1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/cpu.h> 15 #include <linux/errno.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/elfcore.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/user.h> 26 #include <linux/interrupt.h> 27 #include <linux/utsname.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/init.h> 31 #include <linux/mc146818rtc.h> 32 #include <linux/module.h> 33 #include <linux/kallsyms.h> 34 #include <linux/ptrace.h> 35 #include <linux/random.h> 36 #include <linux/personality.h> 37 #include <linux/tick.h> 38 #include <linux/percpu.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/pgtable.h> 42 #include <asm/system.h> 43 #include <asm/io.h> 44 #include <asm/ldt.h> 45 #include <asm/processor.h> 46 #include <asm/i387.h> 47 #include <asm/desc.h> 48 #include <asm/vm86.h> 49 #ifdef CONFIG_MATH_EMULATION 50 #include <asm/math_emu.h> 51 #endif 52 53 #include <linux/err.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/cpu.h> 57 #include <asm/kdebug.h> 58 59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); 60 61 static int hlt_counter; 62 63 unsigned long boot_option_idle_override = 0; 64 EXPORT_SYMBOL(boot_option_idle_override); 65 66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 67 EXPORT_PER_CPU_SYMBOL(current_task); 68 69 DEFINE_PER_CPU(int, cpu_number); 70 EXPORT_PER_CPU_SYMBOL(cpu_number); 71 72 /* 73 * Return saved PC of a blocked thread. 74 */ 75 unsigned long thread_saved_pc(struct task_struct *tsk) 76 { 77 return ((unsigned long *)tsk->thread.sp)[3]; 78 } 79 80 /* 81 * Powermanagement idle function, if any.. 82 */ 83 void (*pm_idle)(void); 84 EXPORT_SYMBOL(pm_idle); 85 static DEFINE_PER_CPU(unsigned int, cpu_idle_state); 86 87 void disable_hlt(void) 88 { 89 hlt_counter++; 90 } 91 92 EXPORT_SYMBOL(disable_hlt); 93 94 void enable_hlt(void) 95 { 96 hlt_counter--; 97 } 98 99 EXPORT_SYMBOL(enable_hlt); 100 101 /* 102 * We use this if we don't have any better 103 * idle routine.. 104 */ 105 void default_idle(void) 106 { 107 if (!hlt_counter && boot_cpu_data.hlt_works_ok) { 108 current_thread_info()->status &= ~TS_POLLING; 109 /* 110 * TS_POLLING-cleared state must be visible before we 111 * test NEED_RESCHED: 112 */ 113 smp_mb(); 114 115 local_irq_disable(); 116 if (!need_resched()) { 117 ktime_t t0, t1; 118 u64 t0n, t1n; 119 120 t0 = ktime_get(); 121 t0n = ktime_to_ns(t0); 122 safe_halt(); /* enables interrupts racelessly */ 123 local_irq_disable(); 124 t1 = ktime_get(); 125 t1n = ktime_to_ns(t1); 126 sched_clock_idle_wakeup_event(t1n - t0n); 127 } 128 local_irq_enable(); 129 current_thread_info()->status |= TS_POLLING; 130 } else { 131 /* loop is done by the caller */ 132 cpu_relax(); 133 } 134 } 135 #ifdef CONFIG_APM_MODULE 136 EXPORT_SYMBOL(default_idle); 137 #endif 138 139 /* 140 * On SMP it's slightly faster (but much more power-consuming!) 141 * to poll the ->work.need_resched flag instead of waiting for the 142 * cross-CPU IPI to arrive. Use this option with caution. 143 */ 144 static void poll_idle(void) 145 { 146 cpu_relax(); 147 } 148 149 #ifdef CONFIG_HOTPLUG_CPU 150 #include <asm/nmi.h> 151 /* We don't actually take CPU down, just spin without interrupts. */ 152 static inline void play_dead(void) 153 { 154 /* This must be done before dead CPU ack */ 155 cpu_exit_clear(); 156 wbinvd(); 157 mb(); 158 /* Ack it */ 159 __get_cpu_var(cpu_state) = CPU_DEAD; 160 161 /* 162 * With physical CPU hotplug, we should halt the cpu 163 */ 164 local_irq_disable(); 165 while (1) 166 halt(); 167 } 168 #else 169 static inline void play_dead(void) 170 { 171 BUG(); 172 } 173 #endif /* CONFIG_HOTPLUG_CPU */ 174 175 /* 176 * The idle thread. There's no useful work to be 177 * done, so just try to conserve power and have a 178 * low exit latency (ie sit in a loop waiting for 179 * somebody to