xref: /linux/arch/x86/kernel/process_32.c (revision da1d9caf95def6f0320819cf941c9fd1069ba9e1)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/reboot.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/ptrace.h>
33 #include <linux/personality.h>
34 #include <linux/percpu.h>
35 #include <linux/prctl.h>
36 #include <linux/ftrace.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/kdebug.h>
40 #include <linux/syscalls.h>
41 
42 #include <asm/ldt.h>
43 #include <asm/processor.h>
44 #include <asm/fpu/sched.h>
45 #include <asm/desc.h>
46 
47 #include <linux/err.h>
48 
49 #include <asm/tlbflush.h>
50 #include <asm/cpu.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/vm86.h>
54 #include <asm/resctrl.h>
55 #include <asm/proto.h>
56 
57 #include "process.h"
58 
59 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
60 		 const char *log_lvl)
61 {
62 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
63 	unsigned long d0, d1, d2, d3, d6, d7;
64 	unsigned short gs;
65 
66 	savesegment(gs, gs);
67 
68 	show_ip(regs, log_lvl);
69 
70 	printk("%sEAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
71 		log_lvl, regs->ax, regs->bx, regs->cx, regs->dx);
72 	printk("%sESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
73 		log_lvl, regs->si, regs->di, regs->bp, regs->sp);
74 	printk("%sDS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
75 	       log_lvl, (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, regs->ss, regs->flags);
76 
77 	if (mode != SHOW_REGS_ALL)
78 		return;
79 
80 	cr0 = read_cr0();
81 	cr2 = read_cr2();
82 	cr3 = __read_cr3();
83 	cr4 = __read_cr4();
84 	printk("%sCR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
85 		log_lvl, cr0, cr2, cr3, cr4);
86 
87 	get_debugreg(d0, 0);
88 	get_debugreg(d1, 1);
89 	get_debugreg(d2, 2);
90 	get_debugreg(d3, 3);
91 	get_debugreg(d6, 6);
92 	get_debugreg(d7, 7);
93 
94 	/* Only print out debug registers if they are in their non-default state. */
95 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
96 	    (d6 == DR6_RESERVED) && (d7 == 0x400))
97 		return;
98 
99 	printk("%sDR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
100 		log_lvl, d0, d1, d2, d3);
101 	printk("%sDR6: %08lx DR7: %08lx\n",
102 		log_lvl, d6, d7);
103 }
104 
105 void release_thread(struct task_struct *dead_task)
106 {
107 	BUG_ON(dead_task->mm);
108 	release_vm86_irqs(dead_task);
109 }
110 
111 void
112 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
113 {
114 	loadsegment(gs, 0);
115 	regs->fs		= 0;
116 	regs->ds		= __USER_DS;
117 	regs->es		= __USER_DS;
118 	regs->ss		= __USER_DS;
119 	regs->cs		= __USER_CS;
120 	regs->ip		= new_ip;
121 	regs->sp		= new_sp;
122 	regs->flags		= X86_EFLAGS_IF;
123 }
124 EXPORT_SYMBOL_GPL(start_thread);
125 
126 
127 /*
128  *	switch_to(x,y) should switch tasks from x to y.
129  *
130  * We fsave/fwait so that an exception goes off at the right time
131  * (as a call from the fsave or fwait in effect) rather than to
132  * the wrong process. Lazy FP saving no longer makes any sense
133  * with modern CPU's, and this simplifies a lot of things (SMP
134  * and UP become the same).
135  *
136  * NOTE! We used to use the x86 hardware context switching. The
137  * reason for not using it any more becomes apparent when you
138  * try to recover gracefully from saved state that is no longer
139  * valid (stale segment register values in particular). With the
140  * hardware task-switch, there is no way to fix up bad state in
141  * a reasonable manner.
142  *
143  * The fact that Intel documents the hardware task-switching to
144  * be slow is a fairly red herring - this code is not noticeably
145  * faster. However, there _is_ some room for improvement here,
146  * so the performance issues may eventually be a valid point.
147  * More important, however, is the fact that this allows us much
148  * more flexibility.
149  *
150  * The return value (in %ax) will be the "prev" task after
151  * the task-switch, and shows up in ret_from_fork in entry.S,
152  * for example.
153  */
154 __visible __notrace_funcgraph struct task_struct *
155 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
156 {
157 	struct thread_struct *prev = &prev_p->thread,
158 			     *next = &next_p->thread;
159 	struct fpu *prev_fpu = &prev->fpu;
160 	int cpu = smp_processor_id();
161 
162 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
163 
164 	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
165 		switch_fpu_prepare(prev_fpu, cpu);
166 
167 	/*
168 	 * Save away %gs. No need to save %fs, as it was saved on the
169 	 * stack on entry.  No need to save %es and %ds, as those are
170 	 * always kernel segments while inside the kernel.  Doing this
171 	 * before setting the new TLS descriptors avoids the situation
172 	 * where we temporarily have non-reloadable segments in %fs
173 	 * and %gs.  This could be an issue if the NMI handler ever
174 	 * used %fs or %gs (it does not today), or if the kernel is
175 	 * running inside of a hypervisor layer.
176 	 */
177 	savesegment(gs, prev->gs);
178 
179 	/*
180 	 * Load the per-thread Thread-Local Storage descriptor.
181 	 */
182 	load_TLS(next, cpu);
183 
184 	switch_to_extra(prev_p, next_p);
185 
186 	/*
187 	 * Leave lazy mode, flushing any hypercalls made here.
188 	 * This must be done before restoring TLS segments so
189 	 * the GDT and LDT are properly updated.
190 	 */
191 	arch_end_context_switch(next_p);
192 
193 	/*
194 	 * Reload esp0 and cpu_current_top_of_stack.  This changes
195 	 * current_thread_info().  Refresh the SYSENTER configuration in
196 	 * case prev or next is vm86.
197 	 */
198 	update_task_stack(next_p);
199 	refresh_sysenter_cs(next);
200 	this_cpu_write(cpu_current_top_of_stack,
201 		       (unsigned long)task_stack_page(next_p) +
202 		       THREAD_SIZE);
203 
204 	/*
205 	 * Restore %gs if needed (which is common)
206 	 */
207 	if (prev->gs | next->gs)
208 		loadsegment(gs, next->gs);
209 
210 	this_cpu_write(current_task, next_p);
211 
212 	switch_fpu_finish();
213 
214 	/* Load the Intel cache allocation PQR MSR. */
215 	resctrl_sched_in();
216 
217 	return prev_p;
218 }
219 
220 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
221 {
222 	return do_arch_prctl_common(option, arg2);
223 }
224