1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 * 7 * X86-64 port 8 * Andi Kleen. 9 * 10 * CPU hotplug support - ashok.raj@intel.com 11 */ 12 13 /* 14 * This file handles the architecture-dependent parts of process handling.. 15 */ 16 17 #include <linux/cpu.h> 18 #include <linux/errno.h> 19 #include <linux/sched.h> 20 #include <linux/fs.h> 21 #include <linux/kernel.h> 22 #include <linux/mm.h> 23 #include <linux/elfcore.h> 24 #include <linux/smp.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/module.h> 30 #include <linux/ptrace.h> 31 #include <linux/notifier.h> 32 #include <linux/kprobes.h> 33 #include <linux/kdebug.h> 34 #include <linux/prctl.h> 35 #include <linux/uaccess.h> 36 #include <linux/io.h> 37 #include <linux/ftrace.h> 38 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 #include <asm/fpu/internal.h> 42 #include <asm/mmu_context.h> 43 #include <asm/prctl.h> 44 #include <asm/desc.h> 45 #include <asm/proto.h> 46 #include <asm/ia32.h> 47 #include <asm/idle.h> 48 #include <asm/syscalls.h> 49 #include <asm/debugreg.h> 50 #include <asm/switch_to.h> 51 #include <asm/xen/hypervisor.h> 52 53 asmlinkage extern void ret_from_fork(void); 54 55 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch); 56 57 /* Prints also some state that isn't saved in the pt_regs */ 58 void __show_regs(struct pt_regs *regs, int all) 59 { 60 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; 61 unsigned long d0, d1, d2, d3, d6, d7; 62 unsigned int fsindex, gsindex; 63 unsigned int ds, cs, es; 64 65 printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip); 66 printk_address(regs->ip); 67 printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss, 68 regs->sp, regs->flags); 69 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n", 70 regs->ax, regs->bx, regs->cx); 71 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n", 72 regs->dx, regs->si, regs->di); 73 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n", 74 regs->bp, regs->r8, regs->r9); 75 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n", 76 regs->r10, regs->r11, regs->r12); 77 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n", 78 regs->r13, regs->r14, regs->r15); 79 80 asm("movl %%ds,%0" : "=r" (ds)); 81 asm("movl %%cs,%0" : "=r" (cs)); 82 asm("movl %%es,%0" : "=r" (es)); 83 asm("movl %%fs,%0" : "=r" (fsindex)); 84 asm("movl %%gs,%0" : "=r" (gsindex)); 85 86 rdmsrl(MSR_FS_BASE, fs); 87 rdmsrl(MSR_GS_BASE, gs); 88 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); 89 90 if (!all) 91 return; 92 93 cr0 = read_cr0(); 94 cr2 = read_cr2(); 95 cr3 = read_cr3(); 96 cr4 = __read_cr4(); 97 98 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", 99 fs, fsindex, gs, gsindex, shadowgs); 100 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, 101 es, cr0); 102 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, 103 cr4); 104 105 get_debugreg(d0, 0); 106 get_debugreg(d1, 1); 107 get_debugreg(d2, 2); 108 get_debugreg(d3, 3); 109 get_debugreg(d6, 6); 110 get_debugreg(d7, 7); 111 112 /* Only print out debug registers if they are in their non-default state. */ 113 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && 114 (d6 == DR6_RESERVED) && (d7 == 0x400)) 115 return; 116 117 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2); 118 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7); 119 120 if (boot_cpu_has(X86_FEATURE_OSPKE)) 121 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru()); 122 } 123 124 void release_thread(struct task_struct *dead_task) 125 { 126 if (dead_task->mm) { 