safer side 571 * to use these bits only when FRED is enabled. 572 */ 573 if (cpu_feature_enabled(X86_FEATURE_FRED)) { 574 regs->fred_ss.swevent = true; 575 regs->fred_ss.nmi = true; 576 } 577 578 regs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED; 579 } 580 581 void 582 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 583 { 584 start_thread_common(regs, new_ip, new_sp, 585 __USER_CS, __USER_DS, 0); 586 } 587 EXPORT_SYMBOL_GPL(start_thread); 588 589 #ifdef CONFIG_COMPAT 590 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32) 591 { 592 start_thread_common(regs, new_ip, new_sp, 593 x32 ? __USER_CS : __USER32_CS, 594 __USER_DS, __USER_DS); 595 } 596 #endif 597 598 /* 599 * switch_to(x,y) should switch tasks from x to y. 600 * 601 * This could still be optimized: 602 * - fold all the options into a flag word and test it with a single test. 603 * - could test fs/gs bitsliced 604 * 605 * Kprobes not supported here. Set the probe on schedule instead. 606 * Function graph tracer not supported too. 607 */ 608 __no_kmsan_checks 609 __visible __notrace_funcgraph struct task_struct * 610 __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 611 { 612 struct thread_struct *prev = &prev_p->thread; 613 struct thread_struct *next = &next_p->thread; 614 int cpu = smp_processor_id(); 615 616 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) && 617 this_cpu_read(pcpu_hot.hardirq_stack_inuse)); 618 619 if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD)) 620 switch_fpu_prepare(prev_p, cpu); 621 622 /* We must save %fs and %gs before load_TLS() because 623 * %fs and %gs may be cleared by load_TLS(). 624 * 625 * (e.g. xen_load_tls()) 626 */ 627 save_fsgs(prev_p); 628 629 /* 630 * Load TLS before restoring any segments so that segment loads 631 * reference the correct GDT entries. 632 */ 633 load_TLS(next, cpu); 634 635 /* 636 * Leave lazy mode, flushing any hypercalls made here. This 637 * must be done after loading TLS entries in the GDT but before 638 * loading segments that might reference them. 639 */ 640 arch_end_context_switch(next_p); 641 642 /* Switch DS and ES. 643 * 644 * Reading them only returns the selectors, but writing them (if 645 * nonzero) loads the full descriptor from the GDT or LDT. The 646 * LDT for next is loaded in switch_mm, and the GDT is loaded 647 * above. 648 * 649 * We therefore need to write new values to the segment 650 * registers on every context switch unless both the new and old 651 * values are zero. 652 * 653 * Note that we don't need to do anything for CS and SS, as 654 * those are saved and restored as part of pt_regs. 655 */ 656 savesegment(es, prev->es); 657 if (unlikely(next->es | prev->es)) 658 loadsegment(es, next->es); 659 660 savesegment(ds, prev->ds); 661 if (unlikely(next->ds | prev->ds)) 662 loadsegment(ds, next->ds); 663 664 x86_fsgsbase_load(prev, next); 665 666 x86_pkru_load(prev, next); 667 668 /* 669 * Switch the PDA and FPU contexts. 670 */ 671 raw_cpu_write(pcpu_hot.current_task, next_p); 672 raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p)); 673 674 switch_fpu_finish(next_p); 675 676 /* Reload sp0. */ 677 update_task_stack(next_p); 678 679 switch_to_extra(prev_p, next_p); 680 681 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { 682 /* 683 * AMD CPUs have a misfeature: SYSRET sets the SS selector but 684 * does not update the cached descriptor. As a result, if we 685 * do SYSRET while SS is NULL, we'll end up in user mode with 686 * SS apparently equal to __USER_DS but actually unusable. 687 * 688 * The straightforward workaround would be to fix it up just 689 * before SYSRET, but that would slow down the system call 690 * fast paths. Instead, we ensure that SS is never NULL in 691 * system call context. We do this by replacing NULL SS 692 * selectors at every context switch. SYSCALL sets up a valid 693 * SS, so the only way to get NULL is to re-enter the kernel 694 * from CPL 3 through an interrupt. Since that can't happen 695 * in the same task as a running syscall, we are guaranteed to 696 * context switch between every interrupt vector entry and a 697 * subsequent SYSRET. 