xref: /linux/arch/x86/kernel/process_32.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/a.out.h>
27 #include <linux/interrupt.h>
28 #include <linux/utsname.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/init.h>
32 #include <linux/mc146818rtc.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/ptrace.h>
36 #include <linux/random.h>
37 #include <linux/personality.h>
38 #include <linux/tick.h>
39 #include <linux/percpu.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #include <asm/vm86.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53 
54 #include <linux/err.h>
55 
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60 
61 static int hlt_counter;
62 
63 unsigned long boot_option_idle_override = 0;
64 EXPORT_SYMBOL(boot_option_idle_override);
65 
66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67 EXPORT_PER_CPU_SYMBOL(current_task);
68 
69 DEFINE_PER_CPU(int, cpu_number);
70 EXPORT_PER_CPU_SYMBOL(cpu_number);
71 
72 /*
73  * Return saved PC of a blocked thread.
74  */
75 unsigned long thread_saved_pc(struct task_struct *tsk)
76 {
77 	return ((unsigned long *)tsk->thread.esp)[3];
78 }
79 
80 /*
81  * Powermanagement idle function, if any..
82  */
83 void (*pm_idle)(void);
84 EXPORT_SYMBOL(pm_idle);
85 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
86 
87 void disable_hlt(void)
88 {
89 	hlt_counter++;
90 }
91 
92 EXPORT_SYMBOL(disable_hlt);
93 
94 void enable_hlt(void)
95 {
96 	hlt_counter--;
97 }
98 
99 EXPORT_SYMBOL(enable_hlt);
100 
101 /*
102  * We use this if we don't have any better
103  * idle routine..
104  */
105 void default_idle(void)
106 {
107 	if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
108 		current_thread_info()->status &= ~TS_POLLING;
109 		/*
110 		 * TS_POLLING-cleared state must be visible before we
111 		 * test NEED_RESCHED:
112 		 */
113 		smp_mb();
114 
115 		local_irq_disable();
116 		if (!need_resched())
117 			safe_halt();	/* enables interrupts racelessly */
118 		else
119 			local_irq_enable();
120 		current_thread_info()->status |= TS_POLLING;
121 	} else {
122 		/* loop is done by the caller */
123 		cpu_relax();
124 	}
125 }
126 #ifdef CONFIG_APM_MODULE
127 EXPORT_SYMBOL(default_idle);
128 #endif
129 
130 /*
131  * On SMP it's slightly faster (but much more power-consuming!)
132  * to poll the ->work.need_resched flag instead of waiting for the
133  * cross-CPU IPI to arrive. Use this option with caution.
134  */
135 static void poll_idle (void)
136 {
137 	cpu_relax();
138 }
139 
140 #ifdef CONFIG_HOTPLUG_CPU
141 #include <asm/nmi.h>
142 /* We don't actually take CPU down, just spin without interrupts. */
143 static inline void play_dead(void)
144 {
145 	/* This must be done before dead CPU ack */
146 	cpu_exit_clear();
147 	wbinvd();
148 	mb();
149 	/* Ack it */
150 	__get_cpu_var(cpu_state) = CPU_DEAD;
151 
152 	/*
153 	 * With physical CPU hotplug, we should halt the cpu
154 	 */
155 	local_irq_disable();
156 	while (1)
157 		halt();
158 }
159 #else
160 static inline void play_dead(void)
161 {
162 	BUG();
163 }
164 #endif /* CONFIG_HOTPLUG_CPU */
165 
166 /*
167  * The idle thread. There's no useful work to be
168  * done, so just try to conserve power and have a
169  * low exit latency (ie sit in a loop waiting for
170  * somebody to say that they'd like to reschedule)
171  */
172 void cpu_idle(void)
173 {
174 	int cpu = smp_processor_id();
175 
176 	current_thread_info()->status |= TS_POLLING;
177 
178 	/* endless idle loop with no priority at all */
179 	while (1) {
180 		tick_nohz_stop_sched_tick();
181 		while (!need_resched()) {
182 			void (*idle)(void);
183 
184 			if (__get_cpu_var(cpu_idle_state))
185 				__get_cpu_var(cpu_idle_state) = 0;
186 
187 			check_pgt_cache();
188 			rmb();
189 			idle = pm_idle;
190 
191 			if (!idle)
192 				idle = default_idle;
193 
194 			if (cpu_is_offline(cpu))
195 				play_dead();
196 
197 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