127 #ifdef CONFIG_MODIFY_LDT_SYSCALL 128 if (dead_task->mm->context.ldt) { 129 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n", 130 dead_task->comm, 131 dead_task->mm->context.ldt->entries, 132 dead_task->mm->context.ldt->size); 133 BUG(); 134 } 135 #endif 136 } 137 } 138 139 int copy_thread_tls(unsigned long clone_flags, unsigned long sp, 140 unsigned long arg, struct task_struct *p, unsigned long tls) 141 { 142 int err; 143 struct pt_regs *childregs; 144 struct task_struct *me = current; 145 146 p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE; 147 childregs = task_pt_regs(p); 148 p->thread.sp = (unsigned long) childregs; 149 set_tsk_thread_flag(p, TIF_FORK); 150 p->thread.io_bitmap_ptr = NULL; 151 152 savesegment(gs, p->thread.gsindex); 153 p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase; 154 savesegment(fs, p->thread.fsindex); 155 p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase; 156 savesegment(es, p->thread.es); 157 savesegment(ds, p->thread.ds); 158 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 159 160 if (unlikely(p->flags & PF_KTHREAD)) { 161 /* kernel thread */ 162 memset(childregs, 0, sizeof(struct pt_regs)); 163 childregs->sp = (unsigned long)childregs; 164 childregs->ss = __KERNEL_DS; 165 childregs->bx = sp; /* function */ 166 childregs->bp = arg; 167 childregs->orig_ax = -1; 168 childregs->cs = __KERNEL_CS | get_kernel_rpl(); 169 childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED; 170 return 0; 171 } 172 *childregs = *current_pt_regs(); 173 174 childregs->ax = 0; 175 if (sp) 176 childregs->sp = sp; 177 178 err = -ENOMEM; 179 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) { 180 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr, 181 IO_BITMAP_BYTES, GFP_KERNEL); 182 if (!p->thread.io_bitmap_ptr) { 183 p->thread.io_bitmap_max = 0; 184 return -ENOMEM; 185 } 186 set_tsk_thread_flag(p, TIF_IO_BITMAP); 187 } 188 189 /* 190 * Set a new TLS for the child thread? 191 */ 192 if (clone_flags & CLONE_SETTLS) { 193 #ifdef CONFIG_IA32_EMULATION 194 if (in_ia32_syscall()) 195 err = do_set_thread_area(p, -1, 196 (struct user_desc __user *)tls, 0); 197 else 198 #endif 199 err = do_arch_prctl(p, ARCH_SET_FS, tls); 200 if (err) 201 goto out; 202 } 203 err = 0; 204 out: 205 if (err && p->thread.io_bitmap_ptr) { 206 kfree(p->thread.io_bitmap_ptr); 207 p->thread.io_bitmap_max = 0; 208 } 209 210 return err; 211 } 212 213 static void 214 start_thread_common(struct pt_regs *regs, unsigned long new_ip, 215 unsigned long new_sp, 216 unsigned int _cs, unsigned int _ss, unsigned int _ds) 217 { 218 loadsegment(fs, 0); 219 loadsegment(es, _ds); 220 loadsegment(ds, _ds); 221 load_gs_index(0); 222 regs->ip = new_ip; 223 regs->sp = new_sp; 224 regs->cs = _cs; 225 regs->ss = _ss; 226 regs->flags = X86_EFLAGS_IF; 227 force_iret(); 228 } 229 230 void 231 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 232 { 233 start_thread_common(regs, new_ip, new_sp, 234 __USER_CS, __USER_DS, 0); 235 } 236 237 #ifdef CONFIG_COMPAT 238 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp) 239 { 240 start_thread_common(regs, new_ip, new_sp, 241 test_thread_flag(TIF_X32) 242 ? __USER_CS : __USER32_CS, 243 __USER_DS, __USER_DS); 244 } 245 #endif 246 247 /* 248 * switch_to(x,y) should switch tasks from x to y. 249 * 250 * This could still be optimized: 251 * - fold all the options into a flag word and test it with a single test. 252 * - could test fs/gs bitsliced 253 * 254 * Kprobes not supported here. Set the probe on schedule instead. 