1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/cpu.h> 15 #include <linux/errno.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/elfcore.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/user.h> 26 #include <linux/interrupt.h> 27 #include <linux/utsname.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/init.h> 31 #include <linux/mc146818rtc.h> 32 #include <linux/module.h> 33 #include <linux/kallsyms.h> 34 #include <linux/ptrace.h> 35 #include <linux/random.h> 36 #include <linux/personality.h> 37 #include <linux/tick.h> 38 #include <linux/percpu.h> 39 #include <linux/prctl.h> 40 #include <linux/dmi.h> 41 #include <linux/ftrace.h> 42 43 #include <asm/uaccess.h> 44 #include <asm/pgtable.h> 45 #include <asm/system.h> 46 #include <asm/io.h> 47 #include <asm/ldt.h> 48 #include <asm/processor.h> 49 #include <asm/i387.h> 50 #include <asm/desc.h> 51 #ifdef CONFIG_MATH_EMULATION 52 #include <asm/math_emu.h> 53 #endif 54 55 #include <linux/err.h> 56 57 #include <asm/tlbflush.h> 58 #include <asm/cpu.h> 59 #include <asm/kdebug.h> 60 #include <asm/idle.h> 61 #include <asm/syscalls.h> 62 #include <asm/smp.h> 63 #include <asm/ds.h> 64 65 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); 66 67 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 68 EXPORT_PER_CPU_SYMBOL(current_task); 69 70 DEFINE_PER_CPU(int, cpu_number); 71 EXPORT_PER_CPU_SYMBOL(cpu_number); 72 73 /* 74 * Return saved PC of a blocked thread. 75 */ 76 unsigned long thread_saved_pc(struct task_struct *tsk) 77 { 78 return ((unsigned long *)tsk->thread.sp)[3]; 79 } 80 81 #ifndef CONFIG_SMP 82 static inline void play_dead(void) 83 { 84 BUG(); 85 } 86 #endif 87 88 /* 89 * The idle thread. There's no useful work to be 90 * done, so just try to conserve power and have a 91 * low exit latency (ie sit in a loop waiting for 92 * somebody to say that they'd like to reschedule) 93 */ 94 void cpu_idle(void) 95 { 96 int cpu = smp_processor_id(); 97 98 current_thread_info()->status |= TS_POLLING; 99 100 /* endless idle loop with no priority at all */ 101 while (1) { 102 tick_nohz_stop_sched_tick(1); 103 while (!need_resched()) { 104 105 check_pgt_cache(); 106 rmb(); 107 108 if (rcu_pending(cpu)) 109 rcu_check_callbacks(cpu, 0); 110 111 if (cpu_is_offline(cpu)) 112 play_dead(); 113 114 local_irq_disable(); 115 __get_cpu_var(irq_stat).idle_timestamp = jiffies; 116 /* Don't trace irqs off for idle */ 117 stop_critical_timings(); 118 pm_idle(); 119 start_critical_timings(); 120 } 121 tick_nohz_restart_sched_tick(); 122 preempt_enable_no_resched(); 123 schedule(); 124 preempt_disable(); 125 } 126 } 127 128 void __show_regs(struct pt_regs *regs, int all) 129 { 130 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; 131 unsigned long d0, d1, d2, d3, d6, d7; 132 unsigned long sp; 133 unsigned short ss, gs; 134 const char *board; 135 136 if (user_mode_vm(regs)) { 137 sp = regs->sp; 138 ss = regs->ss & 0xffff; 139 savesegment(gs, gs); 140 } else { 141 sp = (unsigned long) (®s->sp); 142 savesegment(ss, ss); 143 savesegment(gs, gs); 144 } 145 146 printk("\n"); 147 148 board = dmi_get_system_info(DMI_PRODUCT_NAME); 149 if (!board) 150 board = ""; 151 printk("Pid: %d, comm: %s %s (%s %.*s) %s\n", 152 task_pid_nr(current), current->comm, 153 print_tainted(), init_utsname()->release, 154 (int)strcspn(init_utsname()->version, " "), 155 init_utsname()->version, board); 156 157 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", 158 (u16)regs->cs, regs->ip, regs->flags, 159 smp_processor_id()); 160 print_symbol("EIP is at %s\n", regs->ip); 161 162 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", 163 regs->ax, regs->bx, regs->cx, regs->dx); 164 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", 165 regs->si, regs->di, regs->bp, sp); 166 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", 167 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); 168 169 if (!all) 170 return; 171 172 cr0 = read_cr0(); 173 cr2 = read_cr2(); 174 cr3 = read_cr3(); 175 cr4 = read_cr4_safe(); 176 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", 177 cr0, cr2, cr3, cr4); 178 179 get_debugreg(d0, 0); 180 get_debugreg(d1, 1); 181 get_debugreg(d2, 2); 182 get_debugreg(d3, 3); 183 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", 184 d0, d1, d2, d3); 185 186 get_debugreg(d6, 6); 187 get_debugreg(d7, 7); 188 printk("DR6: %08lx DR7: %08lx\n", 189 d6, d7); 190 } 191 192 void show_regs(struct pt_regs *regs) 193 { 194 __show_regs(regs, 1); 195 show_trace(NULL, regs, ®s->sp, regs->bp); 196 } 197 198 /* 199 * This gets run with %bx containing the 200 * function to call, and %dx containing 201 * the "args". 