198 			idle();
199 		}
200 		tick_nohz_restart_sched_tick();
201 		preempt_enable_no_resched();
202 		schedule();
203 		preempt_disable();
204 	}
205 }
206 
207 void cpu_idle_wait(void)
208 {
209 	unsigned int cpu, this_cpu = get_cpu();
210 	cpumask_t map, tmp = current->cpus_allowed;
211 
212 	set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
213 	put_cpu();
214 
215 	cpus_clear(map);
216 	for_each_online_cpu(cpu) {
217 		per_cpu(cpu_idle_state, cpu) = 1;
218 		cpu_set(cpu, map);
219 	}
220 
221 	__get_cpu_var(cpu_idle_state) = 0;
222 
223 	wmb();
224 	do {
225 		ssleep(1);
226 		for_each_online_cpu(cpu) {
227 			if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
228 				cpu_clear(cpu, map);
229 		}
230 		cpus_and(map, map, cpu_online_map);
231 	} while (!cpus_empty(map));
232 
233 	set_cpus_allowed(current, tmp);
234 }
235 EXPORT_SYMBOL_GPL(cpu_idle_wait);
236 
237 /*
238  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
239  * which can obviate IPI to trigger checking of need_resched.
240  * We execute MONITOR against need_resched and enter optimized wait state
241  * through MWAIT. Whenever someone changes need_resched, we would be woken
242  * up from MWAIT (without an IPI).
243  *
244  * New with Core Duo processors, MWAIT can take some hints based on CPU
245  * capability.
246  */
247 void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
248 {
249 	if (!need_resched()) {
250 		__monitor((void *)&current_thread_info()->flags, 0, 0);
251 		smp_mb();
252 		if (!need_resched())
253 			__mwait(eax, ecx);
254 	}
255 }
256 
257 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
258 static void mwait_idle(void)
259 {
260 	local_irq_enable();
261 	mwait_idle_with_hints(0, 0);
262 }
263 
264 void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
265 {
266 	if (cpu_has(c, X86_FEATURE_MWAIT)) {
267 		printk("monitor/mwait feature present.\n");
268 		/*
269 		 * Skip, if setup has overridden idle.
270 		 * One CPU supports mwait => All CPUs supports mwait
271 		 */
272 		if (!pm_idle) {
273 			printk("using mwait in idle threads.\n");
274 			pm_idle = mwait_idle;
275 		}
276 	}
277 }
278 
279 static int __init idle_setup(char *str)
280 {
281 	if (!strcmp(str, "poll")) {
282 		printk("using polling idle threads.\n");
283 		pm_idle = poll_idle;
284 #ifdef CONFIG_X86_SMP
285 		if (smp_num_siblings > 1)
286 			printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
287 #endif
288 	} else if (!strcmp(str, "mwait"))
289 		force_mwait = 1;
290 	else
291 		return -1;
292 
293 	boot_option_idle_override = 1;
294 	return 0;
295 }
296 early_param("idle", idle_setup);
297 
298 void __show_registers(struct pt_regs *regs, int all)
299 {
300 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
301 	unsigned long d0, d1, d2, d3, d6, d7;
302 	unsigned long esp;
303 	unsigned short ss, gs;
304 
305 	if (user_mode_vm(regs)) {
306 		esp = regs->esp;
307 		ss = regs->xss & 0xffff;
308 		savesegment(gs, gs);
309 	} else {
310 		esp = (unsigned long) (&regs->esp);
311 		savesegment(ss, ss);
312 		savesegment(gs, gs);
313 	}
314 
315 	printk("\n");
316 	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
317 			task_pid_nr(current), current->comm,
318 			print_tainted(), init_utsname()->release,
319 			(int)strcspn(init_utsname()->version, " "),
320 			init_utsname()->version);
321 
322 	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
323 			0xffff & regs->xcs, regs->eip, regs->eflags,
324 			smp_processor_id());
325 	print_symbol("EIP is at %s\n", regs->eip);
326 
327 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
328 		regs->eax, regs->ebx, regs->ecx, regs->edx);
329 	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
330 		regs->esi, regs->edi, regs->ebp, esp);
331 	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
332 	       regs->xds & 0xffff, regs->xes & 0xffff,
333 	       regs->xfs & 0xffff, gs, ss);
334 
335 	if (!all)
336 		return;
337 