255 * Function graph tracer not supported too. 256 */ 257 __visible __notrace_funcgraph struct task_struct * 258 __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 259 { 260 struct thread_struct *prev = &prev_p->thread; 261 struct thread_struct *next = &next_p->thread; 262 struct fpu *prev_fpu = &prev->fpu; 263 struct fpu *next_fpu = &next->fpu; 264 int cpu = smp_processor_id(); 265 struct tss_struct *tss = &per_cpu(cpu_tss, cpu); 266 unsigned prev_fsindex, prev_gsindex; 267 fpu_switch_t fpu_switch; 268 269 fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu); 270 271 /* We must save %fs and %gs before load_TLS() because 272 * %fs and %gs may be cleared by load_TLS(). 273 * 274 * (e.g. xen_load_tls()) 275 */ 276 savesegment(fs, prev_fsindex); 277 savesegment(gs, prev_gsindex); 278 279 /* 280 * Load TLS before restoring any segments so that segment loads 281 * reference the correct GDT entries. 282 */ 283 load_TLS(next, cpu); 284 285 /* 286 * Leave lazy mode, flushing any hypercalls made here. This 287 * must be done after loading TLS entries in the GDT but before 288 * loading segments that might reference them, and and it must 289 * be done before fpu__restore(), so the TS bit is up to 290 * date. 291 */ 292 arch_end_context_switch(next_p); 293 294 /* Switch DS and ES. 295 * 296 * Reading them only returns the selectors, but writing them (if 297 * nonzero) loads the full descriptor from the GDT or LDT. The 298 * LDT for next is loaded in switch_mm, and the GDT is loaded 299 * above. 300 * 301 * We therefore need to write new values to the segment 302 * registers on every context switch unless both the new and old 303 * values are zero. 304 * 305 * Note that we don't need to do anything for CS and SS, as 306 * those are saved and restored as part of pt_regs. 307 */ 308 savesegment(es, prev->es); 309 if (unlikely(next->es | prev->es)) 310 loadsegment(es, next->es); 311 312 savesegment(ds, prev->ds); 313 if (unlikely(next->ds | prev->ds)) 314 loadsegment(ds, next->ds); 315 316 /* 317 * Switch FS and GS. 318 * 319 * These are even more complicated than DS and ES: they have 320 * 64-bit bases are that controlled by arch_prctl. The bases 321 * don't necessarily match the selectors, as user code can do 322 * any number of things to cause them to be inconsistent. 323 * 324 * We don't promise to preserve the bases if the selectors are 325 * nonzero. We also don't promise to preserve the base if the 326 * selector is zero and the base doesn't match whatever was 327 * most recently passed to ARCH_SET_FS/GS. (If/when the 328 * FSGSBASE instructions are enabled, we'll need to offer 329 * stronger guarantees.) 330 * 331 * As an invariant, 332 * (fsbase != 0 && fsindex != 0) || (gsbase != 0 && gsindex != 0) is 333 * impossible. 334 */ 335 if (next->fsindex) { 336 /* Loading a nonzero value into FS sets the index and base. */ 337 loadsegment(fs, next->fsindex); 338 } else { 339 if (next->fsbase) { 340 /* Next index is zero but next base is nonzero. */ 341 if (prev_fsindex) 342 loadsegment(fs, 0); 343 wrmsrl(MSR_FS_BASE, next->fsbase); 344 } else { 345 /* Next base and index are both zero. */ 346 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { 347 /* 348 * We don't know the previous base and can't 349 * find out without RDMSR. Forcibly clear it. 350 */ 351 loadsegment(fs, __USER_DS); 352 loadsegment(fs, 0); 353 } else { 354 /* 355 * If the previous index is zero and ARCH_SET_FS 356 * didn't change the base, then the base is 357 * also zero and we don't need to do anything. 