xref: /linux/arch/x86/kernel/process_32.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/stackprotector.h>
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/fs.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/elfcore.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/user.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/reboot.h>
28 #include <linux/init.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/module.h>
31 #include <linux/kallsyms.h>
32 #include <linux/ptrace.h>
33 #include <linux/personality.h>
34 #include <linux/tick.h>
35 #include <linux/percpu.h>
36 #include <linux/prctl.h>
37 #include <linux/ftrace.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/kdebug.h>
41 #include <linux/cpuidle.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/ldt.h>
45 #include <asm/processor.h>
46 #include <asm/i387.h>
47 #include <asm/fpu-internal.h>
48 #include <asm/desc.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
52 
53 #include <linux/err.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/idle.h>
58 #include <asm/syscalls.h>
59 #include <asm/debugreg.h>
60 #include <asm/nmi.h>
61 #include <asm/switch_to.h>
62 
63 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
64 
65 /*
66  * Return saved PC of a blocked thread.
67  */
68 unsigned long thread_saved_pc(struct task_struct *tsk)
69 {
70 	return ((unsigned long *)tsk->thread.sp)[3];
71 }
72 
73 #ifndef CONFIG_SMP
74 static inline void play_dead(void)
75 {
76 	BUG();
77 }
78 #endif
79 
80 /*
81  * The idle thread. There's no useful work to be
82  * done, so just try to conserve power and have a
83  * low exit latency (ie sit in a loop waiting for
84  * somebody to say that they'd like to reschedule)
85  */
86 void cpu_idle(void)
87 {
88 	int cpu = smp_processor_id();
89 
90 	/*
91 	 * If we're the non-boot CPU, nothing set the stack canary up
92 	 * for us.  CPU0 already has it initialized but no harm in
93 	 * doing it again.  This is a good place for updating it, as
94 	 * we wont ever return from this function (so the invalid
95 	 * canaries already on the stack wont ever trigger).
96 	 */
97 	boot_init_stack_canary();
98 
99 	current_thread_info()->status |= TS_POLLING;
100 
101 	/* endless idle loop with no priority at all */
102 	while (1) {
103 		tick_nohz_idle_enter();
104 		rcu_idle_enter();
105 		while (!need_resched()) {
106 
107 			check_pgt_cache();
108 			rmb();
109 
110 			if (cpu_is_offline(cpu))
111 				play_dead();
112 
113 			local_touch_nmi();
114 			local_irq_disable();
115 			/* Don't trace irqs off for idle */
116 			stop_critical_timings();
117 			if (cpuidle_idle_call())
118 				pm_idle();
119 			start_critical_timings();
120 		}
121 		rcu_idle_exit();
122 		tick_nohz_idle_exit();
123 		schedule_preempt_disabled();
124 	}
125 }
126 
127 void __show_regs(struct pt_regs *regs, int all)
128 {
129 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
130 	unsigned long d0, d1, d2, d3, d6, d7;
131 	unsigned long sp;
132 	unsigned short ss, gs;
133 
134 	if (user_mode_vm(regs)) {
135 		sp = regs->sp;
136 		ss = regs->ss & 0xffff;
137 		gs = get_user_gs(regs);
138 	} else {
139 		sp = kernel_stack_pointer(regs);
140 		savesegment(ss, ss);
141 		savesegment(gs, gs);
142 	}
143 
144 	show_regs_common();
145 
146 	printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
147 			(u16)regs->cs, regs->ip, regs->flags,
148 			smp_processor_id());
149 	print_symbol("EIP is at %s\n", regs->ip);
150 
151 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
152 		regs->ax, regs->bx, regs->cx, regs->dx);
153 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
154 		regs->si, regs->di, regs->bp, sp);
155 	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
156 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
157 
158 	if (!all)
159 		return;
160 
161 	cr0 = read_cr0();
162 	cr2 = read_cr2();
163 	cr3 = read_cr3();
164 	cr4 = read_cr4_safe();
165 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
166 			cr0, cr2, cr3, cr4);
167 
168 	get_debugreg(d0, 0);
169 	get_debugreg(d1, 1);
170 	get_debugreg(d2, 2);
171 	get_debugreg(d3, 3);
172 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
173 			d0, d1, d2, d3);
174 
175 	get_debugreg(d6, 6);
176 	get_debugreg(d7, 7);
177 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
178 			d6, d7);
179 }
180 
181 void release_thread(struct task_struct *dead_task)
182 {
183 	BUG_ON(dead_task->mm);
184 	release_vm86_irqs(dead_task);
185 }
186 
187 /*
188  * This gets called before we allocate a new thread and copy
189  * the current task into it.
190  */
191 void prepare_to_copy(struct task_struct *tsk)
192 {
193 	unlazy_fpu(tsk);
194 }
195 
196 int copy_thread(unsigned long clone_flags, unsigned long sp,
197 	unsigned long unused,
198 	struct task_struct *p, struct pt_regs *regs)
199 {
200 	struct pt_regs *childregs;
201 	struct task_struct *tsk;
202 	int err;
203 
204 	childregs = task_pt_regs(p);
205 	*childregs = *regs;
206 	childregs->ax = 0;
207 	childregs->sp = sp;
208 
209 	p->thread.sp = (unsigned long) childregs;
210 	p->thread.sp0 = (unsigned long) (childregs+1);
211 
212 	p->thread.ip = (unsigned long) ret_from_fork;
213 
214 	task_user_gs(p) = get_user_gs(regs);
215 
216 	p->fpu_counter = 0;
217 	p->thread.io_bitmap_ptr = NULL;
218 	tsk = current;
219 	err = -ENOMEM;
220 
221 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
222 
223 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
224 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
225 						IO_BITMAP_BYTES, GFP_KERNEL);
226 		if (!p->thread.io_bitmap_ptr) {
227 			p->thread.io_bitmap_max = 0;
228 			return -ENOMEM;
229 		}
230 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
231 	}
232 
233 	err = 0;
234 
235 	/*
236 	 * Set a new TLS for the child thread?