338 	cr0 = read_cr0();
339 	cr2 = read_cr2();
340 	cr3 = read_cr3();
341 	cr4 = read_cr4_safe();
342 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
343 			cr0, cr2, cr3, cr4);
344 
345 	get_debugreg(d0, 0);
346 	get_debugreg(d1, 1);
347 	get_debugreg(d2, 2);
348 	get_debugreg(d3, 3);
349 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
350 			d0, d1, d2, d3);
351 
352 	get_debugreg(d6, 6);
353 	get_debugreg(d7, 7);
354 	printk("DR6: %08lx DR7: %08lx\n",
355 			d6, d7);
356 }
357 
358 void show_regs(struct pt_regs *regs)
359 {
360 	__show_registers(regs, 1);
361 	show_trace(NULL, regs, &regs->esp);
362 }
363 
364 /*
365  * This gets run with %ebx containing the
366  * function to call, and %edx containing
367  * the "args".
368  */
369 extern void kernel_thread_helper(void);
370 
371 /*
372  * Create a kernel thread
373  */
374 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
375 {
376 	struct pt_regs regs;
377 
378 	memset(&regs, 0, sizeof(regs));
379 
380 	regs.ebx = (unsigned long) fn;
381 	regs.edx = (unsigned long) arg;
382 
383 	regs.xds = __USER_DS;
384 	regs.xes = __USER_DS;
385 	regs.xfs = __KERNEL_PERCPU;
386 	regs.orig_eax = -1;
387 	regs.eip = (unsigned long) kernel_thread_helper;
388 	regs.xcs = __KERNEL_CS | get_kernel_rpl();
389 	regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
390 
391 	/* Ok, create the new process.. */
392 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
393 }
394 EXPORT_SYMBOL(kernel_thread);
395 
396 /*
397  * Free current thread data structures etc..
398  */
399 void exit_thread(void)
400 {
401 	/* The process may have allocated an io port bitmap... nuke it. */
402 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
403 		struct task_struct *tsk = current;
404 		struct thread_struct *t = &tsk->thread;
405 		int cpu = get_cpu();
406 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
407 
408 		kfree(t->io_bitmap_ptr);
409 		t->io_bitmap_ptr = NULL;
410 		clear_thread_flag(TIF_IO_BITMAP);
411 		/*
412 		 * Careful, clear this in the TSS too:
413 		 */
414 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
415 		t->io_bitmap_max = 0;
416 		tss->io_bitmap_owner = NULL;
417 		tss->io_bitmap_max = 0;
418 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
419 		put_cpu();
420 	}
421 }
422 
423 void flush_thread(void)
424 {
425 	struct task_struct *tsk = current;
426 
427 	memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
428 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
429 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
430 	/*
431 	 * Forget coprocessor state..
432 	 */
433 	clear_fpu(tsk);
434 	clear_used_math();
435 }
436 
437 void release_thread(struct task_struct *dead_task)
438 {
439 	BUG_ON(dead_task->mm);
440 	release_vm86_irqs(dead_task);
441 }
442 
443 /*
444  * This gets called before we allocate a new thread and copy
445  * the current task into it.
446  */
447 void prepare_to_copy(struct task_struct *tsk)
448 {
449 	unlazy_fpu(tsk);
450 }
451 
452 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
453 	unsigned long unused,
454 	struct task_struct * p, struct pt_regs * regs)
455 {
456 	struct pt_regs * childregs;
457 	struct task_struct *tsk;
458 	int err;
459 
460 	childregs = task_pt_regs(p);
461 	*childregs = *regs;
462 	childregs->eax = 0;
463 	childregs->esp = esp;
464 
465 	p->thread.esp = (unsigned long) childregs;
466 	p->thread.esp0 = (unsigned long) (childregs+1);
467 
468 	p->thread.eip = (unsigned long) ret_from_fork;
469 
470 	savesegment(gs,p->thread.gs);
471 
472 	tsk = current;
473 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
474 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
475 						IO_BITMAP_BYTES, GFP_KERNEL);
476 		if (!p->thread.io_bitmap_ptr) {
477 			p->thread.io_bitmap_max = 0;
478 			return -ENOMEM;
479 		}
480 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
481 	}
482 
483 	/*
484 	 * Set a new TLS for the child thread?