698 * 699 * We read SS first because SS reads are much faster than 700 * writes. Out of caution, we force SS to __KERNEL_DS even if 701 * it previously had a different non-NULL value. 702 */ 703 unsigned short ss_sel; 704 savesegment(ss, ss_sel); 705 if (ss_sel != __KERNEL_DS) 706 loadsegment(ss, __KERNEL_DS); 707 } 708 709 /* Load the Intel cache allocation PQR MSR. */ 710 resctrl_sched_in(next_p); 711 712 return prev_p; 713 } 714 715 void set_personality_64bit(void) 716 { 717 /* inherit personality from parent */ 718 719 /* Make sure to be in 64bit mode */ 720 clear_thread_flag(TIF_ADDR32); 721 /* Pretend that this comes from a 64bit execve */ 722 task_pt_regs(current)->orig_ax = __NR_execve; 723 current_thread_info()->status &= ~TS_COMPAT; 724 if (current->mm) 725 __set_bit(MM_CONTEXT_HAS_VSYSCALL, ¤t->mm->context.flags); 726 727 /* TBD: overwrites user setup. Should have two bits. 728 But 64bit processes have always behaved this way, 729 so it's not too bad. The main problem is just that 730 32bit children are affected again. */ 731 current->personality &= ~READ_IMPLIES_EXEC; 732 } 733 734 static void __set_personality_x32(void) 735 { 736 #ifdef CONFIG_X86_X32_ABI 737 if (current->mm) 738 current->mm->context.flags = 0; 739 740 current->personality &= ~READ_IMPLIES_EXEC; 741 /* 742 * in_32bit_syscall() uses the presence of the x32 syscall bit 743 * flag to determine compat status. The x86 mmap() code relies on 744 * the syscall bitness so set x32 syscall bit right here to make 745 * in_32bit_syscall() work during exec(). 746 * 747 * Pretend to come from a x32 execve. 748 */ 749 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT; 750 current_thread_info()->status &= ~TS_COMPAT; 751 #endif 752 } 753 754 static void __set_personality_ia32(void) 755 { 756 #ifdef CONFIG_IA32_EMULATION 757 if (current->mm) { 758 /* 759 * uprobes applied to this MM need to know this and 760 * cannot use user_64bit_mode() at that time. 761 */ 762 __set_bit(MM_CONTEXT_UPROBE_IA32, ¤t->mm->context.flags); 763 } 764 765 current->personality |= force_personality32; 766 /* Prepare the first "return" to user space */ 767 task_pt_regs(current)->orig_ax = __NR_ia32_execve; 768 current_thread_info()->status |= TS_COMPAT; 769 #endif 770 } 771 772 void set_personality_ia32(bool x32) 773 { 774 /* Make sure to be in 32bit mode */ 775 set_thread_flag(TIF_ADDR32); 776 777 if (x32) 778 __set_personality_x32(); 779 else 780 __set_personality_ia32(); 781 } 782 EXPORT_SYMBOL_GPL(set_personality_ia32); 783 784 #ifdef CONFIG_CHECKPOINT_RESTORE 785 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr) 786 { 787 int ret; 788 789 ret = map_vdso_once(image, addr); 790 if (ret) 791 return ret; 792 793 return (long)image->size; 794 } 795 #endif 796 797 #ifdef CONFIG_ADDRESS_MASKING 798 799 #define LAM_U57_BITS 6 800 801 static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits) 802 { 803 if (!cpu_feature_enabled(X86_FEATURE_LAM)) 804 return -ENODEV; 805 806 /* PTRACE_ARCH_PRCTL */ 807 if (current->mm != mm) 808 return -EINVAL; 809 810 if (mm_valid_pasid(mm) && 811 !