xref: /linux/arch/x86/kernel/process_32.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/ldt.h>
45 #include <asm/processor.h>
46 #include <asm/i387.h>
47 #include <asm/desc.h>
48 #include <asm/vm86.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
52 
53 #include <linux/err.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/kdebug.h>
58 
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60 
61 static int hlt_counter;
62 
63 unsigned long boot_option_idle_override = 0;
64 EXPORT_SYMBOL(boot_option_idle_override);
65 
66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67 EXPORT_PER_CPU_SYMBOL(current_task);
68 
69 DEFINE_PER_CPU(int, cpu_number);
70 EXPORT_PER_CPU_SYMBOL(cpu_number);
71 
72 /*
73  * Return saved PC of a blocked thread.
74  */
75 unsigned long thread_saved_pc(struct task_struct *tsk)
76 {
77 	return ((unsigned long *)tsk->thread.sp)[3];
78 }
79 
80 /*
81  * Powermanagement idle function, if any..
82  */
83 void (*pm_idle)(void);
84 EXPORT_SYMBOL(pm_idle);
85 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
86 
87 void disable_hlt(void)
88 {
89 	hlt_counter++;
90 }
91 
92 EXPORT_SYMBOL(disable_hlt);
93 
94 void enable_hlt(void)
95 {
96 	hlt_counter--;
97 }
98 
99 EXPORT_SYMBOL(enable_hlt);
100 
101 /*
102  * We use this if we don't have any better
103  * idle routine..
104  */
105 void default_idle(void)
106 {
107 	if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
108 		current_thread_info()->status &= ~TS_POLLING;
109 		/*
110 		 * TS_POLLING-cleared state must be visible before we
111 		 * test NEED_RESCHED:
112 		 */
113 		smp_mb();
114 
115 		local_irq_disable();
116 		if (!need_resched()) {
117 			ktime_t t0, t1;
118 			u64 t0n, t1n;
119 
120 			t0 = ktime_get();
121 			t0n = ktime_to_ns(t0);
122 			safe_halt();	/* enables interrupts racelessly */
123 			local_irq_disable();
124 			t1 = ktime_get();
125 			t1n = ktime_to_ns(t1);
126 			sched_clock_idle_wakeup_event(t1n - t0n);
127 		}
128 		local_irq_enable();
129 		current_thread_info()->status |= TS_POLLING;
130 	} else {
131 		/* loop is done by the caller */
132 		cpu_relax();
133 	}
134 }
135 #ifdef CONFIG_APM_MODULE
136 EXPORT_SYMBOL(default_idle);
137 #endif
138 
139 /*
140  * On SMP it's slightly faster (but much more power-consuming!)
141  * to poll the ->work.need_resched flag instead of waiting for the
142  * cross-CPU IPI to arrive. Use this option with caution.
143  */
144 static void poll_idle(void)
145 {
146 	cpu_relax();
147 }
148 
149 #ifdef CONFIG_HOTPLUG_CPU
150 #include <asm/nmi.h>
151 /* We don't actually take CPU down, just spin without interrupts. */
152 static inline void play_dead(void)
153 {
154 	/* This must be done before dead CPU ack */
155 	cpu_exit_clear();
156 	wbinvd();
157 	mb();
158 	/* Ack it */
159 	__get_cpu_var(cpu_state) = CPU_DEAD;
160 
161 	/*
162 	 * With physical CPU hotplug, we should halt the cpu
163 	 */
164 	local_irq_disable();
165 	while (1)
166 		halt();
167 }
168 #else
169 static inline void play_dead(void)
170 {
171 	BUG();
172 }
173 #endif /* CONFIG_HOTPLUG_CPU */
174 
175 /*
176  * The idle thread. There's no useful work to be
177  * done, so just try to conserve power and have a
178  * low exit latency (ie sit in a loop waiting for
179  * somebody to say that they'd like to reschedule)
180  */
181 void cpu_idle(void)
182 {
183 	int cpu = smp_processor_id();