237 	 */
238 	if (clone_flags & CLONE_SETTLS)
239 		err = do_set_thread_area(p, -1,
240 			(struct user_desc __user *)childregs->si, 0);
241 
242 	if (err && p->thread.io_bitmap_ptr) {
243 		kfree(p->thread.io_bitmap_ptr);
244 		p->thread.io_bitmap_max = 0;
245 	}
246 	return err;
247 }
248 
249 void
250 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
251 {
252 	set_user_gs(regs, 0);
253 	regs->fs		= 0;
254 	regs->ds		= __USER_DS;
255 	regs->es		= __USER_DS;
256 	regs->ss		= __USER_DS;
257 	regs->cs		= __USER_CS;
258 	regs->ip		= new_ip;
259 	regs->sp		= new_sp;
260 	/*
261 	 * Free the old FP and other extended state
262 	 */
263 	free_thread_xstate(current);
264 }
265 EXPORT_SYMBOL_GPL(start_thread);
266 
267 
268 /*
269  *	switch_to(x,y) should switch tasks from x to y.
270  *
271  * We fsave/fwait so that an exception goes off at the right time
272  * (as a call from the fsave or fwait in effect) rather than to
273  * the wrong process. Lazy FP saving no longer makes any sense
274  * with modern CPU's, and this simplifies a lot of things (SMP
275  * and UP become the same).
276  *
277  * NOTE! We used to use the x86 hardware context switching. The
278  * reason for not using it any more becomes apparent when you
279  * try to recover gracefully from saved state that is no longer
280  * valid (stale segment register values in particular). With the
281  * hardware task-switch, there is no way to fix up bad state in
282  * a reasonable manner.
283  *
284  * The fact that Intel documents the hardware task-switching to
285  * be slow is a fairly red herring - this code is not noticeably
286  * faster. However, there _is_ some room for improvement here,
287  * so the performance issues may eventually be a valid point.
288  * More important, however, is the fact that this allows us much
289  * more flexibility.
290  *
291  * The return value (in %ax) will be the "prev" task after
292  * the task-switch, and shows up in ret_from_fork in entry.S,
293  * for example.
294  */
295 __notrace_funcgraph struct task_struct *
296 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
297 {
298 	struct thread_struct *prev = &prev_p->thread,
299 				 *next = &next_p->thread;
300 	int cpu = smp_processor_id();
301 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
302 	fpu_switch_t fpu;
303 
304 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
305 
306 	fpu = switch_fpu_prepare(prev_p, next_p, cpu);
307 
308 	/*
309 	 * Reload esp0.
310 	 */
311 	load_sp0(tss, next);
312 
313 	/*
314 	 * Save away %gs. No need to save %fs, as it was saved on the
315 	 * stack on entry.  No need to save %es and %ds, as those are
316 	 * always kernel segments while inside the kernel.  Doing this
317 	 * before setting the new TLS descriptors avoids the situation
318 	 * where we temporarily have non-reloadable segments in %fs
319 	 * and %gs.  This could be an issue if the NMI handler ever
320 	 * used %fs or %gs (it does not today), or if the kernel is
321 	 * running inside of a hypervisor layer.
322 	 */
323 	lazy_save_gs(prev->gs);
324 
325 	/*
326 	 * Load the per-thread Thread-Local Storage descriptor.
327 	 */
328 	load_TLS(next, cpu);
329 
330 	/*
331 	 * Restore IOPL if needed.  In normal use, the flags restore
332 	 * in the switch assembly will handle this.  But if the kernel
333 	 * is running virtualized at a non-zero CPL, the popf will
334 	 * not restore flags, so it must be done in a separate step.
335 	 */
336 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
337 		set_iopl_mask(next->iopl);
338 
339 	/*
340 	 * Now maybe handle debug registers and/or IO bitmaps
341 	 */
342 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
343 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
344 		__switch_to_xtra(prev_p, next_p, tss);
345 
346 	/*
347 	 * Leave lazy mode, flushing any hypercalls made here.
348 	 * This must be done before restoring TLS segments so
349 	 * the GDT and LDT are properly updated, and must be
350 	 * done before math_state_restore, so the TS bit is up
351 	 * to date.
352 	 */
353 	arch_end_context_switch(next_p);
354 
355 	/*
356 	 * Restore %gs if needed (which is common)
357 	 */
358 	if (prev->gs | next->gs)
359 		lazy_load_gs(next->gs);
360 
361 	switch_fpu_finish(next_p, fpu);
362 
363 	percpu_write(current_task, next_p);
364 
365 	return prev_p;
366 }
367 
368 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
369 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
370 
371 unsigned long get_wchan(struct task_struct *p)
372 {
373 	unsigned long bp, sp, ip;
374 	unsigned long stack_page;
375 	int count = 0;
376 	if (!p || p == current || p->state == TASK_RUNNING)
377 		return 0;
378 	stack_page = (unsigned long)task_stack_page(p);
379 	sp = p->thread.sp;
380 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
381 		return 0;
382 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
383 	bp = *(unsigned long *) sp;
384 	do {
385 		if (bp < stack_page || bp > top_ebp+stack_page)
386 			return 0;
387 		ip = *(unsigned long *) (bp+4);
388 		if (!in_sched_functions(ip))
389 			return ip;
390 		bp = *(unsigned long *) bp;
391 	} while (count++ < 16);
392 	return 0;
393 }
394 
395