say that they'd like to reschedule) 180 */ 181 void cpu_idle(void) 182 { 183 int cpu = smp_processor_id(); 184 185 current_thread_info()->status |= TS_POLLING; 186 187 /* endless idle loop with no priority at all */ 188 while (1) { 189 tick_nohz_stop_sched_tick(); 190 while (!need_resched()) { 191 void (*idle)(void); 192 193 if (__get_cpu_var(cpu_idle_state)) 194 __get_cpu_var(cpu_idle_state) = 0; 195 196 check_pgt_cache(); 197 rmb(); 198 idle = pm_idle; 199 200 if (rcu_pending(cpu)) 201 rcu_check_callbacks(cpu, 0); 202 203 if (!idle) 204 idle = default_idle; 205 206 if (cpu_is_offline(cpu)) 207 play_dead(); 208 209 __get_cpu_var(irq_stat).idle_timestamp = jiffies; 210 idle(); 211 } 212 tick_nohz_restart_sched_tick(); 213 preempt_enable_no_resched(); 214 schedule(); 215 preempt_disable(); 216 } 217 } 218 219 static void do_nothing(void *unused) 220 { 221 } 222 223 void cpu_idle_wait(void) 224 { 225 unsigned int cpu, this_cpu = get_cpu(); 226 cpumask_t map, tmp = current->cpus_allowed; 227 228 set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); 229 put_cpu(); 230 231 cpus_clear(map); 232 for_each_online_cpu(cpu) { 233 per_cpu(cpu_idle_state, cpu) = 1; 234 cpu_set(cpu, map); 235 } 236 237 __get_cpu_var(cpu_idle_state) = 0; 238 239 wmb(); 240 do { 241 ssleep(1); 242 for_each_online_cpu(cpu) { 243 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) 244 cpu_clear(cpu, map); 245 } 246 cpus_and(map, map, cpu_online_map); 247 /* 248 * We waited 1 sec, if a CPU still did not call idle 249 * it may be because it is in idle and not waking up 250 * because it has nothing to do. 251 * Give all the remaining CPUS a kick. 252 */ 253 smp_call_function_mask(map, do_nothing, NULL, 0); 254 } while (!cpus_empty(map)); 255 256 set_cpus_allowed(current, tmp); 257 } 258 EXPORT_SYMBOL_GPL(cpu_idle_wait); 259 260 /* 261 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 262 * which can obviate IPI to trigger checking of need_resched. 263 * We execute MONITOR against need_resched and enter optimized wait state 264 * through MWAIT. Whenever someone changes need_resched, we would be woken 265 * up from MWAIT (without an IPI). 266 * 267 * New with Core Duo processors, MWAIT can take some hints based on CPU 268 * capability. 269 */ 270 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 271 { 272 if (!need_resched()) { 273 __monitor((void *)¤t_thread_info()->flags, 0, 0); 274 smp_mb(); 275 if (!need_resched()) 276 __mwait(ax, cx); 277 } 278 } 279 280 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 281 static void mwait_idle(void) 282 { 283 local_irq_enable(); 284 mwait_idle_with_hints(0, 0); 285 } 286 287 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 288 { 289 if (force_mwait) 290 return 1; 291 /* Any C1 states supported? */ 292 return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0; 293 } 294 295 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 296 { 297 static int selected; 298 299 if (selected) 300 return; 301 #ifdef CONFIG_X86_SMP 302 if (pm_idle == poll_idle && smp_num_siblings > 1) { 303 printk(KERN_WARNING "WARNING: polling idle and HT enabled," 304 " performance may degrade.\n"); 305 } 306 #endif 307 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 308 /* 309 * Skip, if setup has overridden idle. 310 * One CPU supports mwait => All CPUs supports mwait 311 */ 312 if (!pm_idle) { 313 printk(KERN_INFO "using mwait in idle threads.\n"); 314 pm_idle = mwait_idle; 315 } 316 } 317 selected = 1; 318 } 319 320 static int __init idle_setup(char *str) 321 { 322 if (!strcmp(str, "poll")) { 323 printk("using polling idle threads.