xref: /linux/arch/x86/kernel/process_32.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40 #include <linux/dmi.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/pgtable.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/ldt.h>
47 #include <asm/processor.h>
48 #include <asm/i387.h>
49 #include <asm/desc.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53 
54 #include <linux/err.h>
55 
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 #include <asm/kdebug.h>
59 #include <asm/idle.h>
60 #include <asm/syscalls.h>
61 #include <asm/smp.h>
62 
63 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
64 
65 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
66 EXPORT_PER_CPU_SYMBOL(current_task);
67 
68 DEFINE_PER_CPU(int, cpu_number);
69 EXPORT_PER_CPU_SYMBOL(cpu_number);
70 
71 /*
72  * Return saved PC of a blocked thread.
73  */
74 unsigned long thread_saved_pc(struct task_struct *tsk)
75 {
76 	return ((unsigned long *)tsk->thread.sp)[3];
77 }
78 
79 #ifndef CONFIG_SMP
80 static inline void play_dead(void)
81 {
82 	BUG();
83 }
84 #endif
85 
86 /*
87  * The idle thread. There's no useful work to be
88  * done, so just try to conserve power and have a
89  * low exit latency (ie sit in a loop waiting for
90  * somebody to say that they'd like to reschedule)
91  */
92 void cpu_idle(void)
93 {
94 	int cpu = smp_processor_id();
95 
96 	current_thread_info()->status |= TS_POLLING;
97 
98 	/* endless idle loop with no priority at all */
99 	while (1) {
100 		tick_nohz_stop_sched_tick(1);
101 		while (!need_resched()) {
102 
103 			check_pgt_cache();
104 			rmb();
105 
106 			if (rcu_pending(cpu))
107 				rcu_check_callbacks(cpu, 0);
108 
109 			if (cpu_is_offline(cpu))
110 				play_dead();
111 
112 			local_irq_disable();
113 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
114 			/* Don't trace irqs off for idle */
115 			stop_critical_timings();
116 			pm_idle();
117 			start_critical_timings();
118 		}
119 		tick_nohz_restart_sched_tick();
120 		preempt_enable_no_resched();
121 		schedule();
122 		preempt_disable();
123 	}
124 }
125 
126 void __show_regs(struct pt_regs *regs, int all)
127 {
128 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
129 	unsigned long d0, d1, d2, d3, d6, d7;
130 	unsigned long sp;
131 	unsigned short ss, gs;
132 	const char *board;
133 
134 	if (user_mode_vm(regs)) {
135 		sp = regs->sp;
136 		ss = regs->ss & 0xffff;
137 		savesegment(gs, gs);
138 	} else {
139 		sp = (unsigned long) (&regs->sp);
140 		savesegment(ss, ss);
141 		savesegment(gs, gs);
142 	}
143 
144 	printk("\n");
145 
146 	board = dmi_get_system_info(DMI_PRODUCT_NAME);
147 	if (!board)
148 		board = "";
149 	printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
150 			task_pid_nr(current), current->comm,
151 			print_tainted(), init_utsname()->release,
152 			(int)strcspn(init_utsname()->version, " "),
153 			init_utsname()->version, board);
154 
155 	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
156 			(u16)regs->cs, regs->ip, regs->flags,
157 			smp_processor_id());
158 	print_symbol("EIP is at %s\n", regs->ip);
159 
160 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
161 		regs->ax, regs->bx, regs->cx, regs->dx);
162 	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
163 		regs->si, regs->di, regs->bp, sp);
164 	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
165 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
166 
167 	if (!all)
168 		return;
169 
170 	cr0 = read_cr0();
171 	cr2 = read_cr2();
172 	cr3 = read_cr3();
173 	cr4 = read_cr4_safe();
174 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
175 			cr0, cr2, cr3, cr4);
176 
177 	get_debugreg(d0, 0);
178 	get_debugreg(d1, 1);
179 	get_debugreg(d2, 2);
180 	get_debugreg(d3, 3);
181 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
182 			d0, d1, d2, d3);
183 
184 	get_debugreg(d6, 6);
185 	get_debugreg(d7, 7);
186 	printk("DR6: %08lx DR7: %08lx\n",
187 			d6, d7);
188 }
189 
190 void show_regs(struct pt_regs *regs)
191 {
192 	__show_regs(regs, 1);
193 	show_trace(NULL, regs, &regs->sp, regs->bp);
194 }
195 
196 /*
197  * This gets run with %bx containing the
198  * function to call, and %dx containing
199  * the "args".
