xref: /linux/arch/x86/kernel/process_32.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/reboot.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/ptrace.h>
33 #include <linux/personality.h>
34 #include <linux/percpu.h>
35 #include <linux/prctl.h>
36 #include <linux/ftrace.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/kdebug.h>
40 #include <linux/syscalls.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/ldt.h>
44 #include <asm/processor.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/desc.h>
47 #ifdef CONFIG_MATH_EMULATION
48 #include <asm/math_emu.h>
49 #endif
50 
51 #include <linux/err.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/cpu.h>
55 #include <asm/syscalls.h>
56 #include <asm/debugreg.h>
57 #include <asm/switch_to.h>
58 #include <asm/vm86.h>
59 #include <asm/intel_rdt_sched.h>
60 #include <asm/proto.h>
61 
62 void __show_regs(struct pt_regs *regs, int all)
63 {
64 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
65 	unsigned long d0, d1, d2, d3, d6, d7;
66 	unsigned long sp;
67 	unsigned short ss, gs;
68 
69 	if (user_mode(regs)) {
70 		sp = regs->sp;
71 		ss = regs->ss;
72 		gs = get_user_gs(regs);
73 	} else {
74 		sp = kernel_stack_pointer(regs);
75 		savesegment(ss, ss);
76 		savesegment(gs, gs);
77 	}
78 
79 	show_ip(regs, KERN_DEFAULT);
80 
81 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
82 		regs->ax, regs->bx, regs->cx, regs->dx);
83 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
84 		regs->si, regs->di, regs->bp, sp);
85 	printk(KERN_DEFAULT "DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
86 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss, regs->flags);
87 
88 	if (!all)
89 		return;
90 
91 	cr0 = read_cr0();
92 	cr2 = read_cr2();
93 	cr3 = __read_cr3();
94 	cr4 = __read_cr4();
95 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
96 			cr0, cr2, cr3, cr4);
97 
98 	get_debugreg(d0, 0);
99 	get_debugreg(d1, 1);
100 	get_debugreg(d2, 2);
101 	get_debugreg(d3, 3);
102 	get_debugreg(d6, 6);
103 	get_debugreg(d7, 7);
104 
105 	/* Only print out debug registers if they are in their non-default state. */
106 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
107 	    (d6 == DR6_RESERVED) && (d7 == 0x400))
108 		return;
109 
110 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
111 			d0, d1, d2, d3);
112 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
113 			d6, d7);
114 }
115 
116 void release_thread(struct task_struct *dead_task)
117 {
118 	BUG_ON(dead_task->mm);
119 	release_vm86_irqs(dead_task);
120 }
121 
122 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
123 	unsigned long arg, struct task_struct *p, unsigned long tls)
124 {
125 	struct pt_regs *childregs = task_pt_regs(p);
126 	struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
127 	struct inactive_task_frame *frame = &fork_frame->frame;
128 	struct task_struct *tsk;
129 	int err;
130 
131 	frame->bp = 0;
132 	frame->ret_addr = (unsigned long) ret_from_fork;
133 	p->thread.sp = (unsigned long) fork_frame;
134 	p->thread.sp0 = (unsigned long) (childregs+1);
135 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
136 
137 	if (unlikely(p->flags & PF_KTHREAD)) {
138 		/* kernel thread */
139 		memset(childregs, 0, sizeof(struct pt_regs));
140 		frame->bx = sp;		/* function */
141 		frame->di = arg;
142 		p->thread.io_bitmap_ptr = NULL;
143 		return 0;
144 	}
145 	frame->bx = 0;
146 	*childregs = *current_pt_regs();
147 	childregs->ax = 0;
148 	if (sp)
149 		childregs->sp = sp;
150 
151 	task_user_gs(p) = get_user_gs(current_pt_regs());
152 
153 	p->thread.io_bitmap_ptr = NULL;
154 	tsk = current;
155 	err = -ENOMEM;
156 
157 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
158 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
159 						IO_BITMAP_BYTES, GFP_KERNEL);
160 		if (!p->thread.io_bitmap_ptr) {
161 			p->thread.io_bitmap_max = 0;
162 			return -ENOMEM;
163 		}
164 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
165 	}
166 
167 	err = 0;
168 
169 	/*
170 	 * Set a new TLS for the child thread?