184 
185 	current_thread_info()->status |= TS_POLLING;
186 
187 	/* endless idle loop with no priority at all */
188 	while (1) {
189 		tick_nohz_stop_sched_tick();
190 		while (!need_resched()) {
191 			void (*idle)(void);
192 
193 			if (__get_cpu_var(cpu_idle_state))
194 				__get_cpu_var(cpu_idle_state) = 0;
195 
196 			check_pgt_cache();
197 			rmb();
198 			idle = pm_idle;
199 
200 			if (rcu_pending(cpu))
201 				rcu_check_callbacks(cpu, 0);
202 
203 			if (!idle)
204 				idle = default_idle;
205 
206 			if (cpu_is_offline(cpu))
207 				play_dead();
208 
209 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
210 			idle();
211 		}
212 		tick_nohz_restart_sched_tick();
213 		preempt_enable_no_resched();
214 		schedule();
215 		preempt_disable();
216 	}
217 }
218 
219 static void do_nothing(void *unused)
220 {
221 }
222 
223 void cpu_idle_wait(void)
224 {
225 	unsigned int cpu, this_cpu = get_cpu();
226 	cpumask_t map, tmp = current->cpus_allowed;
227 
228 	set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
229 	put_cpu();
230 
231 	cpus_clear(map);
232 	for_each_online_cpu(cpu) {
233 		per_cpu(cpu_idle_state, cpu) = 1;
234 		cpu_set(cpu, map);
235 	}
236 
237 	__get_cpu_var(cpu_idle_state) = 0;
238 
239 	wmb();
240 	do {
241 		ssleep(1);
242 		for_each_online_cpu(cpu) {
243 			if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
244 				cpu_clear(cpu, map);
245 		}
246 		cpus_and(map, map, cpu_online_map);
247 		/*
248 		 * We waited 1 sec, if a CPU still did not call idle
249 		 * it may be because it is in idle and not waking up
250 		 * because it has nothing to do.
251 		 * Give all the remaining CPUS a kick.
252 		 */
253 		smp_call_function_mask(map, do_nothing, NULL, 0);
254 	} while (!cpus_empty(map));
255 
256 	set_cpus_allowed(current, tmp);
257 }
258 EXPORT_SYMBOL_GPL(cpu_idle_wait);
259 
260 /*
261  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
262  * which can obviate IPI to trigger checking of need_resched.
263  * We execute MONITOR against need_resched and enter optimized wait state
264  * through MWAIT. Whenever someone changes need_resched, we would be woken
265  * up from MWAIT (without an IPI).
266  *
267  * New with Core Duo processors, MWAIT can take some hints based on CPU
268  * capability.
269  */
270 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
271 {
272 	if (!need_resched()) {
273 		__monitor((void *)&current_thread_info()->flags, 0, 0);
274 		smp_mb();
275 		if (!need_resched())
276 			__mwait(ax, cx);
277 	}
278 }
279 
280 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
281 static void mwait_idle(void)
282 {
283 	local_irq_enable();
284 	mwait_idle_with_hints(0, 0);
285 }
286 
287 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
288 {
289 	if (force_mwait)
290 		return 1;
291 	/* Any C1 states supported? */
292 	return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0;
293 }
294 
295 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
296 {
297 	static int selected;
298 
299 	if (selected)
300 		return;
301 #ifdef CONFIG_X86_SMP
302 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
303 		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
304 			" performance may degrade.\n");
305 	}
306 #endif
307 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
308 		/*
309 		 * Skip, if setup has overridden idle.
