1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/cpu.h> 15 #include <linux/errno.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/elfcore.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/user.h> 26 #include <linux/interrupt.h> 27 #include <linux/utsname.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/init.h> 31 #include <linux/mc146818rtc.h> 32 #include <linux/module.h> 33 #include <linux/kallsyms.h> 34 #include <linux/ptrace.h> 35 #include <linux/random.h> 36 #include <linux/personality.h> 37 #include <linux/tick.h> 38 #include <linux/percpu.h> 39 #include <linux/prctl.h> 40 41 #include <asm/uaccess.h> 42 #include <asm/pgtable.h> 43 #include <asm/system.h> 44 #include <asm/io.h> 45 #include <asm/ldt.h> 46 #include <asm/processor.h> 47 #include <asm/i387.h> 48 #include <asm/desc.h> 49 #ifdef CONFIG_MATH_EMULATION 50 #include <asm/math_emu.h> 51 #endif 52 53 #include <linux/err.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/cpu.h> 57 #include <asm/kdebug.h> 58 #include <asm/idle.h> 59 60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); 61 62 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 63 EXPORT_PER_CPU_SYMBOL(current_task); 64 65 DEFINE_PER_CPU(int, cpu_number); 66 EXPORT_PER_CPU_SYMBOL(cpu_number); 67 68 /* 69 * Return saved PC of a blocked thread. 70 */ 71 unsigned long thread_saved_pc(struct task_struct *tsk) 72 { 73 return ((unsigned long *)tsk->thread.sp)[3]; 74 } 75 76 #ifdef CONFIG_HOTPLUG_CPU 77 #include <asm/nmi.h> 78 79 static void cpu_exit_clear(void) 80 { 81 int cpu = raw_smp_processor_id(); 82 83 idle_task_exit(); 84 85 cpu_uninit(); 86 irq_ctx_exit(cpu); 87 88 cpu_clear(cpu, cpu_callout_map); 89 cpu_clear(cpu, cpu_callin_map); 90 91 numa_remove_cpu(cpu); 92 c1e_remove_cpu(cpu); 93 } 94 95 /* We don't actually take CPU down, just spin without interrupts. */ 96 static inline void play_dead(void) 97 { 98 /* This must be done before dead CPU ack */ 99 cpu_exit_clear(); 100 mb(); 101 /* Ack it */ 102 __get_cpu_var(cpu_state) = CPU_DEAD; 103 104 /* 105 * With physical CPU hotplug, we should halt the cpu 106 */ 107 local_irq_disable(); 108 /* mask all interrupts, flush any and all caches, and halt */ 109 wbinvd_halt(); 110 } 111 #else 112 static inline void play_dead(void) 113 { 114 BUG(); 115 } 116 #endif /* CONFIG_HOTPLUG_CPU */ 117 118 /* 119 * The idle thread. There's no useful work to be 120 * done, so just try to conserve power and have a 121 * low exit latency (ie sit in a loop waiting for 122 * somebody to say that they'd like to reschedule) 123 */ 124 void cpu_idle(void) 125 { 126 int cpu = smp_processor_id(); 127 128 current_thread_info()->status |= TS_POLLING; 129 130 /* endless idle loop with no priority at all */ 131 while (1) { 132 tick_nohz_stop_sched_tick(1); 133 while (!need_resched()) { 134 135 check_pgt_cache(); 136 rmb(); 137 138 if (rcu_pending(cpu)) 139 rcu_check_callbacks(cpu, 0); 140 141 if (cpu_is_offline(cpu)) 142 play_dead(); 143 144 local_irq_disable(); 145 __get_cpu_var(irq_stat).idle_timestamp = jiffies; 146 /* Don't trace irqs off for idle */ 147 stop_critical_timings(); 148 pm_idle(); 149 start_critical_timings(); 150 } 151 tick_nohz_restart_sched_tick(); 152 preempt_enable_no_resched(); 153 schedule(); 154 preempt_disable(); 155 } 156 } 157 158 void __show_registers(struct pt_regs *regs, int all) 159 { 160 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; 161 unsigned long d0, d1, d2, d3, d6, d7; 162 unsigned long sp; 163 unsigned short ss, gs; 164 165 if (user_mode_vm(regs)) { 166 sp = regs->sp; 167 ss = regs->ss & 0xffff; 168 savesegment(gs, gs); 169 } else { 170 sp = (unsigned long) (®s->sp); 171 savesegment(ss, ss); 172 savesegment(gs, gs); 173 } 174 175 printk("\n"); 176 printk("Pid: %d, comm: %s %s (%s %.