358 */ 359 if (prev->fsbase || prev_fsindex) 360 loadsegment(fs, 0); 361 } 362 } 363 } 364 /* 365 * Save the old state and preserve the invariant. 366 * NB: if prev_fsindex == 0, then we can't reliably learn the base 367 * without RDMSR because Intel user code can zero it without telling 368 * us and AMD user code can program any 32-bit value without telling 369 * us. 370 */ 371 if (prev_fsindex) 372 prev->fsbase = 0; 373 prev->fsindex = prev_fsindex; 374 375 if (next->gsindex) { 376 /* Loading a nonzero value into GS sets the index and base. */ 377 load_gs_index(next->gsindex); 378 } else { 379 if (next->gsbase) { 380 /* Next index is zero but next base is nonzero. */ 381 if (prev_gsindex) 382 load_gs_index(0); 383 wrmsrl(MSR_KERNEL_GS_BASE, next->gsbase); 384 } else { 385 /* Next base and index are both zero. */ 386 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { 387 /* 388 * We don't know the previous base and can't 389 * find out without RDMSR. Forcibly clear it. 390 * 391 * This contains a pointless SWAPGS pair. 392 * Fixing it would involve an explicit check 393 * for Xen or a new pvop. 394 */ 395 load_gs_index(__USER_DS); 396 load_gs_index(0); 397 } else { 398 /* 399 * If the previous index is zero and ARCH_SET_GS 400 * didn't change the base, then the base is 401 * also zero and we don't need to do anything. 402 */ 403 if (prev->gsbase || prev_gsindex) 404 load_gs_index(0); 405 } 406 } 407 } 408 /* 409 * Save the old state and preserve the invariant. 410 * NB: if prev_gsindex == 0, then we can't reliably learn the base 411 * without RDMSR because Intel user code can zero it without telling 412 * us and AMD user code can program any 32-bit value without telling 413 * us. 414 */ 415 if (prev_gsindex) 416 prev->gsbase = 0; 417 prev->gsindex = prev_gsindex; 418 419 switch_fpu_finish(next_fpu, fpu_switch); 420 421 /* 422 * Switch the PDA and FPU contexts. 423 */ 424 this_cpu_write(current_task, next_p); 425 426 /* Reload esp0 and ss1. This changes current_thread_info(). */ 427 load_sp0(tss, next); 428 429 /* 430 * Now maybe reload the debug registers and handle I/O bitmaps 431 */ 432 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT || 433 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV)) 434 __switch_to_xtra(prev_p, next_p, tss); 435 436 #ifdef CONFIG_XEN 437 /* 438 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and 439 * current_pt_regs()->flags may not match the current task's 440 * intended IOPL. We need to switch it manually. 441 */ 442 if (unlikely(static_cpu_has(X86_FEATURE_XENPV) && 443 prev->iopl != next->iopl)) 444 xen_set_iopl_mask(next->iopl); 445 #endif 446 447 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { 448 /* 449 * AMD CPUs have a misfeature: SYSRET sets the SS selector but 450 * does not update the cached descriptor. As a result, if we 451 * do SYSRET while SS is NULL, we'll end up in user mode with 452 * SS apparently equal to __USER_DS but actually unusable. 453 * 454 * The straightforward workaround would be to fix it up just 455 * before SYSRET, but that would slow down the system call 456 * fast paths. Instead, we ensure that SS is never NULL in 457 * system call context. We do this by replacing NULL SS 458 * selectors at every context switch. SYSCALL sets up a valid 459 * SS, so the only way to get NULL is to re-enter the kernel 460 * from CPL 3 through an interrupt. Since that can't happen 461 * in the same task as a running syscall, we are guaranteed to 462 * context switch between every interrupt vector entry and a 463 * subsequent SYSRET. 