310 		 * One CPU supports mwait => All CPUs supports mwait
311 		 */
312 		if (!pm_idle) {
313 			printk(KERN_INFO "using mwait in idle threads.\n");
314 			pm_idle = mwait_idle;
315 		}
316 	}
317 	selected = 1;
318 }
319 
320 static int __init idle_setup(char *str)
321 {
322 	if (!strcmp(str, "poll")) {
323 		printk("using polling idle threads.\n");
324 		pm_idle = poll_idle;
325 	} else if (!strcmp(str, "mwait"))
326 		force_mwait = 1;
327 	else
328 		return -1;
329 
330 	boot_option_idle_override = 1;
331 	return 0;
332 }
333 early_param("idle", idle_setup);
334 
335 void __show_registers(struct pt_regs *regs, int all)
336 {
337 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
338 	unsigned long d0, d1, d2, d3, d6, d7;
339 	unsigned long sp;
340 	unsigned short ss, gs;
341 
342 	if (user_mode_vm(regs)) {
343 		sp = regs->sp;
344 		ss = regs->ss & 0xffff;
345 		savesegment(gs, gs);
346 	} else {
347 		sp = (unsigned long) (&regs->sp);
348 		savesegment(ss, ss);
349 		savesegment(gs, gs);
350 	}
351 
352 	printk("\n");
353 	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
354 			task_pid_nr(current), current->comm,
355 			print_tainted(), init_utsname()->release,
356 			(int)strcspn(init_utsname()->version, " "),
357 			init_utsname()->version);
358 
359 	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
360 			0xffff & regs->cs, regs->ip, regs->flags,
361 			smp_processor_id());
362 	print_symbol("EIP is at %s\n", regs->ip);
363 
364 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
365 		regs->ax, regs->bx, regs->cx, regs->dx);
366 	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
367 		regs->si, regs->di, regs->bp, sp);
368 	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
369 	       regs->ds & 0xffff, regs->es & 0xffff,
370 	       regs->fs & 0xffff, gs, ss);
371 
372 	if (!all)
373 		return;
374 
375 	cr0 = read_cr0();
376 	cr2 = read_cr2();
377 	cr3 = read_cr3();
378 	cr4 = read_cr4_safe();
379 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
380 			cr0, cr2, cr3, cr4);
381 
382 	get_debugreg(d0, 0);
383 	get_debugreg(d1, 1);
384 	get_debugreg(d2, 2);
385 	get_debugreg(d3, 3);
386 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
387 			d0, d1, d2, d3);
388 
389 	get_debugreg(d6, 6);
390 	get_debugreg(d7, 7);
391 	printk("DR6: %08lx DR7: %08lx\n",
392 			d6, d7);
393 }
394 
395 void show_regs(struct pt_regs *regs)
396 {
397 	__show_registers(regs, 1);
398 	show_trace(NULL, regs, &regs->sp, regs->bp);
399 }
400 
401 /*
402  * This gets run with %bx containing the
403  * function to call, and %dx containing
404  * the "args".
405  */
406 extern void kernel_thread_helper(void);
407 
408 /*
409  * Create a kernel thread
410  */
411 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
412 {
413 	struct pt_regs regs;
414 
415 	memset(&regs, 0, sizeof(regs));
416 
417 	regs.bx = (unsigned long) fn;
418 	regs.dx = (unsigned long) arg;
419 
420 	regs.ds = __USER_DS;
421 	regs.es = __USER_DS;
422 	regs.fs = __KERNEL_PERCPU;
423 	regs.orig_ax = -1;
424 	regs.ip = (unsigned long) kernel_thread_helper;
425 	regs.cs = __KERNEL_CS | get_kernel_rpl();
426 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
427 
428 	/* Ok, create the new process.. */
429 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
430 }
431 EXPORT_SYMBOL(kernel_thread);
432 
433 /*
434  * Free current thread data structures etc..
435  */
436 void exit_thread(void)
437 {
438 	/* The process may have allocated an io port bitmap... nuke it. */
439 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
440 		struct task_struct *tsk = current;
441 		struct thread_struct *t = &tsk->thread;
442 		int cpu = get_cpu();
443 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
444 
445 		kfree(t->io_bitmap_ptr);
446 		t->io_bitmap_ptr = NULL;
447 		clear_thread_flag(TIF_IO_BITMAP);
448 		/*
449 		 * Careful, clear this in the TSS too:
450 		 */
451 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
452 		t->io_bitmap_max = 0;
453 		tss->io_bitmap_owner = NULL;
454 		tss->io_bitmap_max = 0;
455 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
456 		put_cpu();
457 	}
458 }
459 
460 void flush_thread(void)
461 {
462 	struct task_struct *tsk = current;
463 
464 	tsk->thread.debugreg0 = 0;
465 	tsk->thread.debugreg1 = 0;
466 	tsk->thread.debugreg2 = 0;
467 	tsk->thread.debugreg3 = 0;
468 	tsk->thread.debugreg6 = 0;
469 	tsk->thread.debugreg7 = 0;
470 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
471 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
472 	/*
473 	 * Forget coprocessor state..