*s)\n", 177 task_pid_nr(current), current->comm, 178 print_tainted(), init_utsname()->release, 179 (int)strcspn(init_utsname()->version, " "), 180 init_utsname()->version); 181 182 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", 183 (u16)regs->cs, regs->ip, regs->flags, 184 smp_processor_id()); 185 print_symbol("EIP is at %s\n", regs->ip); 186 187 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", 188 regs->ax, regs->bx, regs->cx, regs->dx); 189 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", 190 regs->si, regs->di, regs->bp, sp); 191 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", 192 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); 193 194 if (!all) 195 return; 196 197 cr0 = read_cr0(); 198 cr2 = read_cr2(); 199 cr3 = read_cr3(); 200 cr4 = read_cr4_safe(); 201 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", 202 cr0, cr2, cr3, cr4); 203 204 get_debugreg(d0, 0); 205 get_debugreg(d1, 1); 206 get_debugreg(d2, 2); 207 get_debugreg(d3, 3); 208 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", 209 d0, d1, d2, d3); 210 211 get_debugreg(d6, 6); 212 get_debugreg(d7, 7); 213 printk("DR6: %08lx DR7: %08lx\n", 214 d6, d7); 215 } 216 217 void show_regs(struct pt_regs *regs) 218 { 219 __show_registers(regs, 1); 220 show_trace(NULL, regs, ®s->sp, regs->bp); 221 } 222 223 /* 224 * This gets run with %bx containing the 225 * function to call, and %dx containing 226 * the "args". 227 */ 228 extern void kernel_thread_helper(void); 229 230 /* 231 * Create a kernel thread 232 */ 233 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 234 { 235 struct pt_regs regs; 236 237 memset(®s, 0, sizeof(regs)); 238 239 regs.bx = (unsigned long) fn; 240 regs.dx = (unsigned long) arg; 241 242 regs.ds = __USER_DS; 243 regs.es = __USER_DS; 244 regs.fs = __KERNEL_PERCPU; 245 regs.orig_ax = -1; 246 regs.ip = (unsigned long) kernel_thread_helper; 247 regs.cs = __KERNEL_CS | get_kernel_rpl(); 248 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; 249 250 /* Ok, create the new process.. */ 251 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 252 } 253 EXPORT_SYMBOL(kernel_thread); 254 255 /* 256 * Free current thread data structures etc.. 257 */ 258 void exit_thread(void) 259 { 260 /* The process may have allocated an io port bitmap... nuke it. */ 261 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { 262 struct task_struct *tsk = current; 263 struct thread_struct *t = &tsk->thread; 264 int cpu = get_cpu(); 265 struct tss_struct *tss = &per_cpu(init_tss, cpu); 266 267 kfree(t->io_bitmap_ptr); 268 t->io_bitmap_ptr = NULL; 269 clear_thread_flag(TIF_IO_BITMAP); 270 /* 271 * Careful, clear this in the TSS too: 272 */ 273 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); 274 t->io_bitmap_max = 0; 275 tss->io_bitmap_owner = NULL; 276 tss->io_bitmap_max = 0; 277 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 278 put_cpu(); 279 } 280 } 281 282 void flush_thread(void) 283 { 284 struct task_struct *tsk = current; 285 286 tsk->thread.debugreg0 = 0; 287 tsk->thread.debugreg1 = 0; 288 tsk->thread.debugreg2 = 0; 289 tsk->thread.debugreg3 = 0; 290 tsk->thread.debugreg6 = 0; 291 tsk->thread.debugreg7 = 0; 292 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 293 clear_tsk_thread_flag(tsk, TIF_DEBUG); 294 /* 295 * Forget coprocessor state.. 296 */ 297 tsk->fpu_counter = 0; 298 clear_fpu(tsk); 299 clear_used_math(); 300 } 301 302 void release_thread(struct task_struct *dead_task) 303 { 304 BUG_ON(dead_task->mm); 305 release_vm86_irqs(dead_task); 306 } 307 308 /* 309 * This gets called before we allocate a new thread and copy 310 * the current task into it. 311 */ 312 void prepare_to_copy(struct task_struct *tsk) 313 { 314 unlazy_fpu(tsk); 315 } 316 317 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, 318 unsigned long unused, 319 struct task_struct * p, struct pt_regs * regs) 320 { 321 struct pt_regs * childregs; 322 struct task_struct *tsk; 323 int err; 324 325 childregs = task_pt_regs(p); 326 *childregs = *regs; 327 childregs->ax = 0; 328 childregs->sp = sp; 329 330 p->thread.sp = (unsigned long) childregs; 331 p->thread.sp0 = (unsigned long) (childregs+1); 332 333 p->thread.ip = (unsigned long) ret_from_fork; 334 335 savesegment(gs, p->thread.gs); 336 337 tsk = current; 338 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { 339 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, 340 IO_BITMAP_BYTES, GFP_KERNEL); 341 if (!p->thread.io_bitmap_ptr) { 342 p->thread.io_bitmap_max = 0; 343 return -ENOMEM; 344 } 345 set_tsk_thread_flag(p, TIF_IO_BITMAP); 346 } 347 348 err = 0; 349 350 /* 351 * Set a new TLS for the child thread? 