xref: /linux/arch/x86/kernel/process_32.c (revision c0c9209ddd96bc4f1d70a8b9958710671e076080)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
52 
53 #include <linux/err.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/kdebug.h>
58 #include <asm/idle.h>
59 
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
61 
62 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
63 EXPORT_PER_CPU_SYMBOL(current_task);
64 
65 DEFINE_PER_CPU(int, cpu_number);
66 EXPORT_PER_CPU_SYMBOL(cpu_number);
67 
68 /*
69  * Return saved PC of a blocked thread.
70  */
71 unsigned long thread_saved_pc(struct task_struct *tsk)
72 {
73 	return ((unsigned long *)tsk->thread.sp)[3];
74 }
75 
76 #ifdef CONFIG_HOTPLUG_CPU
77 #include <asm/nmi.h>
78 
79 static void cpu_exit_clear(void)
80 {
81 	int cpu = raw_smp_processor_id();
82 
83 	idle_task_exit();
84 
85 	cpu_uninit();
86 	irq_ctx_exit(cpu);
87 
88 	cpu_clear(cpu, cpu_callout_map);
89 	cpu_clear(cpu, cpu_callin_map);
90 
91 	numa_remove_cpu(cpu);
92 	c1e_remove_cpu(cpu);
93 }
94 
95 /* We don't actually take CPU down, just spin without interrupts. */
96 static inline void play_dead(void)
97 {
98 	/* This must be done before dead CPU ack */
99 	cpu_exit_clear();
100 	mb();
101 	/* Ack it */
102 	__get_cpu_var(cpu_state) = CPU_DEAD;
103 
104 	/*
105 	 * With physical CPU hotplug, we should halt the cpu
106 	 */
107 	local_irq_disable();
108 	/* mask all interrupts, flush any and all caches, and halt */
109 	wbinvd_halt();
110 }
111 #else
112 static inline void play_dead(void)
113 {
114 	BUG();
115 }
116 #endif /* CONFIG_HOTPLUG_CPU */
117 
118 /*
119  * The idle thread. There's no useful work to be
120  * done, so just try to conserve power and have a
121  * low exit latency (ie sit in a loop waiting for
122  * somebody to say that they'd like to reschedule)
123  */
124 void cpu_idle(void)
125 {
126 	int cpu = smp_processor_id();
127 
128 	current_thread_info()->status |= TS_POLLING;
129 
130 	/* endless idle loop with no priority at all */
131 	while (1) {
132 		tick_nohz_stop_sched_tick(1);
133 		while (!need_resched()) {
134 
135 			check_pgt_cache();
136 			rmb();
137 
138 			if (rcu_pending(cpu))
139 				rcu_check_callbacks(cpu, 0);
140 
141 			if (cpu_is_offline(cpu))
142 				play_dead();
143 
144 			local_irq_disable();
145 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
146 			/* Don't trace irqs off for idle */
147 			stop_critical_timings();
148 			pm_idle();
149 			start_critical_timings();
150 		}
151 		tick_nohz_restart_sched_tick();
152 		preempt_enable_no_resched();
153 		schedule();
154 		preempt_disable();
155 	}
156 }
157 
158 void __show_registers(struct pt_regs *regs, int all)
159 {
160 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
161 	unsigned long d0, d1, d2, d3, d6, d7;
162 	unsigned long sp;
163 	unsigned short ss, gs;
164 
165 	if (user_mode_vm(regs)) {
166 		sp = regs->sp;
167 		ss = regs->ss & 0xffff;
168 		savesegment(gs, gs);
169 	} else {
170 		sp = (unsigned long) (&regs->sp);
171 		savesegment(ss, ss);
172 		savesegment(gs, gs);
173 	}
174 
175 	printk("\n");
176 	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
177 			task_pid_nr(current), current->comm,
178 			print_tainted(), init_utsname()->release,
179 			(int)strcspn(init_utsname()->version, " "),
180 			init_utsname()->version);
181 
182 	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
183 			(u16)regs->cs, regs->ip, regs->flags,
184 			smp_processor_id());
185 	print_symbol("EIP is at %s\n", regs->ip);
186 
187 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
188 		regs->ax, regs->bx, regs->cx, regs->dx);
189 	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
190 		regs->si, regs->di, regs->bp, sp);
191 	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
192 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
193 
194 	if (!all)
195 		return;
196 
197 	cr0 = read_cr0();
198 	cr2 = read_cr2();
199 	cr3 = read_cr3();
200 	cr4 = read_cr4_safe();
201 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
202 			cr0, cr2, cr3, cr4);
203 
204 	get_debugreg(d0, 0);
205 	get_debugreg(d1, 1);
206 	get_debugreg(d2, 2);
207 	get_debugreg(d3, 3);
208 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
209 			d0, d1, d2, d3);
210 
211 	get_debugreg(d6, 6);
212 	get_debugreg(d7, 7);
213 	printk("DR6: %08lx DR7: %08lx\n",
214 			d6, d7);
215 }
216 
217 void show_regs(struct pt_regs *regs)
218 {
219 	__show_registers(regs, 1);
220 	show_trace(NULL, regs, &regs->sp, regs->bp);
221 }
222 
223 /*
224  * This gets run with %bx containing the
225  * function to call, and %dx containing
226  * the "args".