474 	 */
475 	clear_fpu(tsk);
476 	clear_used_math();
477 }
478 
479 void release_thread(struct task_struct *dead_task)
480 {
481 	BUG_ON(dead_task->mm);
482 	release_vm86_irqs(dead_task);
483 }
484 
485 /*
486  * This gets called before we allocate a new thread and copy
487  * the current task into it.
488  */
489 void prepare_to_copy(struct task_struct *tsk)
490 {
491 	unlazy_fpu(tsk);
492 }
493 
494 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
495 	unsigned long unused,
496 	struct task_struct * p, struct pt_regs * regs)
497 {
498 	struct pt_regs * childregs;
499 	struct task_struct *tsk;
500 	int err;
501 
502 	childregs = task_pt_regs(p);
503 	*childregs = *regs;
504 	childregs->ax = 0;
505 	childregs->sp = sp;
506 
507 	p->thread.sp = (unsigned long) childregs;
508 	p->thread.sp0 = (unsigned long) (childregs+1);
509 
510 	p->thread.ip = (unsigned long) ret_from_fork;
511 
512 	savesegment(gs, p->thread.gs);
513 
514 	tsk = current;
515 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
516 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
517 						IO_BITMAP_BYTES, GFP_KERNEL);
518 		if (!p->thread.io_bitmap_ptr) {
519 			p->thread.io_bitmap_max = 0;
520 			return -ENOMEM;
521 		}
522 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
523 	}
524 
525 	err = 0;
526 
527 	/*
528 	 * Set a new TLS for the child thread?
529 	 */
530 	if (clone_flags & CLONE_SETTLS)
531 		err = do_set_thread_area(p, -1,
532 			(struct user_desc __user *)childregs->si, 0);
533 
534 	if (err && p->thread.io_bitmap_ptr) {
535 		kfree(p->thread.io_bitmap_ptr);
536 		p->thread.io_bitmap_max = 0;
537 	}
538 	return err;
539 }
540 
541 #ifdef CONFIG_SECCOMP
542 static void hard_disable_TSC(void)
543 {
544 	write_cr4(read_cr4() | X86_CR4_TSD);
545 }
546 void disable_TSC(void)
547 {
548 	preempt_disable();
549 	if (!test_and_set_thread_flag(TIF_NOTSC))
550 		/*
551 		 * Must flip the CPU state synchronously with
552 		 * TIF_NOTSC in the current running context.
553 		 */
554 		hard_disable_TSC();
555 	preempt_enable();
556 }
557 static void hard_enable_TSC(void)
558 {
559 	write_cr4(read_cr4() & ~X86_CR4_TSD);
560 }
561 #endif /* CONFIG_SECCOMP */
562 
563 static noinline void
564 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
565 		 struct tss_struct *tss)
566 {
567 	struct thread_struct *prev, *next;
568 	unsigned long debugctl;
569 
570 	prev = &prev_p->thread;
571 	next = &next_p->thread;
572 
573 	debugctl = prev->debugctlmsr;
574 	if (next->ds_area_msr != prev->ds_area_msr) {
575 		/* we clear debugctl to make sure DS
576 		 * is not in use when we change it */
577 		debugctl = 0;
578 		wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
579 		wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
580 	}
581 
582 	if (next->debugctlmsr != debugctl)
583 		wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0);
584 
585 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
586 		set_debugreg(next->debugreg0, 0);
587 		set_debugreg(next->debugreg1, 1);
588 		set_debugreg(next->debugreg2, 2);
589 		set_debugreg(next->debugreg3, 3);
590 		/* no 4 and 5 */
591 		set_debugreg(next->debugreg6, 6);
592 		set_debugreg(next->debugreg7, 7);
593 	}
594 
595 #ifdef CONFIG_SECCOMP
596 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
597 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
598 		/* prev and next are different */
599 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
600 			hard_disable_TSC();
601 		else
602 			hard_enable_TSC();
603 	}
604 #endif
605 
606 	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
607 		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
608 
609 	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
610 		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
611 
612 
613 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
614 		/*