200  */
201 extern void kernel_thread_helper(void);
202 
203 /*
204  * Create a kernel thread
205  */
206 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
207 {
208 	struct pt_regs regs;
209 
210 	memset(&regs, 0, sizeof(regs));
211 
212 	regs.bx = (unsigned long) fn;
213 	regs.dx = (unsigned long) arg;
214 
215 	regs.ds = __USER_DS;
216 	regs.es = __USER_DS;
217 	regs.fs = __KERNEL_PERCPU;
218 	regs.orig_ax = -1;
219 	regs.ip = (unsigned long) kernel_thread_helper;
220 	regs.cs = __KERNEL_CS | get_kernel_rpl();
221 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
222 
223 	/* Ok, create the new process.. */
224 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
225 }
226 EXPORT_SYMBOL(kernel_thread);
227 
228 /*
229  * Free current thread data structures etc..
230  */
231 void exit_thread(void)
232 {
233 	/* The process may have allocated an io port bitmap... nuke it. */
234 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
235 		struct task_struct *tsk = current;
236 		struct thread_struct *t = &tsk->thread;
237 		int cpu = get_cpu();
238 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
239 
240 		kfree(t->io_bitmap_ptr);
241 		t->io_bitmap_ptr = NULL;
242 		clear_thread_flag(TIF_IO_BITMAP);
243 		/*
244 		 * Careful, clear this in the TSS too:
245 		 */
246 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
247 		t->io_bitmap_max = 0;
248 		tss->io_bitmap_owner = NULL;
249 		tss->io_bitmap_max = 0;
250 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
251 		put_cpu();
252 	}
253 #ifdef CONFIG_X86_DS
254 	/* Free any DS contexts that have not been properly released. */
255 	if (unlikely(current->thread.ds_ctx)) {
256 		/* we clear debugctl to make sure DS is not used. */
257 		update_debugctlmsr(0);
258 		ds_free(current->thread.ds_ctx);
259 	}
260 #endif /* CONFIG_X86_DS */
261 }
262 
263 void flush_thread(void)
264 {
265 	struct task_struct *tsk = current;
266 
267 	tsk->thread.debugreg0 = 0;
268 	tsk->thread.debugreg1 = 0;
269 	tsk->thread.debugreg2 = 0;
270 	tsk->thread.debugreg3 = 0;
271 	tsk->thread.debugreg6 = 0;
272 	tsk->thread.debugreg7 = 0;
273 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
274 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
275 	/*
276 	 * Forget coprocessor state..
277 	 */
278 	tsk->fpu_counter = 0;
279 	clear_fpu(tsk);
280 	clear_used_math();
281 }
282 
283 void release_thread(struct task_struct *dead_task)
284 {
285 	BUG_ON(dead_task->mm);
286 	release_vm86_irqs(dead_task);
287 }
288 
289 /*
290  * This gets called before we allocate a new thread and copy
291  * the current task into it.
292  */
293 void prepare_to_copy(struct task_struct *tsk)
294 {
295 	unlazy_fpu(tsk);
296 }
297 
298 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
299 	unsigned long unused,
300 	struct task_struct * p, struct pt_regs * regs)
301 {
302 	struct pt_regs * childregs;
303 	struct task_struct *tsk;
304 	int err;
305 
306 	childregs = task_pt_regs(p);
307 	*childregs = *regs;
308 	childregs->ax = 0;
309 	childregs->sp = sp;
310 
311 	p->thread.sp = (unsigned long) childregs;
312 	p->thread.sp0 = (unsigned long) (childregs+1);
313 
314 	p->thread.ip = (unsigned long) ret_from_fork;
315 
316 	savesegment(gs, p->thread.gs);
317 
318 	tsk = current;
319 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
320 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
321 						IO_BITMAP_BYTES, GFP_KERNEL);
322 		if (!p->thread.io_bitmap_ptr) {
323 			p->thread.io_bitmap_max = 0;
324 			return -ENOMEM;
325 		}
326 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
327 	}
328 
329 	err = 0;
330 
331 	/*
332 	 * Set a new TLS for the child thread?