227  */
228 extern void kernel_thread_helper(void);
229 
230 /*
231  * Create a kernel thread
232  */
233 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
234 {
235 	struct pt_regs regs;
236 
237 	memset(&regs, 0, sizeof(regs));
238 
239 	regs.bx = (unsigned long) fn;
240 	regs.dx = (unsigned long) arg;
241 
242 	regs.ds = __USER_DS;
243 	regs.es = __USER_DS;
244 	regs.fs = __KERNEL_PERCPU;
245 	regs.orig_ax = -1;
246 	regs.ip = (unsigned long) kernel_thread_helper;
247 	regs.cs = __KERNEL_CS | get_kernel_rpl();
248 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
249 
250 	/* Ok, create the new process.. */
251 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
252 }
253 EXPORT_SYMBOL(kernel_thread);
254 
255 /*
256  * Free current thread data structures etc..
257  */
258 void exit_thread(void)
259 {
260 	/* The process may have allocated an io port bitmap... nuke it. */
261 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
262 		struct task_struct *tsk = current;
263 		struct thread_struct *t = &tsk->thread;
264 		int cpu = get_cpu();
265 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
266 
267 		kfree(t->io_bitmap_ptr);
268 		t->io_bitmap_ptr = NULL;
269 		clear_thread_flag(TIF_IO_BITMAP);
270 		/*
271 		 * Careful, clear this in the TSS too:
272 		 */
273 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
274 		t->io_bitmap_max = 0;
275 		tss->io_bitmap_owner = NULL;
276 		tss->io_bitmap_max = 0;
277 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
278 		put_cpu();
279 	}
280 }
281 
282 void flush_thread(void)
283 {
284 	struct task_struct *tsk = current;
285 
286 	tsk->thread.debugreg0 = 0;
287 	tsk->thread.debugreg1 = 0;
288 	tsk->thread.debugreg2 = 0;
289 	tsk->thread.debugreg3 = 0;
290 	tsk->thread.debugreg6 = 0;
291 	tsk->thread.debugreg7 = 0;
292 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
293 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
294 	/*
295 	 * Forget coprocessor state..
296 	 */
297 	tsk->fpu_counter = 0;
298 	clear_fpu(tsk);
299 	clear_used_math();
300 }
301 
302 void release_thread(struct task_struct *dead_task)
303 {
304 	BUG_ON(dead_task->mm);
305 	release_vm86_irqs(dead_task);
306 }
307 
308 /*
309  * This gets called before we allocate a new thread and copy
310  * the current task into it.