485 	 */
486 	if (clone_flags & CLONE_SETTLS) {
487 		struct desc_struct *desc;
488 		struct user_desc info;
489 		int idx;
490 
491 		err = -EFAULT;
492 		if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
493 			goto out;
494 		err = -EINVAL;
495 		if (LDT_empty(&info))
496 			goto out;
497 
498 		idx = info.entry_number;
499 		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
500 			goto out;
501 
502 		desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
503 		desc->a = LDT_entry_a(&info);
504 		desc->b = LDT_entry_b(&info);
505 	}
506 
507 	err = 0;
508  out:
509 	if (err && p->thread.io_bitmap_ptr) {
510 		kfree(p->thread.io_bitmap_ptr);
511 		p->thread.io_bitmap_max = 0;
512 	}
513 	return err;
514 }
515 
516 /*
517  * fill in the user structure for a core dump..
518  */
519 void dump_thread(struct pt_regs * regs, struct user * dump)
520 {
521 	int i;
522 
523 /* changed the size calculations - should hopefully work better. lbt */
524 	dump->magic = CMAGIC;
525 	dump->start_code = 0;
526 	dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
527 	dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
528 	dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
529 	dump->u_dsize -= dump->u_tsize;
530 	dump->u_ssize = 0;
531 	for (i = 0; i < 8; i++)
532 		dump->u_debugreg[i] = current->thread.debugreg[i];
533 
534 	if (dump->start_stack < TASK_SIZE)
535 		dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
536 
537 	dump->regs.ebx = regs->ebx;
538 	dump->regs.ecx = regs->ecx;
539 	dump->regs.edx = regs->edx;
540 	dump->regs.esi = regs->esi;
541 	dump->regs.edi = regs->edi;
542 	dump->regs.ebp = regs->ebp;
543 	dump->regs.eax = regs->eax;
544 	dump->regs.ds = regs->xds;
545 	dump->regs.es = regs->xes;
546 	dump->regs.fs = regs->xfs;
547 	savesegment(gs,dump->regs.gs);
548 	dump->regs.orig_eax = regs->orig_eax;
549 	dump->regs.eip = regs->eip;
550 	dump->regs.cs = regs->xcs;
551 	dump->regs.eflags = regs->eflags;
552 	dump->regs.esp = regs->esp;
553 	dump->regs.ss = regs->xss;
554 
555 	dump->u_fpvalid = dump_fpu (regs, &dump->i387);
556 }
557 EXPORT_SYMBOL(dump_thread);
558 
559 /*
560  * Capture the user space registers if the task is not running (in user space)
561  */
562 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
563 {
564 	struct pt_regs ptregs = *task_pt_regs(tsk);
565 	ptregs.xcs &= 0xffff;
566 	ptregs.xds &= 0xffff;
567 	ptregs.xes &= 0xffff;
568 	ptregs.xss &= 0xffff;
569 
570 	elf_core_copy_regs(regs, &ptregs);
571 
572 	return 1;
573 }
574 
575 #ifdef CONFIG_SECCOMP
576 void hard_disable_TSC(void)
577 {
578 	write_cr4(read_cr4() | X86_CR4_TSD);
579 }
580 void disable_TSC(void)
581 {
582 	preempt_disable();
583 	if (!test_and_set_thread_flag(TIF_NOTSC))
584 		/*
585 		 * Must flip the CPU state synchronously with
586 		 * TIF_NOTSC in the current running context.