333 	 */
334 	if (clone_flags & CLONE_SETTLS)
335 		err = do_set_thread_area(p, -1,
336 			(struct user_desc __user *)childregs->si, 0);
337 
338 	if (err && p->thread.io_bitmap_ptr) {
339 		kfree(p->thread.io_bitmap_ptr);
340 		p->thread.io_bitmap_max = 0;
341 	}
342 	return err;
343 }
344 
345 void
346 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
347 {
348 	__asm__("movl %0, %%gs" :: "r"(0));
349 	regs->fs		= 0;
350 	set_fs(USER_DS);
351 	regs->ds		= __USER_DS;
352 	regs->es		= __USER_DS;
353 	regs->ss		= __USER_DS;
354 	regs->cs		= __USER_CS;
355 	regs->ip		= new_ip;
356 	regs->sp		= new_sp;
357 	/*
358 	 * Free the old FP and other extended state
359 	 */
360 	free_thread_xstate(current);
361 }
362 EXPORT_SYMBOL_GPL(start_thread);
363 
364 static void hard_disable_TSC(void)
365 {
366 	write_cr4(read_cr4() | X86_CR4_TSD);
367 }
368 
369 void disable_TSC(void)
370 {
371 	preempt_disable();
372 	if (!test_and_set_thread_flag(TIF_NOTSC))
373 		/*
374 		 * Must flip the CPU state synchronously with
375 		 * TIF_NOTSC in the current running context.
376 		 */
377 		hard_disable_TSC();
378 	preempt_enable();
379 }
380 
381 static void hard_enable_TSC(void)
382 {
383 	write_cr4(read_cr4() & ~X86_CR4_TSD);
384 }
385 
386 static void enable_TSC(void)
387 {
388 	preempt_disable();
389 	if (test_and_clear_thread_flag(TIF_NOTSC))
390 		/*
391 		 * Must flip the CPU state synchronously with
392 		 * TIF_NOTSC in the current running context.
393 		 */
394 		hard_enable_TSC();
395 	preempt_enable();
396 }
397 
398 int get_tsc_mode(unsigned long adr)
399 {
400 	unsigned int val;
401 
402 	if (test_thread_flag(TIF_NOTSC))
403 		val = PR_TSC_SIGSEGV;
404 	else
405 		val = PR_TSC_ENABLE;
406 
407 	return put_user(val, (unsigned int __user *)adr);
408 }
409 
410 int set_tsc_mode(unsigned int val)
411 {
412 	if (val == PR_TSC_SIGSEGV)
413 		disable_TSC();
414 	else if (val == PR_TSC_ENABLE)
415 		enable_TSC();
416 	else
417 		return -EINVAL;
418 
419 	return 0;
420 }
421 
422 #ifdef CONFIG_X86_DS
423 static int update_debugctl(struct thread_struct *prev,
424 			struct thread_struct *next, unsigned long debugctl)
425 {
426 	unsigned long ds_prev = 0;
427 	unsigned long ds_next = 0;
428 
429 	if (prev->ds_ctx)
430 		ds_prev = (unsigned long)prev->ds_ctx->ds;
431 	if (next->ds_ctx)
432 		ds_next = (unsigned long)next->ds_ctx->ds;
433 
434 	if (ds_next != ds_prev) {
435 		/* we clear debugctl to make sure DS
436 		 * is not in use when we change it */
437 		debugctl = 0;
438 		update_debugctlmsr(0);
439 		wrmsr(MSR_IA32_DS_AREA, ds_next, 0);
440 	}
441 	return debugctl;
442 }
443 #else
444 static int update_debugctl(struct thread_struct *prev,
445 			struct thread_struct *next, unsigned long debugctl)
446 {
447 	return debugctl;
448 }
449 #endif /* CONFIG_X86_DS */
450 
451 static noinline void
452 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
453 		 struct tss_struct *tss)
454 {
455 	struct thread_struct *prev, *next;
456 	unsigned long debugctl;
457 
458 	prev = &prev_p->thread;
459 	next = &next_p->thread;
460 
461 	debugctl = update_debugctl(prev, next, prev->debugctlmsr);
462 
463 	if (next->debugctlmsr != debugctl)
464 		update_debugctlmsr(next->debugctlmsr);
465 
466 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
467 		set_debugreg(next->debugreg0, 0);
468 		set_debugreg(next->debugreg1, 1);
469 		set_debugreg(next->debugreg2, 2);
470 		set_debugreg(next->debugreg3, 3);
471 		/* no 4 and 5 */
472 		set_debugreg(next->debugreg6, 6);
473 		set_debugreg(next->debugreg7, 7);
474 	}
475 
476 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
477 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
478 		/* prev and next are different */
479 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
480 			hard_disable_TSC();
481 		else
482 			hard_enable_TSC();
483 	}
484 
485 #ifdef CONFIG_X86_PTRACE_BTS
486 	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
487 		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
488 
489 	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