\n"); 324 pm_idle = poll_idle; 325 } else if (!strcmp(str, "mwait")) 326 force_mwait = 1; 327 else 328 return -1; 329 330 boot_option_idle_override = 1; 331 return 0; 332 } 333 early_param("idle", idle_setup); 334 335 void __show_registers(struct pt_regs *regs, int all) 336 { 337 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; 338 unsigned long d0, d1, d2, d3, d6, d7; 339 unsigned long sp; 340 unsigned short ss, gs; 341 342 if (user_mode_vm(regs)) { 343 sp = regs->sp; 344 ss = regs->ss & 0xffff; 345 savesegment(gs, gs); 346 } else { 347 sp = (unsigned long) (®s->sp); 348 savesegment(ss, ss); 349 savesegment(gs, gs); 350 } 351 352 printk("\n"); 353 printk("Pid: %d, comm: %s %s (%s %.*s)\n", 354 task_pid_nr(current), current->comm, 355 print_tainted(), init_utsname()->release, 356 (int)strcspn(init_utsname()->version, " "), 357 init_utsname()->version); 358 359 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", 360 0xffff & regs->cs, regs->ip, regs->flags, 361 smp_processor_id()); 362 print_symbol("EIP is at %s\n", regs->ip); 363 364 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", 365 regs->ax, regs->bx, regs->cx, regs->dx); 366 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", 367 regs->si, regs->di, regs->bp, sp); 368 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", 369 regs->ds & 0xffff, regs->es & 0xffff, 370 regs->fs & 0xffff, gs, ss); 371 372 if (!all) 373 return; 374 375 cr0 = read_cr0(); 376 cr2 = read_cr2(); 377 cr3 = read_cr3(); 378 cr4 = read_cr4_safe(); 379 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", 380 cr0, cr2, cr3, cr4); 381 382 get_debugreg(d0, 0); 383 get_debugreg(d1, 1); 384 get_debugreg(d2, 2); 385 get_debugreg(d3, 3); 386 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", 387 d0, d1, d2, d3); 388 389 get_debugreg(d6, 6); 390 get_debugreg(d7, 7); 391 printk("DR6: %08lx DR7: %08lx\n", 392 d6, d7); 393 } 394 395 void show_regs(struct pt_regs *regs) 396 { 397 __show_registers(regs, 1); 398 show_trace(NULL, regs, ®s->sp, regs->bp); 399 } 400 401 /* 402 * This gets run with %bx containing the 403 * function to call, and %dx containing 404 * the "args". 405 */ 406 extern void kernel_thread_helper(void); 407 408 /* 409 * Create a kernel thread 410 */ 411 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 412 { 413 struct pt_regs regs; 414 415 memset(®s, 0, sizeof(regs)); 416 417 regs.bx = (unsigned long) fn; 418 regs.dx = (unsigned long) arg; 419 420 regs.ds = __USER_DS; 421 regs.es = __USER_DS; 422 regs.fs = __KERNEL_PERCPU; 423 regs.orig_ax = -1; 424 regs.ip = (unsigned long) kernel_thread_helper; 425 regs.cs = __KERNEL_CS | get_kernel_rpl(); 426 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; 427 428 /* Ok, create the new process.. */ 429 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 430 } 431 EXPORT_SYMBOL(kernel_thread); 432 433 /* 434 * Free current thread data structures etc.. 435 */ 436 void exit_thread(void) 437 { 438 /* The process may have allocated an io port bitmap... nuke it. */ 439 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { 440 struct task_struct *tsk = current; 441 struct thread_struct *t = &tsk->thread; 442 int cpu = get_cpu(); 443 struct tss_struct *tss = &per_cpu(init_tss, cpu); 444 445 kfree(t->io_bitmap_ptr); 446 t->io_bitmap_ptr = NULL; 447 clear_thread_flag(TIF_IO_BITMAP); 448 /* 449 * Careful, clear this in the TSS too: 450 */ 451 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); 452 t->io_bitmap_max = 0; 453 tss->io_bitmap_owner = NULL; 454 tss->io_bitmap_max = 0; 455 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 456 put_cpu(); 457 } 458 } 459 460 void flush_thread(void) 461 { 462 struct task_struct *tsk = current; 463 464 tsk->thread.debugreg0 = 0; 465 tsk->thread.debugreg1 = 0; 466 tsk->thread.debugreg2 = 0; 467 tsk->thread.debugreg3 = 0; 468 tsk->thread.debugreg6 = 0; 469 tsk->thread.debugreg7 = 0; 470 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 471 clear_tsk_thread_flag(tsk, TIF_DEBUG); 472 /* 473 * Forget coprocessor state.. 