615 		 * Disable the bitmap via an invalid offset. We still cache
616 		 * the previous bitmap owner and the IO bitmap contents:
617 		 */
618 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
619 		return;
620 	}
621 
622 	if (likely(next == tss->io_bitmap_owner)) {
623 		/*
624 		 * Previous owner of the bitmap (hence the bitmap content)
625 		 * matches the next task, we dont have to do anything but
626 		 * to set a valid offset in the TSS:
627 		 */
628 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
629 		return;
630 	}
631 	/*
632 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
633 	 * and we let the task to get a GPF in case an I/O instruction
634 	 * is performed.  The handler of the GPF will verify that the
635 	 * faulting task has a valid I/O bitmap and, it true, does the
636 	 * real copy and restart the instruction.  This will save us
637 	 * redundant copies when the currently switched task does not
638 	 * perform any I/O during its timeslice.
639 	 */
640 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
641 }
642 
643 /*
644  *	switch_to(x,yn) should switch tasks from x to y.
645  *
646  * We fsave/fwait so that an exception goes off at the right time
647  * (as a call from the fsave or fwait in effect) rather than to
648  * the wrong process. Lazy FP saving no longer makes any sense
649  * with modern CPU's, and this simplifies a lot of things (SMP
650  * and UP become the same).
651  *
652  * NOTE! We used to use the x86 hardware context switching. The
653  * reason for not using it any more becomes apparent when you
654  * try to recover gracefully from saved state that is no longer
655  * valid (stale segment register values in particular). With the
656  * hardware task-switch, there is no way to fix up bad state in
657  * a reasonable manner.
658  *
659  * The fact that Intel documents the hardware task-switching to
660  * be slow is a fairly red herring - this code is not noticeably
661  * faster. However, there _is_ some room for improvement here,
662  * so the performance issues may eventually be a valid point.
663  * More important, however, is the fact that this allows us much
664  * more flexibility.
665  *
666  * The return value (in %ax) will be the "prev" task after
667  * the task-switch, and shows up in ret_from_fork in entry.S,
668  * for example.
669  */
670 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
671 {
672 	struct thread_struct *prev = &prev_p->thread,
673 				 *next = &next_p->thread;
674 	int cpu = smp_processor_id();
675 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
676 
677 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
678 
679 	__unlazy_fpu(prev_p);
680 
681 
682 	/* we're going to use this soon, after a few expensive things */
683 	if (next_p->fpu_counter > 5)
684 		prefetch(&next->i387.fxsave);
685 
686 	/*
687 	 * Reload esp0.
688 	 */
689 	load_sp0(tss, next);
690 
691 	/*
692 	 * Save away %gs. No need to save %fs, as it was saved on the
693 	 * stack on entry.  No need to save %es and %ds, as those are
694 	 * always kernel segments while inside the kernel.  Doing this
695 	 * before setting the new TLS descriptors avoids the situation
696 	 * where we temporarily have non-reloadable segments in %fs
697 	 * and %gs.  This could be an issue if the NMI handler ever
698 	 * used %fs or %gs (it does not today), or if the kernel is
699 	 * running inside of a hypervisor layer.
700 	 */
701 	savesegment(gs, prev->gs);
702 
703 	/*
704 	 * Load the per-thread Thread-Local Storage descriptor.
705 	 */
706 	load_TLS(next, cpu);
707 
708 	/*
709 	 * Restore IOPL if needed.  In normal use, the flags restore
710 	 * in the switch assembly will handle this.  But if the kernel
711 	 * is running virtualized at a non-zero CPL, the popf will
712 	 * not restore flags, so it must be done in a separate step.