171 	 */
172 	if (clone_flags & CLONE_SETTLS)
173 		err = do_set_thread_area(p, -1,
174 			(struct user_desc __user *)tls, 0);
175 
176 	if (err && p->thread.io_bitmap_ptr) {
177 		kfree(p->thread.io_bitmap_ptr);
178 		p->thread.io_bitmap_max = 0;
179 	}
180 	return err;
181 }
182 
183 void
184 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
185 {
186 	set_user_gs(regs, 0);
187 	regs->fs		= 0;
188 	regs->ds		= __USER_DS;
189 	regs->es		= __USER_DS;
190 	regs->ss		= __USER_DS;
191 	regs->cs		= __USER_CS;
192 	regs->ip		= new_ip;
193 	regs->sp		= new_sp;
194 	regs->flags		= X86_EFLAGS_IF;
195 	force_iret();
196 }
197 EXPORT_SYMBOL_GPL(start_thread);
198 
199 
200 /*
201  *	switch_to(x,y) should switch tasks from x to y.
202  *
203  * We fsave/fwait so that an exception goes off at the right time
204  * (as a call from the fsave or fwait in effect) rather than to
205  * the wrong process. Lazy FP saving no longer makes any sense
206  * with modern CPU's, and this simplifies a lot of things (SMP
207  * and UP become the same).
208  *
209  * NOTE! We used to use the x86 hardware context switching. The
210  * reason for not using it any more becomes apparent when you
211  * try to recover gracefully from saved state that is no longer
212  * valid (stale segment register values in particular). With the
213  * hardware task-switch, there is no way to fix up bad state in
214  * a reasonable manner.
215  *
216  * The fact that Intel documents the hardware task-switching to
217  * be slow is a fairly red herring - this code is not noticeably
218  * faster. However, there _is_ some room for improvement here,
219  * so the performance issues may eventually be a valid point.
220  * More important, however, is the fact that this allows us much
221  * more flexibility.
222  *
223  * The return value (in %ax) will be the "prev" task after
224  * the task-switch, and shows up in ret_from_fork in entry.S,
225  * for example.
226  */
227 __visible __notrace_funcgraph struct task_struct *
228 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
229 {
230 	struct thread_struct *prev = &prev_p->thread,
231 			     *next = &next_p->thread;
232 	struct fpu *prev_fpu = &prev->fpu;
233 	struct fpu *next_fpu = &next->fpu;
234 	int cpu = smp_processor_id();
235 	struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
236 
237 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
238 
239 	switch_fpu_prepare(prev_fpu, cpu);
240 
241 	/*
242 	 * Save away %gs. No need to save %fs, as it was saved on the
243 	 * stack on entry.  No need to save %es and %ds, as those are
244 	 * always kernel segments while inside the kernel.  Doing this
245 	 * before setting the new TLS descriptors avoids the situation
246 	 * where we temporarily have non-reloadable segments in %fs
247 	 * and %gs.  This could be an issue if the NMI handler ever
248 	 * used %fs or %gs (it does not today), or if the kernel is
249 	 * running inside of a hypervisor layer.
250 	 */
251 	lazy_save_gs(prev->gs);
252 
253 	/*
254 	 * Load the per-thread Thread-Local Storage descriptor.
255 	 */
256 	load_TLS(next, cpu);
257 
258 	/*
259 	 * Restore IOPL if needed.  In normal use, the flags restore
260 	 * in the switch assembly will handle this.  But if the kernel
261 	 * is running virtualized at a non-zero CPL, the popf will
262 	 * not restore flags, so it must be done in a separate step.
263 	 */
264 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
265 		set_iopl_mask(next->iopl);
266 
267 	/*
268 	 * Now maybe handle debug registers and/or IO bitmaps
269 	 */
270 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
271 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
272 		__switch_to_xtra(prev_p, next_p, tss);
273 
274 	/*
275 	 * Leave lazy mode, flushing any hypercalls made here.
276 	 * This must be done before restoring TLS segments so
277 	 * the GDT and LDT are properly updated, and must be
278 	 * done before fpu__restore(), so the TS bit is up
279 	 * to date.
280 	 */
281 	arch_end_context_switch(next_p);
282 
283 	/*
284 	 * Reload esp0 and cpu_current_top_of_stack.  This changes
285 	 * current_thread_info().  Refresh the SYSENTER configuration in
286 	 * case prev or next is vm86.
287 	 */
288 	update_task_stack(next_p);
289 	refresh_sysenter_cs(next);
290 	this_cpu_write(cpu_current_top_of_stack,
291 		       (unsigned long)task_stack_page(next_p) +
292 		       THREAD_SIZE);
293 
294 	/*
295 	 * Restore %gs if needed (which is common)
296 	 */
297 	if (prev->gs | next->gs)
298 		lazy_load_gs(next->gs);
299 
300 	switch_fpu_finish(next_fpu, cpu);
301 
302 	this_cpu_write(current_task, next_p);
303 
304 	/* Load the Intel cache allocation PQR MSR. */
305 	intel_rdt_sched_in();
306 
307 	return prev_p;
308 }
309 
310 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
311 {
312 	return do_arch_prctl_common(current, option, arg2);
313 }
314