587 		 */
588 		hard_disable_TSC();
589 	preempt_enable();
590 }
591 void hard_enable_TSC(void)
592 {
593 	write_cr4(read_cr4() & ~X86_CR4_TSD);
594 }
595 #endif /* CONFIG_SECCOMP */
596 
597 static noinline void
598 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
599 		 struct tss_struct *tss)
600 {
601 	struct thread_struct *next;
602 
603 	next = &next_p->thread;
604 
605 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
606 		set_debugreg(next->debugreg[0], 0);
607 		set_debugreg(next->debugreg[1], 1);
608 		set_debugreg(next->debugreg[2], 2);
609 		set_debugreg(next->debugreg[3], 3);
610 		/* no 4 and 5 */
611 		set_debugreg(next->debugreg[6], 6);
612 		set_debugreg(next->debugreg[7], 7);
613 	}
614 
615 #ifdef CONFIG_SECCOMP
616 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
617 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
618 		/* prev and next are different */
619 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
620 			hard_disable_TSC();
621 		else
622 			hard_enable_TSC();
623 	}
624 #endif
625 
626 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
627 		/*
628 		 * Disable the bitmap via an invalid offset. We still cache
629 		 * the previous bitmap owner and the IO bitmap contents:
630 		 */
631 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
632 		return;
633 	}
634 
635 	if (likely(next == tss->io_bitmap_owner)) {
636 		/*
637 		 * Previous owner of the bitmap (hence the bitmap content)
638 		 * matches the next task, we dont have to do anything but
639 		 * to set a valid offset in the TSS:
640 		 */
641 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
642 		return;
643 	}
644 	/*
645 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
646 	 * and we let the task to get a GPF in case an I/O instruction
647 	 * is performed.  The handler of the GPF will verify that the
648 	 * faulting task has a valid I/O bitmap and, it true, does the
649 	 * real copy and restart the instruction.  This will save us
650 	 * redundant copies when the currently switched task does not
651 	 * perform any I/O during its timeslice.
652 	 */
653 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
654 }
655 
656 /*
657  *	switch_to(x,yn) should switch tasks from x to y.
658  *
659  * We fsave/fwait so that an exception goes off at the right time
660  * (as a call from the fsave or fwait in effect) rather than to
661  * the wrong process. Lazy FP saving no longer makes any sense
662  * with modern CPU's, and this simplifies a lot of things (SMP
663  * and UP become the same).
664  *
665  * NOTE! We used to use the x86 hardware context switching. The
666  * reason for not using it any more becomes apparent when you
667  * try to recover gracefully from saved state that is no longer
668  * valid (stale segment register values in particular). With the
669  * hardware task-switch, there is no way to fix up bad state in
670  * a reasonable manner.
671  *
672  * The fact that Intel documents the hardware task-switching to
673  * be slow is a fairly red herring - this code is not noticeably
674  * faster. However, there _is_ some room for improvement here,
675  * so the performance issues may eventually be a valid point.
676  * More important, however, is the fact that this allows us much
677  * more flexibility.
678  *
679  * The return value (in %eax) will be the "prev" task after
680  * the task-switch, and shows up in ret_from_fork in entry.S,
681  * for example.
682  */
683 struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
684 {
685 	struct thread_struct *prev = &prev_p->thread,
686 				 *next = &next_p->thread;
687 	int cpu = smp_processor_id();
688 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
689 
690 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
691 
692 	__unlazy_fpu(prev_p);
693 
694 
695 	/* we're going to use this soon, after a few expensive things */
696 	if (next_p->fpu_counter > 5)
697 		prefetch(&next->i387.fxsave);
698 
699 	/*
700 	 * Reload esp0.
701 	 */
702 	load_esp0(tss, next);
703 
704 	/*
705 	 * Save away %gs. No need to save %fs, as it was saved on the
706 	 * stack on entry.  No need to save %es and %ds, as those are
707 	 * always kernel segments while inside the kernel.  Doing this
708 	 * before setting the new TLS descriptors avoids the situation
709 	 * where we temporarily have non-reloadable segments in %fs
710 	 * and %gs.  This could be an issue if the NMI handler ever
711 	 * used %fs or %gs (it does not today), or if the kernel is
712 	 * running inside of a hypervisor layer.
713 	 */
714 	savesegment(gs, prev->gs);
715 
716 	/*
717 	 * Load the per-thread Thread-Local Storage descriptor.