474 */ 475 clear_fpu(tsk); 476 clear_used_math(); 477 } 478 479 void release_thread(struct task_struct *dead_task) 480 { 481 BUG_ON(dead_task->mm); 482 release_vm86_irqs(dead_task); 483 } 484 485 /* 486 * This gets called before we allocate a new thread and copy 487 * the current task into it. 488 */ 489 void prepare_to_copy(struct task_struct *tsk) 490 { 491 unlazy_fpu(tsk); 492 } 493 494 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, 495 unsigned long unused, 496 struct task_struct * p, struct pt_regs * regs) 497 { 498 struct pt_regs * childregs; 499 struct task_struct *tsk; 500 int err; 501 502 childregs = task_pt_regs(p); 503 *childregs = *regs; 504 childregs->ax = 0; 505 childregs->sp = sp; 506 507 p->thread.sp = (unsigned long) childregs; 508 p->thread.sp0 = (unsigned long) (childregs+1); 509 510 p->thread.ip = (unsigned long) ret_from_fork; 511 512 savesegment(gs, p->thread.gs); 513 514 tsk = current; 515 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { 516 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, 517 IO_BITMAP_BYTES, GFP_KERNEL); 518 if (!p->thread.io_bitmap_ptr) { 519 p->thread.io_bitmap_max = 0; 520 return -ENOMEM; 521 } 522 set_tsk_thread_flag(p, TIF_IO_BITMAP); 523 } 524 525 err = 0; 526 527 /* 528 * Set a new TLS for the child thread? 529 */ 530 if (clone_flags & CLONE_SETTLS) 531 err = do_set_thread_area(p, -1, 532 (struct user_desc __user *)childregs->si, 0); 533 534 if (err && p->thread.io_bitmap_ptr) { 535 kfree(p->thread.io_bitmap_ptr); 536 p->thread.io_bitmap_max = 0; 537 } 538 return err; 539 } 540 541 #ifdef CONFIG_SECCOMP 542 static void hard_disable_TSC(void) 543 { 544 write_cr4(read_cr4() | X86_CR4_TSD); 545 } 546 void disable_TSC(void) 547 { 548 preempt_disable(); 549 if (!test_and_set_thread_flag(TIF_NOTSC)) 550 /* 551 * Must flip the CPU state synchronously with 552 * TIF_NOTSC in the current running context. 553 */ 554 hard_disable_TSC(); 555 preempt_enable(); 556 } 557 static void hard_enable_TSC(void) 558 { 559 write_cr4(read_cr4() & ~X86_CR4_TSD); 560 } 561 #endif /* CONFIG_SECCOMP */ 562 563 static noinline void 564 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 565 struct tss_struct *tss) 566 { 567 struct thread_struct *prev, *next; 568 unsigned long debugctl; 569 570 prev = &prev_p->thread; 571 next = &next_p->thread; 572 573 debugctl = prev->debugctlmsr; 574 if (next->ds_area_msr != prev->ds_area_msr) { 575 /* we clear debugctl to make sure DS 576 * is not in use when we change it */ 577 debugctl = 0; 578 wrmsrl(MSR_IA32_DEBUGCTLMSR, 0); 579 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0); 580 } 581 582 if (next->debugctlmsr != debugctl) 583 wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0); 584 585 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { 586 set_debugreg(next->debugreg0, 0); 587 set_debugreg(next->debugreg1, 1); 588 set_debugreg(next->debugreg2, 2); 589 set_debugreg(next->debugreg3, 3); 590 /* no 4 and 5 */ 591 set_debugreg(next->debugreg6, 6); 592 set_debugreg(next->debugreg7, 7); 593 } 594 595 #ifdef CONFIG_SECCOMP 596 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 597 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 598 /* prev and next are different */ 599 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 600 hard_disable_TSC(); 601 else 602 hard_enable_TSC(); 603 } 604 #endif 605 606 #ifdef X86_BTS 607 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS)) 608 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS); 609 610 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS)) 611 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES); 612 #endif 613 614 615 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 616 /* 617 * Disable the bitmap via an invalid