490 		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
491 #endif /* CONFIG_X86_PTRACE_BTS */
492 
493 
494 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
495 		/*
496 		 * Disable the bitmap via an invalid offset. We still cache
497 		 * the previous bitmap owner and the IO bitmap contents:
498 		 */
499 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
500 		return;
501 	}
502 
503 	if (likely(next == tss->io_bitmap_owner)) {
504 		/*
505 		 * Previous owner of the bitmap (hence the bitmap content)
506 		 * matches the next task, we dont have to do anything but
507 		 * to set a valid offset in the TSS:
508 		 */
509 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
510 		return;
511 	}
512 	/*
513 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
514 	 * and we let the task to get a GPF in case an I/O instruction
515 	 * is performed.  The handler of the GPF will verify that the
516 	 * faulting task has a valid I/O bitmap and, it true, does the
517 	 * real copy and restart the instruction.  This will save us
518 	 * redundant copies when the currently switched task does not
519 	 * perform any I/O during its timeslice.
520 	 */
521 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
522 }
523 
524 /*
525  *	switch_to(x,yn) should switch tasks from x to y.
526  *
527  * We fsave/fwait so that an exception goes off at the right time
528  * (as a call from the fsave or fwait in effect) rather than to
529  * the wrong process. Lazy FP saving no longer makes any sense
530  * with modern CPU's, and this simplifies a lot of things (SMP
531  * and UP become the same).
532  *
533  * NOTE! We used to use the x86 hardware context switching. The
534  * reason for not using it any more becomes apparent when you
535  * try to recover gracefully from saved state that is no longer
536  * valid (stale segment register values in particular). With the
537  * hardware task-switch, there is no way to fix up bad state in
538  * a reasonable manner.
539  *
540  * The fact that Intel documents the hardware task-switching to
541  * be slow is a fairly red herring - this code is not noticeably
542  * faster. However, there _is_ some room for improvement here,
543  * so the performance issues may eventually be a valid point.
544  * More important, however, is the fact that this allows us much
545  * more flexibility.
546  *
547  * The return value (in %ax) will be the "prev" task after
548  * the task-switch, and shows up in ret_from_fork in entry.S,
549  * for example.
550  */
551 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
552 {
553 	struct thread_struct *prev = &prev_p->thread,
554 				 *next = &next_p->thread;
555 	int cpu = smp_processor_id();
556 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
557 
558 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
559 
560 	__unlazy_fpu(prev_p);
561 
562 
563 	/* we're going to use this soon, after a few expensive things */
564 	if (next_p->fpu_counter > 5)
565 		prefetch(next->xstate);
566 
567 	/*
568 	 * Reload esp0.
569 	 */
570 	load_sp0(tss, next);
571 
572 	/*
573 	 * Save away %gs. No need to save %fs, as it was saved on the
574 	 * stack on entry.  No need to save %es and %ds, as those are
575 	 * always kernel segments while inside the kernel.  Doing this
576 	 * before setting the new TLS descriptors avoids the situation
577 	 * where we temporarily have non-reloadable segments in %fs
578 	 * and %gs.  This could be an issue if the NMI handler ever
579 	 * used %fs or %gs (it does not today), or if the kernel is
580 	 * running inside of a hypervisor layer.
581 	 */
582 	savesegment(gs, prev->gs);
583 
584 	/*
585 	 * Load the per-thread Thread-Local Storage descriptor.
586 	 */
587 	load_TLS(next, cpu);
588 
589 	/*
590 	 * Restore IOPL if needed.  In normal use, the flags restore
591 	 * in the switch assembly will handle this.  But if the kernel
592 	 * is running virtualized at a non-zero CPL, the popf will
593 	 * not restore flags, so it must be done in a separate step.