311  */
312 void prepare_to_copy(struct task_struct *tsk)
313 {
314 	unlazy_fpu(tsk);
315 }
316 
317 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
318 	unsigned long unused,
319 	struct task_struct * p, struct pt_regs * regs)
320 {
321 	struct pt_regs * childregs;
322 	struct task_struct *tsk;
323 	int err;
324 
325 	childregs = task_pt_regs(p);
326 	*childregs = *regs;
327 	childregs->ax = 0;
328 	childregs->sp = sp;
329 
330 	p->thread.sp = (unsigned long) childregs;
331 	p->thread.sp0 = (unsigned long) (childregs+1);
332 
333 	p->thread.ip = (unsigned long) ret_from_fork;
334 
335 	savesegment(gs, p->thread.gs);
336 
337 	tsk = current;
338 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
339 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
340 						IO_BITMAP_BYTES, GFP_KERNEL);
341 		if (!p->thread.io_bitmap_ptr) {
342 			p->thread.io_bitmap_max = 0;
343 			return -ENOMEM;
344 		}
345 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
346 	}
347 
348 	err = 0;
349 
350 	/*
351 	 * Set a new TLS for the child thread?
352 	 */
353 	if (clone_flags & CLONE_SETTLS)
354 		err = do_set_thread_area(p, -1,
355 			(struct user_desc __user *)childregs->si, 0);
356 
357 	if (err && p->thread.io_bitmap_ptr) {
358 		kfree(p->thread.io_bitmap_ptr);
359 		p->thread.io_bitmap_max = 0;
360 	}
361 	return err;
362 }
363 
364 void
365 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
366 {
367 	__asm__("movl %0, %%gs" :: "r"(0));
368 	regs->fs		= 0;
369 	set_fs(USER_DS);
370 	regs->ds		= __USER_DS;
371 	regs->es		= __USER_DS;
372 	regs->ss		= __USER_DS;
373 	regs->cs		= __USER_CS;
374 	regs->ip		= new_ip;
375 	regs->sp		= new_sp;
376 	/*
377 	 * Free the old FP and other extended state
378 	 */
379 	free_thread_xstate(current);
380 }
381 EXPORT_SYMBOL_GPL(start_thread);
382 
383 static void hard_disable_TSC(void)
384 {
385 	write_cr4(read_cr4() | X86_CR4_TSD);
386 }
387 
388 void disable_TSC(void)
389 {
390 	preempt_disable();
391 	if (!test_and_set_thread_flag(TIF_NOTSC))
392 		/*
393 		 * Must flip the CPU state synchronously with
394 		 * TIF_NOTSC in the current running context.
395 		 */
396 		hard_disable_TSC();
397 	preempt_enable();
398 }
399 
400 static void hard_enable_TSC(void)
401 {
402 	write_cr4(read_cr4() & ~X86_CR4_TSD);
403 }
404 
405 static void enable_TSC(void)
406 {
407 	preempt_disable();
408 	if (test_and_clear_thread_flag(TIF_NOTSC))
409 		/*
410 		 * Must flip the CPU state synchronously with
411 		 * TIF_NOTSC in the current running context.
412 		 */
413 		hard_enable_TSC();
414 	preempt_enable();
415 }
416 
417 int get_tsc_mode(unsigned long adr)
418 {
419 	unsigned int val;
420 
421 	if (test_thread_flag(TIF_NOTSC))
422 		val = PR_TSC_SIGSEGV;
423 	else
424 		val = PR_TSC_ENABLE;
425 
426 	return put_user(val, (unsigned int __user *)adr);
427 }
428 
429 int set_tsc_mode(unsigned int val)
430 {
431 	if (val == PR_TSC_SIGSEGV)
432 		disable_TSC();
433 	else if (val == PR_TSC_ENABLE)
434 		enable_TSC();
435 	else
436 		return -EINVAL;
437 
438 	return 0;
439 }
440 
441 static noinline void
442 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
443 		 struct tss_struct *tss)
444 {
445 	struct thread_struct *prev, *next;
446 	unsigned long debugctl;
447 
448 	prev = &prev_p->thread;
449 	next = &next_p->thread;
450 
451 	debugctl = prev->debugctlmsr;
452 	if (next->ds_area_msr != prev->ds_area_msr) {
453 		/* we clear debugctl to make sure DS
454 		 * is not in use when we change it */
455 		debugctl = 0;
456 		update_debugctlmsr(0);
457 		wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
458 	}
459 
460 	if (next->debugctlmsr != debugctl)
461 		update_debugctlmsr(next->debugctlmsr);
462 
463 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
464 		set_debugreg(next->debugreg0, 0);
465 		set_debugreg(next->debugreg1, 1);
466 		set_debugreg(next->debugreg2, 2);
467 		set_debugreg(next->debugreg3, 3);
468 		/* no 4 and 5 */
469 		set_debugreg(next->debugreg6, 6);
470 		set_debugreg(next->debugreg7, 7);
471 	}
472 
473 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
474 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
475 		/* prev and next are different */
476 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
477 			hard_disable_TSC();