352 */ 353 if (clone_flags & CLONE_SETTLS) 354 err = do_set_thread_area(p, -1, 355 (struct user_desc __user *)childregs->si, 0); 356 357 if (err && p->thread.io_bitmap_ptr) { 358 kfree(p->thread.io_bitmap_ptr); 359 p->thread.io_bitmap_max = 0; 360 } 361 return err; 362 } 363 364 void 365 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 366 { 367 __asm__("movl %0, %%gs" :: "r"(0)); 368 regs->fs = 0; 369 set_fs(USER_DS); 370 regs->ds = __USER_DS; 371 regs->es = __USER_DS; 372 regs->ss = __USER_DS; 373 regs->cs = __USER_CS; 374 regs->ip = new_ip; 375 regs->sp = new_sp; 376 /* 377 * Free the old FP and other extended state 378 */ 379 free_thread_xstate(current); 380 } 381 EXPORT_SYMBOL_GPL(start_thread); 382 383 static void hard_disable_TSC(void) 384 { 385 write_cr4(read_cr4() | X86_CR4_TSD); 386 } 387 388 void disable_TSC(void) 389 { 390 preempt_disable(); 391 if (!test_and_set_thread_flag(TIF_NOTSC)) 392 /* 393 * Must flip the CPU state synchronously with 394 * TIF_NOTSC in the current running context. 395 */ 396 hard_disable_TSC(); 397 preempt_enable(); 398 } 399 400 static void hard_enable_TSC(void) 401 { 402 write_cr4(read_cr4() & ~X86_CR4_TSD); 403 } 404 405 static void enable_TSC(void) 406 { 407 preempt_disable(); 408 if (test_and_clear_thread_flag(TIF_NOTSC)) 409 /* 410 * Must flip the CPU state synchronously with 411 * TIF_NOTSC in the current running context. 412 */ 413 hard_enable_TSC(); 414 preempt_enable(); 415 } 416 417 int get_tsc_mode(unsigned long adr) 418 { 419 unsigned int val; 420 421 if (test_thread_flag(TIF_NOTSC)) 422 val = PR_TSC_SIGSEGV; 423 else 424 val = PR_TSC_ENABLE; 425 426 return put_user(val, (unsigned int __user *)adr); 427 } 428 429 int set_tsc_mode(unsigned int val) 430 { 431 if (val == PR_TSC_SIGSEGV) 432 disable_TSC(); 433 else if (val == PR_TSC_ENABLE) 434 enable_TSC(); 435 else 436 return -EINVAL; 437 438 return 0; 439 } 440 441 static noinline void 442 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 443 struct tss_struct *tss) 444 { 445 struct thread_struct *prev, *next; 446 unsigned long debugctl; 447 448 prev = &prev_p->thread; 449 next = &next_p->thread; 450 451 debugctl = prev->debugctlmsr; 452 if (next->ds_area_msr != prev->ds_area_msr) { 453 /* we clear debugctl to make sure DS 454 * is not in use when we change it */ 455 debugctl = 0; 456 update_debugctlmsr(0); 457 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0); 458 } 459 460 if (next->debugctlmsr != debugctl) 461 update_debugctlmsr(next->debugctlmsr); 462 463 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { 464 set_debugreg(next->debugreg0, 0); 465 set_debugreg(next->debugreg1, 1); 466 set_debugreg(next->debugreg2, 2); 467 set_debugreg(next->debugreg3, 3); 468 /* no 4 and 5 */ 469 set_debugreg(next->debugreg6, 6); 470 set_debugreg(next->debugreg7, 7); 471 } 472 473 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 474 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 475 /* prev and next are different */ 476 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 477 hard_disable_TSC(); 478 else 479 hard_enable_TSC(); 480 } 481 482 #ifdef X86_BTS 483 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS)) 484 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS); 485 486 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS)) 487 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES); 488 #endif 