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags)) 812 return -EINVAL; 813 814 if (mmap_write_lock_killable(mm)) 815 return -EINTR; 816 817 if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) { 818 mmap_write_unlock(mm); 819 return -EBUSY; 820 } 821 822 if (!nr_bits) { 823 mmap_write_unlock(mm); 824 return -EINVAL; 825 } else if (nr_bits <= LAM_U57_BITS) { 826 mm->context.lam_cr3_mask = X86_CR3_LAM_U57; 827 mm->context.untag_mask = ~GENMASK(62, 57); 828 } else { 829 mmap_write_unlock(mm); 830 return -EINVAL; 831 } 832 833 write_cr3(__read_cr3() | mm->context.lam_cr3_mask); 834 set_tlbstate_lam_mode(mm); 835 set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags); 836 837 mmap_write_unlock(mm); 838 839 return 0; 840 } 841 #endif 842 843 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2) 844 { 845 int ret = 0; 846 847 switch (option) { 848 case ARCH_SET_GS: { 849 if (unlikely(arg2 >= TASK_SIZE_MAX)) 850 return -EPERM; 851 852 preempt_disable(); 853 /* 854 * ARCH_SET_GS has always overwritten the index 855 * and the base. Zero is the most sensible value 856 * to put in the index, and is the only value that 857 * makes any sense if FSGSBASE is unavailable. 858 */ 859 if (task == current) { 860 loadseg(GS, 0); 861 x86_gsbase_write_cpu_inactive(arg2); 862 863 /* 864 * On non-FSGSBASE systems, save_base_legacy() expects 865 * that we also fill in thread.gsbase. 866 */ 867 task->thread.gsbase = arg2; 868 869 } else { 870 task->thread.gsindex = 0; 871 x86_gsbase_write_task(task, arg2); 872 } 873 preempt_enable(); 874 break; 875 } 876 case ARCH_SET_FS: { 877 /* 878 * Not strictly needed for %fs, but do it for symmetry 879 * with %gs 880 */ 881 if (unlikely(arg2 >= TASK_SIZE_MAX)) 882 return -EPERM; 883 884 preempt_disable(); 885 /* 886 * Set the selector to 0 for the same reason 887 * as %gs above. 888 */ 889 if (task == current) { 890 loadseg(FS, 0); 891 x86_fsbase_write_cpu(arg2); 892 893 /* 894 * On non-FSGSBASE systems, save_base_legacy() expects 895 * that we also fill in thread.fsbase. 896 */ 897 task->thread.fsbase = arg2; 898 } else { 899 task->thread.fsindex = 0; 900 x86_fsbase_write_task(task, arg2); 901 } 902 preempt_enable(); 903 break; 904 } 905 case ARCH_GET_FS: { 906 unsigned long base = x86_fsbase_read_task(task); 907 908 ret = put_user(base, (unsigned long __user *)arg2); 909 break; 910 } 911 case ARCH_GET_GS: { 912 unsigned long base = x86_gsbase_read_task(task); 913 914 ret = put_user(base, (unsigned long __user *)arg2); 915 break; 916 } 917 918 #ifdef CONFIG_CHECKPOINT_RESTORE 919 # ifdef CONFIG_X86_X32_ABI 920 case ARCH_MAP_VDSO_X32: 921 return prctl_map_vdso(&vdso_image_x32, arg2); 922 # endif 923 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION 924 case ARCH_MAP_VDSO_32: 925 return prctl_map_vdso(&vdso_image_32, arg2); 926 # endif 927 case ARCH_MAP_VDSO_64: 928 return prctl_map_vdso(&vdso_image_64, arg2); 929 #endif 930 #ifdef CONFIG_ADDRESS_MASKING 931 case ARCH_GET_UNTAG_MASK: 932 return put_user(task->mm->context.untag_mask, 933 (unsigned long __user *)arg2); 934 case ARCH_ENABLE_TAGGED_ADDR: 935 return prctl_enable_tagged_addr(task->mm, arg2); 936 case ARCH_FORCE_TAGGED_SVA: 937 if (current != task) 938 return -EINVAL; 939 set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags); 940 return 0; 941 case ARCH_GET_MAX_TAG_BITS: 942 if (!cpu_feature_enabled(X86_FEATURE_LAM)) 943 return put_user(0, (unsigned long __user *)arg2); 944 else 945 return put_user(LAM_U57_BITS, (unsigned long __user *)arg2); 946 #endif 947 case ARCH_SHSTK_ENABLE: 948 case ARCH_SHSTK_DISABLE: 949 case ARCH_SHSTK_LOCK: 950 case ARCH_SHSTK_UNLOCK: 951 case ARCH_SHSTK_STATUS: 952 return shstk_prctl(task, option, arg2); 953 default: 954 ret = -EINVAL; 955 break; 956 } 957 958 return ret; 959 } 960 961 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) 962 { 963 long ret; 964 965 ret = do_arch_prctl_64(current, option, arg2); 966 if (ret == -EINVAL) 967 ret = do_arch_prctl_common(option, arg2); 968 969 return ret; 970 } 971 972 #ifdef CONFIG_IA32_EMULATION 973 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) 974 { 975 return do_arch_prctl_common(option, arg2); 976 } 977 #endif 978 979 unsigned long KSTK_ESP(struct task_struct *task) 980 { 981 return task_pt_regs(task)->sp; 982 } 983