594 	 */
595 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
596 		set_iopl_mask(next->iopl);
597 
598 	/*
599 	 * Now maybe handle debug registers and/or IO bitmaps
600 	 */
601 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
602 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
603 		__switch_to_xtra(prev_p, next_p, tss);
604 
605 	/*
606 	 * Leave lazy mode, flushing any hypercalls made here.
607 	 * This must be done before restoring TLS segments so
608 	 * the GDT and LDT are properly updated, and must be
609 	 * done before math_state_restore, so the TS bit is up
610 	 * to date.
611 	 */
612 	arch_leave_lazy_cpu_mode();
613 
614 	/* If the task has used fpu the last 5 timeslices, just do a full
615 	 * restore of the math state immediately to avoid the trap; the
616 	 * chances of needing FPU soon are obviously high now
617 	 *
618 	 * tsk_used_math() checks prevent calling math_state_restore(),
619 	 * which can sleep in the case of !tsk_used_math()
620 	 */
621 	if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
622 		math_state_restore();
623 
624 	/*
625 	 * Restore %gs if needed (which is common)
626 	 */
627 	if (prev->gs | next->gs)
628 		loadsegment(gs, next->gs);
629 
630 	x86_write_percpu(current_task, next_p);
631 
632 	return prev_p;
633 }
634 
635 asmlinkage int sys_fork(struct pt_regs regs)
636 {
637 	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
638 }
639 
640 asmlinkage int sys_clone(struct pt_regs regs)
641 {
642 	unsigned long clone_flags;
643 	unsigned long newsp;
644 	int __user *parent_tidptr, *child_tidptr;
645 
646 	clone_flags = regs.bx;
647 	newsp = regs.cx;
648 	parent_tidptr = (int __user *)regs.dx;
649 	child_tidptr = (int __user *)regs.di;
650 	if (!newsp)
651 		newsp = regs.sp;
652 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
653 }
654 
655 /*
656  * This is trivial, and on the face of it looks like it
657  * could equally well be done in user mode.
658  *
659  * Not so, for quite unobvious reasons - register pressure.
660  * In user mode vfork() cannot have a stack frame, and if
661  * done by calling the "clone()" system call directly, you
662  * do not have enough call-clobbered registers to hold all
663  * the information you need.
664  */
665 asmlinkage int sys_vfork(struct pt_regs regs)
666 {
667 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
668 }
669 
670 /*
671  * sys_execve() executes a new program.
672  */
673 asmlinkage int sys_execve(struct pt_regs regs)
674 {
675 	int error;
676 	char * filename;
677 
678 	filename = getname((char __user *) regs.bx);
679 	error = PTR_ERR(filename);
680 	if (IS_ERR(filename))
681 		goto out;
682 	error = do_execve(filename,
683 			(char __user * __user *) regs.cx,
684 			(char __user * __user *) regs.dx,
685 			&regs);
686 	if (error == 0) {
687 		/* Make sure we don't return using sysenter.. */
688 		set_thread_flag(TIF_IRET);
689 	}
690 	putname(filename);
691 out:
692 	return error;
693 }
694 
695 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
696 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
697 
698 unsigned long get_wchan(struct task_struct *p)
699 {
700 	unsigned long bp, sp, ip;
701 	unsigned long stack_page;
702 	int count = 0;
703 	if (!p || p == current || p->state == TASK_RUNNING)
704 		return 0;
705 	stack_page = (unsigned long)task_stack_page(p);
706 	sp = p->thread.sp;
707 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
708 		return 0;
709 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
710 	bp = *(unsigned long *) sp;
711 	do {
712 		if (bp < stack_page || bp > top_ebp+stack_page)
713 			return 0;
714 		ip = *(unsigned long *) (bp+4);
715 		if (!in_sched_functions(ip))
716 			return ip;
717 		bp = *(unsigned long *) bp;
718 	} while (count++ < 16);
719 	return 0;
720 }
721 
722 unsigned long arch_align_stack(unsigned long sp)
723 {
724 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
725 		sp -= get_random_int() % 8192;
726 	return sp & ~0xf;
727 }
728 
729 unsigned long arch_randomize_brk(struct mm_struct *mm)
730 {
731 	unsigned long range_end = mm->brk + 0x02000000;
732 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
733 }
734