offset. We still cache 618 * the previous bitmap owner and the IO bitmap contents: 619 */ 620 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 621 return; 622 } 623 624 if (likely(next == tss->io_bitmap_owner)) { 625 /* 626 * Previous owner of the bitmap (hence the bitmap content) 627 * matches the next task, we dont have to do anything but 628 * to set a valid offset in the TSS: 629 */ 630 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 631 return; 632 } 633 /* 634 * Lazy TSS's I/O bitmap copy. We set an invalid offset here 635 * and we let the task to get a GPF in case an I/O instruction 636 * is performed. The handler of the GPF will verify that the 637 * faulting task has a valid I/O bitmap and, it true, does the 638 * real copy and restart the instruction. This will save us 639 * redundant copies when the currently switched task does not 640 * perform any I/O during its timeslice. 641 */ 642 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; 643 } 644 645 /* 646 * switch_to(x,yn) should switch tasks from x to y. 647 * 648 * We fsave/fwait so that an exception goes off at the right time 649 * (as a call from the fsave or fwait in effect) rather than to 650 * the wrong process. Lazy FP saving no longer makes any sense 651 * with modern CPU's, and this simplifies a lot of things (SMP 652 * and UP become the same). 653 * 654 * NOTE! We used to use the x86 hardware context switching. The 655 * reason for not using it any more becomes apparent when you 656 * try to recover gracefully from saved state that is no longer 657 * valid (stale segment register values in particular). With the 658 * hardware task-switch, there is no way to fix up bad state in 659 * a reasonable manner. 660 * 661 * The fact that Intel documents the hardware task-switching to 662 * be slow is a fairly red herring - this code is not noticeably 663 * faster. However, there _is_ some room for improvement here, 664 * so the performance issues may eventually be a valid point. 665 * More important, however, is the fact that this allows us much 666 * more flexibility. 667 * 668 * The return value (in %ax) will be the "prev" task after 669 * the task-switch, and shows up in ret_from_fork in entry.S, 670 * for example. 671 */ 672 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 673 { 674 struct thread_struct *prev = &prev_p->thread, 675 *next = &next_p->thread; 676 int cpu = smp_processor_id(); 677 struct tss_struct *tss = &per_cpu(init_tss, cpu); 678 679 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ 680 681 __unlazy_fpu(prev_p); 682 683 684 /* we're going to use this soon, after a few expensive things */ 685 if (next_p->fpu_counter > 5) 686 prefetch(&next->i387.fxsave); 687 688 /* 689 * Reload esp0. 690 */ 691 load_sp0(tss, next); 692 693 /* 694 * Save away %gs. No need to save %fs, as it was saved on the 695 * stack on entry. No need to save %es and %ds, as those are 696 * always kernel segments while inside the kernel. Doing this 697 * before setting the new TLS descriptors avoids the situation 698 * where we temporarily have non-reloadable segments in %fs 699 * and %gs. This could be an issue if the NMI handler ever 700 * used %fs or %gs (it does not today), or if the kernel is 701 * running inside of a hypervisor layer. 702 */ 703 savesegment(gs, prev->gs); 704 705 /* 706 * Load the per-thread Thread-Local Storage descriptor. 