718 	 */
719 	load_TLS(next, cpu);
720 
721 	/*
722 	 * Restore IOPL if needed.  In normal use, the flags restore
723 	 * in the switch assembly will handle this.  But if the kernel
724 	 * is running virtualized at a non-zero CPL, the popf will
725 	 * not restore flags, so it must be done in a separate step.
726 	 */
727 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
728 		set_iopl_mask(next->iopl);
729 
730 	/*
731 	 * Now maybe handle debug registers and/or IO bitmaps
732 	 */
733 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
734 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
735 		__switch_to_xtra(prev_p, next_p, tss);
736 
737 	/*
738 	 * Leave lazy mode, flushing any hypercalls made here.
739 	 * This must be done before restoring TLS segments so
740 	 * the GDT and LDT are properly updated, and must be
741 	 * done before math_state_restore, so the TS bit is up
742 	 * to date.
743 	 */
744 	arch_leave_lazy_cpu_mode();
745 
746 	/* If the task has used fpu the last 5 timeslices, just do a full
747 	 * restore of the math state immediately to avoid the trap; the
748 	 * chances of needing FPU soon are obviously high now
749 	 */
750 	if (next_p->fpu_counter > 5)
751 		math_state_restore();
752 
753 	/*
754 	 * Restore %gs if needed (which is common)
755 	 */
756 	if (prev->gs | next->gs)
757 		loadsegment(gs, next->gs);
758 
759 	x86_write_percpu(current_task, next_p);
760 
761 	return prev_p;
762 }
763 
764 asmlinkage int sys_fork(struct pt_regs regs)
765 {
766 	return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
767 }
768 
769 asmlinkage int sys_clone(struct pt_regs regs)
770 {
771 	unsigned long clone_flags;
772 	unsigned long newsp;
773 	int __user *parent_tidptr, *child_tidptr;
774 
775 	clone_flags = regs.ebx;
776 	newsp = regs.ecx;
777 	parent_tidptr = (int __user *)regs.edx;
778 	child_tidptr = (int __user *)regs.edi;
779 	if (!newsp)
780 		newsp = regs.esp;
781 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
782 }
783 
784 /*
785  * This is trivial, and on the face of it looks like it
786  * could equally well be done in user mode.
787  *
788  * Not so, for quite unobvious reasons - register pressure.
789  * In user mode vfork() cannot have a stack frame, and if
790  * done by calling the "clone()" system call directly, you
791  * do not have enough call-clobbered registers to hold all
792  * the information you need.
793  */
794 asmlinkage int sys_vfork(struct pt_regs regs)
795 {
796 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
797 }
798 
799 /*
800  * sys_execve() executes a new program.
801  */
802 asmlinkage int sys_execve(struct pt_regs regs)
803 {
804 	int error;
805 	char * filename;
806 
807 	filename = getname((char __user *) regs.ebx);
808 	error = PTR_ERR(filename);
809 	if (IS_ERR(filename))
810 		goto out;
811 	error = do_execve(filename,
812 			(char __user * __user *) regs.ecx,
813 			(char __user * __user *) regs.edx,
814 			&regs);
815 	if (error == 0) {
816 		task_lock(current);
817 		current->ptrace &= ~PT_DTRACE;
818 		task_unlock(current);
819 		/* Make sure we don't return using sysenter.. */
820 		set_thread_flag(TIF_IRET);
821 	}
822 	putname(filename);
823 out:
824 	return error;
825 }
826 
827 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
828 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
829 
830 unsigned long get_wchan(struct task_struct *p)
831 {
832 	unsigned long ebp, esp, eip;
833 	unsigned long stack_page;
834 	int count = 0;
835 	if (!p || p == current || p->state == TASK_RUNNING)
836 		return 0;
837 	stack_page = (unsigned long)task_stack_page(p);
838 	esp = p->thread.esp;
839 	if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
840 		return 0;
841 	/* include/asm-i386/system.h:switch_to() pushes ebp last. */
842 	ebp = *(unsigned long *) esp;
843 	do {
844 		if (ebp < stack_page || ebp > top_ebp+stack_page)
845 			return 0;
846 		eip = *(unsigned long *) (ebp+4);
847 		if (!in_sched_functions(eip))
848 			return eip;
849 		ebp = *(unsigned long *) ebp;
850 	} while (count++ < 16);
851 	return 0;
852 }
853 
854 /*
855  * sys_alloc_thread_area: get a yet unused TLS descriptor index.