489 490 491 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 492 /* 493 * Disable the bitmap via an invalid offset. We still cache 494 * the previous bitmap owner and the IO bitmap contents: 495 */ 496 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 497 return; 498 } 499 500 if (likely(next == tss->io_bitmap_owner)) { 501 /* 502 * Previous owner of the bitmap (hence the bitmap content) 503 * matches the next task, we dont have to do anything but 504 * to set a valid offset in the TSS: 505 */ 506 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 507 return; 508 } 509 /* 510 * Lazy TSS's I/O bitmap copy. We set an invalid offset here 511 * and we let the task to get a GPF in case an I/O instruction 512 * is performed. The handler of the GPF will verify that the 513 * faulting task has a valid I/O bitmap and, it true, does the 514 * real copy and restart the instruction. This will save us 515 * redundant copies when the currently switched task does not 516 * perform any I/O during its timeslice. 517 */ 518 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; 519 } 520 521 /* 522 * switch_to(x,yn) should switch tasks from x to y. 523 * 524 * We fsave/fwait so that an exception goes off at the right time 525 * (as a call from the fsave or fwait in effect) rather than to 526 * the wrong process. Lazy FP saving no longer makes any sense 527 * with modern CPU's, and this simplifies a lot of things (SMP 528 * and UP become the same). 529 * 530 * NOTE! We used to use the x86 hardware context switching. The 531 * reason for not using it any more becomes apparent when you 532 * try to recover gracefully from saved state that is no longer 533 * valid (stale segment register values in particular). With the 534 * hardware task-switch, there is no way to fix up bad state in 535 * a reasonable manner. 536 * 537 * The fact that Intel documents the hardware task-switching to 538 * be slow is a fairly red herring - this code is not noticeably 539 * faster. However, there _is_ some room for improvement here, 540 * so the performance issues may eventually be a valid point. 541 * More important, however, is the fact that this allows us much 542 * more flexibility. 543 * 544 * The return value (in %ax) will be the "prev" task after 545 * the task-switch, and shows up in ret_from_fork in entry.S, 546 * for example. 547 */ 548 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 549 { 550 struct thread_struct *prev = &prev_p->thread, 551 *next = &next_p->thread; 552 int cpu = smp_processor_id(); 553 struct tss_struct *tss = &per_cpu(init_tss, cpu); 554 555 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ 556 557 __unlazy_fpu(prev_p); 558 559 560 /* we're going to use this soon, after a few expensive things */ 561 if (next_p->fpu_counter > 5) 562 prefetch(next->xstate); 563 564 /* 565 * Reload esp0. 566 */ 567 load_sp0(tss, next); 568 569 /* 570 * Save away %gs. No need to save %fs, as it was saved on the 571 * stack on entry. No need to save %es and %ds, as those are 572 * always kernel segments while inside the kernel. Doing this 573 * before setting the new TLS descriptors avoids the situation 574 * where we temporarily have non-reloadable segments in %fs 575 * and %gs. This could be an issue if the NMI handler ever 576 * used %fs or %gs (it does not today), or if the kernel is 577 * running inside of a hypervisor layer. 578 */ 579 savesegment(gs, prev->gs); 580 581 /* 582 * Load the per-thread Thread-Local Storage descriptor. 