478 		else
479 			hard_enable_TSC();
480 	}
481 
482 #ifdef X86_BTS
483 	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
484 		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
485 
486 	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
487 		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
488 #endif
489 
490 
491 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
492 		/*
493 		 * Disable the bitmap via an invalid offset. We still cache
494 		 * the previous bitmap owner and the IO bitmap contents:
495 		 */
496 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
497 		return;
498 	}
499 
500 	if (likely(next == tss->io_bitmap_owner)) {
501 		/*
502 		 * Previous owner of the bitmap (hence the bitmap content)
503 		 * matches the next task, we dont have to do anything but
504 		 * to set a valid offset in the TSS:
505 		 */
506 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
507 		return;
508 	}
509 	/*
510 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
511 	 * and we let the task to get a GPF in case an I/O instruction
512 	 * is performed.  The handler of the GPF will verify that the
513 	 * faulting task has a valid I/O bitmap and, it true, does the
514 	 * real copy and restart the instruction.  This will save us
515 	 * redundant copies when the currently switched task does not
516 	 * perform any I/O during its timeslice.
517 	 */
518 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
519 }
520 
521 /*
522  *	switch_to(x,yn) should switch tasks from x to y.
523  *
524  * We fsave/fwait so that an exception goes off at the right time
525  * (as a call from the fsave or fwait in effect) rather than to
526  * the wrong process. Lazy FP saving no longer makes any sense
527  * with modern CPU's, and this simplifies a lot of things (SMP
528  * and UP become the same).
529  *
530  * NOTE! We used to use the x86 hardware context switching. The
531  * reason for not using it any more becomes apparent when you
532  * try to recover gracefully from saved state that is no longer
533  * valid (stale segment register values in particular). With the
534  * hardware task-switch, there is no way to fix up bad state in
535  * a reasonable manner.
536  *
537  * The fact that Intel documents the hardware task-switching to
538  * be slow is a fairly red herring - this code is not noticeably
539  * faster. However, there _is_ some room for improvement here,
540  * so the performance issues may eventually be a valid point.
541  * More important, however, is the fact that this allows us much
542  * more flexibility.
543  *
544  * The return value (in %ax) will be the "prev" task after
545  * the task-switch, and shows up in ret_from_fork in entry.S,
546  * for example.
547  */
548 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
549 {
550 	struct thread_struct *prev = &prev_p->thread,
551 				 *next = &next_p->thread;
552 	int cpu = smp_processor_id();
553 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
554 
555 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
556 
557 	__unlazy_fpu(prev_p);
558 
559 
560 	/* we're going to use this soon, after a few expensive things */
561 	if (next_p->fpu_counter > 5)
562 		prefetch(next->xstate);
563 
564 	/*
565 	 * Reload esp0.
566 	 */
567 	load_sp0(tss, next);
568 
569 	/*
570 	 * Save away %gs. No need to save %fs, as it was saved on the
571 	 * stack on entry.  No need to save %es and %ds, as those are
572 	 * always kernel segments while inside the kernel.  Doing this
573 	 * before setting the new TLS descriptors avoids the situation
574 	 * where we temporarily have non-reloadable segments in %fs
575 	 * and %gs.  This could be an issue if the NMI handler ever
576 	 * used %fs or %gs (it does not today), or if the kernel is
577 	 * running inside of a hypervisor layer.
578 	 */
579 	savesegment(gs, prev->gs);
580 
581 	/*
582 	 * Load the per-thread Thread-Local Storage descriptor.
583 	 */
584 	load_TLS(next, cpu);
585 
586 	/*
587 	 * Restore IOPL if needed.  In normal use, the flags restore
588 	 * in the switch assembly will handle this.  But if the kernel
589 	 * is running virtualized at a non-zero CPL, the popf will
590 	 * not restore flags, so it must be done in a separate step.