707 */ 708 load_TLS(next, cpu); 709 710 /* 711 * Restore IOPL if needed. In normal use, the flags restore 712 * in the switch assembly will handle this. But if the kernel 713 * is running virtualized at a non-zero CPL, the popf will 714 * not restore flags, so it must be done in a separate step. 715 */ 716 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) 717 set_iopl_mask(next->iopl); 718 719 /* 720 * Now maybe handle debug registers and/or IO bitmaps 721 */ 722 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || 723 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) 724 __switch_to_xtra(prev_p, next_p, tss); 725 726 /* 727 * Leave lazy mode, flushing any hypercalls made here. 728 * This must be done before restoring TLS segments so 729 * the GDT and LDT are properly updated, and must be 730 * done before math_state_restore, so the TS bit is up 731 * to date. 732 */ 733 arch_leave_lazy_cpu_mode(); 734 735 /* If the task has used fpu the last 5 timeslices, just do a full 736 * restore of the math state immediately to avoid the trap; the 737 * chances of needing FPU soon are obviously high now 738 */ 739 if (next_p->fpu_counter > 5) 740 math_state_restore(); 741 742 /* 743 * Restore %gs if needed (which is common) 744 */ 745 if (prev->gs | next->gs) 746 loadsegment(gs, next->gs); 747 748 x86_write_percpu(current_task, next_p); 749 750 return prev_p; 751 } 752 753 asmlinkage int sys_fork(struct pt_regs regs) 754 { 755 return do_fork(SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 756 } 757 758 asmlinkage int sys_clone(struct pt_regs regs) 759 { 760 unsigned long clone_flags; 761 unsigned long newsp; 762 int __user *parent_tidptr, *child_tidptr; 763 764 clone_flags = regs.bx; 765 newsp = regs.cx; 766 parent_tidptr = (int __user *)regs.dx; 767 child_tidptr = (int __user *)regs.di; 768 if (!newsp) 769 newsp = regs.sp; 770 return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); 771 } 772 773 /* 774 * This is trivial, and on the face of it looks like it 775 * could equally well be done in user mode. 776 * 777 * Not so, for quite unobvious reasons - register pressure. 778 * In user mode vfork() cannot have a stack frame, and if 779 * done by calling the "clone()" system call directly, you 780 * do not have enough call-clobbered registers to hold all 781 * the information you need. 782 */ 783 asmlinkage int sys_vfork(struct pt_regs regs) 784 { 785 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 786 } 787 788 /* 789 * sys_execve() executes a new program. 790 */ 791 asmlinkage int sys_execve(struct pt_regs regs) 792 { 793 int error; 794 char * filename; 795 796 filename = getname((char __user *) regs.bx); 797 error = PTR_ERR(filename); 798 if (IS_ERR(filename)) 799 goto out; 800 error = do_execve(filename, 801 (char __user * __user *) regs.cx, 802 (char __user * __user *) regs.dx, 803 ®s); 804 if (error == 0) { 805 /* Make sure we don't return using sysenter.. */ 806 set_thread_flag(TIF_IRET); 807 } 808 putname(filename); 809 out: 810 return error; 811 } 812 813 #define top_esp (THREAD_SIZE - sizeof(unsigned long)) 814 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) 815 816 unsigned long get_wchan(struct task_struct *p) 817 { 818 unsigned long bp, sp, ip; 819 unsigned long stack_page; 820 int count = 0; 821 if (!p || p == current || p->state == TASK_RUNNING) 822 return 0; 823 stack_page = (unsigned long)task_stack_page(p); 824 sp = p->thread.sp; 825 if (!stack_page || sp < stack_page || sp > top_esp+stack_page) 826 return 0; 827 /* include/asm-i386/system.h:switch_to() pushes bp last. */ 828 bp = *(unsigned long *) sp; 829 do { 830 if (bp < stack_page || bp > top_ebp+stack_page) 831 return 0; 832 ip = *(unsigned long *) (bp+4); 833 if (!in_sched_functions(ip)) 834 return ip; 835 bp = *(unsigned long *) bp; 836 } while (count++ < 16); 837 return 0; 838 } 839 840 unsigned long arch_align_stack(unsigned long sp) 841 { 842 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 843 sp -= get_random_int() % 8192; 844 return sp & ~0xf; 845 } 846 847 unsigned long arch_randomize_brk(struct mm_struct *mm) 848 { 849 unsigned long range_end = mm->brk + 0x02000000; 850 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 851 } 852