713 	 */
714 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
715 		set_iopl_mask(next->iopl);
716 
717 	/*
718 	 * Now maybe handle debug registers and/or IO bitmaps
719 	 */
720 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
721 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
722 		__switch_to_xtra(prev_p, next_p, tss);
723 
724 	/*
725 	 * Leave lazy mode, flushing any hypercalls made here.
726 	 * This must be done before restoring TLS segments so
727 	 * the GDT and LDT are properly updated, and must be
728 	 * done before math_state_restore, so the TS bit is up
729 	 * to date.
730 	 */
731 	arch_leave_lazy_cpu_mode();
732 
733 	/* If the task has used fpu the last 5 timeslices, just do a full
734 	 * restore of the math state immediately to avoid the trap; the
735 	 * chances of needing FPU soon are obviously high now
736 	 */
737 	if (next_p->fpu_counter > 5)
738 		math_state_restore();
739 
740 	/*
741 	 * Restore %gs if needed (which is common)
742 	 */
743 	if (prev->gs | next->gs)
744 		loadsegment(gs, next->gs);
745 
746 	x86_write_percpu(current_task, next_p);
747 
748 	return prev_p;
749 }
750 
751 asmlinkage int sys_fork(struct pt_regs regs)
752 {
753 	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
754 }
755 
756 asmlinkage int sys_clone(struct pt_regs regs)
757 {
758 	unsigned long clone_flags;
759 	unsigned long newsp;
760 	int __user *parent_tidptr, *child_tidptr;
761 
762 	clone_flags = regs.bx;
763 	newsp = regs.cx;
764 	parent_tidptr = (int __user *)regs.dx;
765 	child_tidptr = (int __user *)regs.di;
766 	if (!newsp)
767 		newsp = regs.sp;
768 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
769 }
770 
771 /*
772  * This is trivial, and on the face of it looks like it
773  * could equally well be done in user mode.
774  *
775  * Not so, for quite unobvious reasons - register pressure.
776  * In user mode vfork() cannot have a stack frame, and if
777  * done by calling the "clone()" system call directly, you
778  * do not have enough call-clobbered registers to hold all
779  * the information you need.
780  */
781 asmlinkage int sys_vfork(struct pt_regs regs)
782 {
783 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
784 }
785 
786 /*
787  * sys_execve() executes a new program.
788  */
789 asmlinkage int sys_execve(struct pt_regs regs)
790 {
791 	int error;
792 	char * filename;
793 
794 	filename = getname((char __user *) regs.bx);
795 	error = PTR_ERR(filename);
796 	if (IS_ERR(filename))
797 		goto out;
798 	error = do_execve(filename,
799 			(char __user * __user *) regs.cx,
800 			(char __user * __user *) regs.dx,
801 			&regs);
802 	if (error == 0) {
803 		/* Make sure we don't return using sysenter.. */
804 		set_thread_flag(TIF_IRET);
805 	}
806 	putname(filename);
807 out:
808 	return error;
809 }
810 
811 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
812 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
813 
814 unsigned long get_wchan(struct task_struct *p)
815 {
816 	unsigned long bp, sp, ip;
817 	unsigned long stack_page;
818 	int count = 0;
819 	if (!p || p == current || p->state == TASK_RUNNING)
820 		return 0;
821 	stack_page = (unsigned long)task_stack_page(p);
822 	sp = p->thread.sp;
823 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
824 		return 0;
825 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
826 	bp = *(unsigned long *) sp;
827 	do {
828 		if (bp < stack_page || bp > top_ebp+stack_page)
829 			return 0;
830 		ip = *(unsigned long *) (bp+4);
831 		if (!in_sched_functions(ip))
832 			return ip;
833 		bp = *(unsigned long *) bp;
834 	} while (count++ < 16);
835 	return 0;
836 }
837 
838 unsigned long arch_align_stack(unsigned long sp)
839 {
840 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
841 		sp -= get_random_int() % 8192;
842 	return sp & ~0xf;
843 }
844 
845 unsigned long arch_randomize_brk(struct mm_struct *mm)
846 {
847 	unsigned long range_end = mm->brk + 0x02000000;
848 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
849 }
850