591 	 */
592 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
593 		set_iopl_mask(next->iopl);
594 
595 	/*
596 	 * Now maybe handle debug registers and/or IO bitmaps
597 	 */
598 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
599 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
600 		__switch_to_xtra(prev_p, next_p, tss);
601 
602 	/*
603 	 * Leave lazy mode, flushing any hypercalls made here.
604 	 * This must be done before restoring TLS segments so
605 	 * the GDT and LDT are properly updated, and must be
606 	 * done before math_state_restore, so the TS bit is up
607 	 * to date.
608 	 */
609 	arch_leave_lazy_cpu_mode();
610 
611 	/* If the task has used fpu the last 5 timeslices, just do a full
612 	 * restore of the math state immediately to avoid the trap; the
613 	 * chances of needing FPU soon are obviously high now
614 	 *
615 	 * tsk_used_math() checks prevent calling math_state_restore(),
616 	 * which can sleep in the case of !tsk_used_math()
617 	 */
618 	if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
619 		math_state_restore();
620 
621 	/*
622 	 * Restore %gs if needed (which is common)
623 	 */
624 	if (prev->gs | next->gs)
625 		loadsegment(gs, next->gs);
626 
627 	x86_write_percpu(current_task, next_p);
628 
629 	return prev_p;
630 }
631 
632 asmlinkage int sys_fork(struct pt_regs regs)
633 {
634 	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
635 }
636 
637 asmlinkage int sys_clone(struct pt_regs regs)
638 {
639 	unsigned long clone_flags;
640 	unsigned long newsp;
641 	int __user *parent_tidptr, *child_tidptr;
642 
643 	clone_flags = regs.bx;
644 	newsp = regs.cx;
645 	parent_tidptr = (int __user *)regs.dx;
646 	child_tidptr = (int __user *)regs.di;
647 	if (!newsp)
648 		newsp = regs.sp;
649 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
650 }
651 
652 /*
653  * This is trivial, and on the face of it looks like it
654  * could equally well be done in user mode.
655  *
656  * Not so, for quite unobvious reasons - register pressure.
657  * In user mode vfork() cannot have a stack frame, and if
658  * done by calling the "clone()" system call directly, you
659  * do not have enough call-clobbered registers to hold all
660  * the information you need.
661  */
662 asmlinkage int sys_vfork(struct pt_regs regs)
663 {
664 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
665 }
666 
667 /*
668  * sys_execve() executes a new program.
669  */
670 asmlinkage int sys_execve(struct pt_regs regs)
671 {
672 	int error;
673 	char * filename;
674 
675 	filename = getname((char __user *) regs.bx);
676 	error = PTR_ERR(filename);
677 	if (IS_ERR(filename))
678 		goto out;
679 	error = do_execve(filename,
680 			(char __user * __user *) regs.cx,
681 			(char __user * __user *) regs.dx,
682 			&regs);
683 	if (error == 0) {
684 		/* Make sure we don't return using sysenter.. */
685 		set_thread_flag(TIF_IRET);
686 	}
687 	putname(filename);
688 out:
689 	return error;
690 }
691 
692 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
693 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
694 
695 unsigned long get_wchan(struct task_struct *p)
696 {
697 	unsigned long bp, sp, ip;
698 	unsigned long stack_page;
699 	int count = 0;
700 	if (!p || p == current || p->state == TASK_RUNNING)
701 		return 0;
702 	stack_page = (unsigned long)task_stack_page(p);
703 	sp = p->thread.sp;
704 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
705 		return 0;
706 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
707 	bp = *(unsigned long *) sp;
708 	do {
709 		if (bp < stack_page || bp > top_ebp+stack_page)
710 			return 0;
711 		ip = *(unsigned long *) (bp+4);
712 		if (!in_sched_functions(ip))
713 			return ip;
714 		bp = *(unsigned long *) bp;
715 	} while (count++ < 16);
716 	return 0;
717 }
718 
719 unsigned long arch_align_stack(unsigned long sp)
720 {
721 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
722 		sp -= get_random_int() % 8192;
723 	return sp & ~0xf;
724 }
725 
726 unsigned long arch_randomize_brk(struct mm_struct *mm)
727 {
728 	unsigned long range_end = mm->brk + 0x02000000;
729 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
730 }
731