583 */ 584 load_TLS(next, cpu); 585 586 /* 587 * Restore IOPL if needed. In normal use, the flags restore 588 * in the switch assembly will handle this. But if the kernel 589 * is running virtualized at a non-zero CPL, the popf will 590 * not restore flags, so it must be done in a separate step. 591 */ 592 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) 593 set_iopl_mask(next->iopl); 594 595 /* 596 * Now maybe handle debug registers and/or IO bitmaps 597 */ 598 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || 599 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) 600 __switch_to_xtra(prev_p, next_p, tss); 601 602 /* 603 * Leave lazy mode, flushing any hypercalls made here. 604 * This must be done before restoring TLS segments so 605 * the GDT and LDT are properly updated, and must be 606 * done before math_state_restore, so the TS bit is up 607 * to date. 608 */ 609 arch_leave_lazy_cpu_mode(); 610 611 /* If the task has used fpu the last 5 timeslices, just do a full 612 * restore of the math state immediately to avoid the trap; the 613 * chances of needing FPU soon are obviously high now 614 * 615 * tsk_used_math() checks prevent calling math_state_restore(), 616 * which can sleep in the case of !tsk_used_math() 617 */ 618 if (tsk_used_math(next_p) && next_p->fpu_counter > 5) 619 math_state_restore(); 620 621 /* 622 * Restore %gs if needed (which is common) 623 */ 624 if (prev->gs | next->gs) 625 loadsegment(gs, next->gs); 626 627 x86_write_percpu(current_task, next_p); 628 629 return prev_p; 630 } 631 632 asmlinkage int sys_fork(struct pt_regs regs) 633 { 634 return do_fork(SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 635 } 636 637 asmlinkage int sys_clone(struct pt_regs regs) 638 { 639 unsigned long clone_flags; 640 unsigned long newsp; 641 int __user *parent_tidptr, *child_tidptr; 642 643 clone_flags = regs.bx; 644 newsp = regs.cx; 645 parent_tidptr = (int __user *)regs.dx; 646 child_tidptr = (int __user *)regs.di; 647 if (!newsp) 648 newsp = regs.sp; 649 return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); 650 } 651 652 /* 653 * This is trivial, and on the face of it looks like it 654 * could equally well be done in user mode. 655 * 656 * Not so, for quite unobvious reasons - register pressure. 657 * In user mode vfork() cannot have a stack frame, and if 658 * done by calling the "clone()" system call directly, you 659 * do not have enough call-clobbered registers to hold all 660 * the information you need. 661 */ 662 asmlinkage int sys_vfork(struct pt_regs regs) 663 { 664 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 665 } 666 667 /* 668 * sys_execve() executes a new program. 669 */ 670 asmlinkage int sys_execve(struct pt_regs regs) 671 { 672 int error; 673 char * filename; 674 675 filename = getname((char __user *) regs.bx); 676 error = PTR_ERR(filename); 677 if (IS_ERR(filename)) 678 goto out; 679 error = do_execve(filename, 680 (char __user * __user *) regs.cx, 681 (char __user * __user *) regs.dx, 682 ®s); 683 if (error == 0) { 684 /* Make sure we don't return using sysenter.. */ 685 set_thread_flag(TIF_IRET); 686 } 687 putname(filename); 688 out: 689 return error; 690 } 691 692 #define top_esp (THREAD_SIZE - sizeof(unsigned long)) 693 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) 694 695 unsigned long get_wchan(struct task_struct *p) 696 { 697 unsigned long bp, sp, ip; 698 unsigned long stack_page; 699 int count = 0; 700 if (!p || p == current || p->state == TASK_RUNNING) 701 return 0; 702 stack_page = (unsigned long)task_stack_page(p); 703 sp = p->thread.sp; 704 if (!stack_page || sp < stack_page || sp > top_esp+stack_page) 705 return 0; 706 /* include/asm-i386/system.h:switch_to() pushes bp last. */ 707 bp = *(unsigned long *) sp; 708 do { 709 if (bp < stack_page || bp > top_ebp+stack_page) 710 return 0; 711 ip = *(unsigned long *) (bp+4); 712 if (!in_sched_functions(ip)) 713 return ip; 714 bp = *(unsigned long *) bp; 715 } while (count++ < 16); 716 return 0; 717 } 718 719 unsigned long arch_align_stack(unsigned long sp) 720 { 721 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 722 sp -= get_random_int() % 8192; 723 return sp & ~0xf; 724 } 725 726 unsigned long arch_randomize_brk(struct mm_struct *mm) 727 { 728 unsigned long range_end = mm->brk + 0x02000000; 729 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 730 } 731