856  */
857 static int get_free_idx(void)
858 {
859 	struct thread_struct *t = &current->thread;
860 	int idx;
861 
862 	for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
863 		if (desc_empty(t->tls_array + idx))
864 			return idx + GDT_ENTRY_TLS_MIN;
865 	return -ESRCH;
866 }
867 
868 /*
869  * Set a given TLS descriptor:
870  */
871 asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
872 {
873 	struct thread_struct *t = &current->thread;
874 	struct user_desc info;
875 	struct desc_struct *desc;
876 	int cpu, idx;
877 
878 	if (copy_from_user(&info, u_info, sizeof(info)))
879 		return -EFAULT;
880 	idx = info.entry_number;
881 
882 	/*
883 	 * index -1 means the kernel should try to find and
884 	 * allocate an empty descriptor:
885 	 */
886 	if (idx == -1) {
887 		idx = get_free_idx();
888 		if (idx < 0)
889 			return idx;
890 		if (put_user(idx, &u_info->entry_number))
891 			return -EFAULT;
892 	}
893 
894 	if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
895 		return -EINVAL;
896 
897 	desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
898 
899 	/*
900 	 * We must not get preempted while modifying the TLS.
901 	 */
902 	cpu = get_cpu();
903 
904 	if (LDT_empty(&info)) {
905 		desc->a = 0;
906 		desc->b = 0;
907 	} else {
908 		desc->a = LDT_entry_a(&info);
909 		desc->b = LDT_entry_b(&info);
910 	}
911 	load_TLS(t, cpu);
912 
913 	put_cpu();
914 
915 	return 0;
916 }
917 
918 /*
919  * Get the current Thread-Local Storage area:
920  */
921 
922 #define GET_BASE(desc) ( \
923 	(((desc)->a >> 16) & 0x0000ffff) | \
924 	(((desc)->b << 16) & 0x00ff0000) | \
925 	( (desc)->b        & 0xff000000)   )
926 
927 #define GET_LIMIT(desc) ( \
928 	((desc)->a & 0x0ffff) | \
929 	 ((desc)->b & 0xf0000) )
930 
931 #define GET_32BIT(desc)		(((desc)->b >> 22) & 1)
932 #define GET_CONTENTS(desc)	(((desc)->b >> 10) & 3)
933 #define GET_WRITABLE(desc)	(((desc)->b >>  9) & 1)
934 #define GET_LIMIT_PAGES(desc)	(((desc)->b >> 23) & 1)
935 #define GET_PRESENT(desc)	(((desc)->b >> 15) & 1)
936 #define GET_USEABLE(desc)	(((desc)->b >> 20) & 1)
937 
938 asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
939 {
940 	struct user_desc info;
941 	struct desc_struct *desc;
942 	int idx;
943 
944 	if (get_user(idx, &u_info->entry_number))
945 		return -EFAULT;
946 	if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
947 		return -EINVAL;
948 
949 	memset(&info, 0, sizeof(info));
950 
951 	desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
952 
953 	info.entry_number = idx;
954 	info.base_addr = GET_BASE(desc);
955 	info.limit = GET_LIMIT(desc);
956 	info.seg_32bit = GET_32BIT(desc);
957 	info.contents = GET_CONTENTS(desc);
958 	info.read_exec_only = !GET_WRITABLE(desc);
959 	info.limit_in_pages = GET_LIMIT_PAGES(desc);
960 	info.seg_not_present = !GET_PRESENT(desc);
961 	info.useable = GET_USEABLE(desc);
962 
963 	if (copy_to_user(u_info, &info, sizeof(info)))
964 		return -EFAULT;
965 	return 0;
966 }
967 
968 unsigned long arch_align_stack(unsigned long sp)
969 {
970 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
971 		sp -= get_random_int() % 8192;
972 	return sp & ~0xf;
973 }
974