464 * 465 * We read SS first because SS reads are much faster than 466 * writes. Out of caution, we force SS to __KERNEL_DS even if 467 * it previously had a different non-NULL value. 468 */ 469 unsigned short ss_sel; 470 savesegment(ss, ss_sel); 471 if (ss_sel != __KERNEL_DS) 472 loadsegment(ss, __KERNEL_DS); 473 } 474 475 return prev_p; 476 } 477 478 void set_personality_64bit(void) 479 { 480 /* inherit personality from parent */ 481 482 /* Make sure to be in 64bit mode */ 483 clear_thread_flag(TIF_IA32); 484 clear_thread_flag(TIF_ADDR32); 485 clear_thread_flag(TIF_X32); 486 487 /* Ensure the corresponding mm is not marked. */ 488 if (current->mm) 489 current->mm->context.ia32_compat = 0; 490 491 /* TBD: overwrites user setup. Should have two bits. 492 But 64bit processes have always behaved this way, 493 so it's not too bad. The main problem is just that 494 32bit childs are affected again. */ 495 current->personality &= ~READ_IMPLIES_EXEC; 496 } 497 498 void set_personality_ia32(bool x32) 499 { 500 /* inherit personality from parent */ 501 502 /* Make sure to be in 32bit mode */ 503 set_thread_flag(TIF_ADDR32); 504 505 /* Mark the associated mm as containing 32-bit tasks. */ 506 if (x32) { 507 clear_thread_flag(TIF_IA32); 508 set_thread_flag(TIF_X32); 509 if (current->mm) 510 current->mm->context.ia32_compat = TIF_X32; 511 current->personality &= ~READ_IMPLIES_EXEC; 512 /* in_compat_syscall() uses the presence of the x32 513 syscall bit flag to determine compat status */ 514 current_thread_info()->status &= ~TS_COMPAT; 515 } else { 516 set_thread_flag(TIF_IA32); 517 clear_thread_flag(TIF_X32); 518 if (current->mm) 519 current->mm->context.ia32_compat = TIF_IA32; 520 current->personality |= force_personality32; 521 /* Prepare the first "return" to user space */ 522 current_thread_info()->status |= TS_COMPAT; 523 } 524 } 525 EXPORT_SYMBOL_GPL(set_personality_ia32); 526 527 long do_arch_prctl(struct task_struct *task, int code, unsigned long addr) 528 { 529 int ret = 0; 530 int doit = task == current; 531 int cpu; 532 533 switch (code) { 534 case ARCH_SET_GS: 535 if (addr >= TASK_SIZE_MAX) 536 return -EPERM; 537 cpu = get_cpu(); 538 task->thread.gsindex = 0; 539 task->thread.gsbase = addr; 540 if (doit) { 541 load_gs_index(0); 542 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr); 543 } 544 put_cpu(); 545 break; 546 case ARCH_SET_FS: 547 /* Not strictly needed for fs, but do it for symmetry 548 with gs */ 549 if (addr >= TASK_SIZE_MAX) 550 return -EPERM; 551 cpu = get_cpu(); 552 task->thread.fsindex = 0; 553 task->thread.fsbase = addr; 554 if (doit) { 555 /* set the selector to 0 to not confuse __switch_to */ 556 loadsegment(fs, 0); 557 ret = wrmsrl_safe(MSR_FS_BASE, addr); 558 } 559 put_cpu(); 560 break; 561 case ARCH_GET_FS: { 562 unsigned long base; 563 if (doit) 564 rdmsrl(MSR_FS_BASE, base); 565 else 566 base = task->thread.fsbase; 567 ret = put_user(base, (unsigned long __user *)addr); 568 break; 569 } 570 case ARCH_GET_GS: { 571 unsigned long base; 572 if (doit) 573 rdmsrl(MSR_KERNEL_GS_BASE, base); 574 else 575 base = task->thread.gsbase; 576 ret = put_user(base, (unsigned long __user *)addr); 577 break; 578 } 579 580 default: 581 ret = -EINVAL; 582 break; 583 } 584 585 return ret; 586 } 587 588 long sys_arch_prctl(int code, unsigned long addr) 589 { 590 return do_arch_prctl(current, code, addr); 591 } 592 593 unsigned long KSTK_ESP(struct task_struct *task) 594 { 595 return task_pt_regs(task)->sp; 596 } 597