202 */ 203 extern void kernel_thread_helper(void); 204 205 /* 206 * Create a kernel thread 207 */ 208 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 209 { 210 struct pt_regs regs; 211 212 memset(®s, 0, sizeof(regs)); 213 214 regs.bx = (unsigned long) fn; 215 regs.dx = (unsigned long) arg; 216 217 regs.ds = __USER_DS; 218 regs.es = __USER_DS; 219 regs.fs = __KERNEL_PERCPU; 220 regs.orig_ax = -1; 221 regs.ip = (unsigned long) kernel_thread_helper; 222 regs.cs = __KERNEL_CS | get_kernel_rpl(); 223 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; 224 225 /* Ok, create the new process.. */ 226 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 227 } 228 EXPORT_SYMBOL(kernel_thread); 229 230 /* 231 * Free current thread data structures etc.. 232 */ 233 void exit_thread(void) 234 { 235 /* The process may have allocated an io port bitmap... nuke it. */ 236 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { 237 struct task_struct *tsk = current; 238 struct thread_struct *t = &tsk->thread; 239 int cpu = get_cpu(); 240 struct tss_struct *tss = &per_cpu(init_tss, cpu); 241 242 kfree(t->io_bitmap_ptr); 243 t->io_bitmap_ptr = NULL; 244 clear_thread_flag(TIF_IO_BITMAP); 245 /* 246 * Careful, clear this in the TSS too: 247 */ 248 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); 249 t->io_bitmap_max = 0; 250 tss->io_bitmap_owner = NULL; 251 tss->io_bitmap_max = 0; 252 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 253 put_cpu(); 254 } 255 256 ds_exit_thread(current); 257 } 258 259 void flush_thread(void) 260 { 261 struct task_struct *tsk = current; 262 263 tsk->thread.debugreg0 = 0; 264 tsk->thread.debugreg1 = 0; 265 tsk->thread.debugreg2 = 0; 266 tsk->thread.debugreg3 = 0; 267 tsk->thread.debugreg6 = 0; 268 tsk->thread.debugreg7 = 0; 269 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 270 clear_tsk_thread_flag(tsk, TIF_DEBUG); 271 /* 272 * Forget coprocessor state.. 273 */ 274 tsk->fpu_counter = 0; 275 clear_fpu(tsk); 276 clear_used_math(); 277 } 278 279 void release_thread(struct task_struct *dead_task) 280 { 281 BUG_ON(dead_task->mm); 282 release_vm86_irqs(dead_task); 283 } 284 285 /* 286 * This gets called before we allocate a new thread and copy 287 * the current task into it. 288 */ 289 void prepare_to_copy(struct task_struct *tsk) 290 { 291 unlazy_fpu(tsk); 292 } 293 294 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, 295 unsigned long unused, 296 struct task_struct * p, struct pt_regs * regs) 297 { 298 struct pt_regs * childregs; 299 struct task_struct *tsk; 300 int err; 301 302 childregs = task_pt_regs(p); 303 *childregs = *regs; 304 childregs->ax = 0; 305 childregs->sp = sp; 306 307 p->thread.sp = (unsigned long) childregs; 308 p->thread.sp0 = (unsigned long) (childregs+1); 309 310 p->thread.ip = (unsigned long) ret_from_fork; 311 312 savesegment(gs, p->thread.gs); 313 314 tsk = current; 315 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { 316 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, 317 IO_BITMAP_BYTES, GFP_KERNEL); 318 if (!p->thread.io_bitmap_ptr) { 319 p->thread.io_bitmap_max = 0; 320 return -ENOMEM; 321 } 322 set_tsk_thread_flag(p, TIF_IO_BITMAP); 323 } 324 325 err = 0; 326 327 /* 328 * Set a new TLS for the child thread? 329 */ 330 if (clone_flags & CLONE_SETTLS) 331 err = do_set_thread_area(p, -1, 332 (struct user_desc __user *)childregs->si, 0); 333 334 if (err && p->thread.io_bitmap_ptr) { 335 kfree(p->thread.io_bitmap_ptr); 336 p->thread.io_bitmap_max = 0; 337 } 338 339 ds_copy_thread(p, current); 340 341 clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR); 342 p->thread.debugctlmsr = 0; 343 344 return err; 345 } 346 347 void 348 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 349 { 350 __asm__("movl %0, %%gs" :: "r"(0)); 351 regs->fs = 0; 352 set_fs(USER_DS); 353 regs->ds = __USER_DS; 354 regs->es = __USER_DS; 355 regs->ss = __USER_DS; 356 regs->cs = __USER_CS; 357 regs->ip = new_ip; 358 regs->sp = new_sp; 359 /* 360 * Free the old FP and other extended state 361 */ 362 free_thread_xstate(current); 363 } 364 EXPORT_SYMBOL_GPL(start_thread); 365 366 static void hard_disable_TSC(void) 367 { 368 write_cr4(read_cr4() | X86_CR4_TSD); 369 } 370 371 void disable_TSC(void) 372 { 373 preempt_disable(); 374 if (!test_and_set_thread_flag(TIF_NOTSC)) 375 /* 376 * Must flip the CPU state synchronously with 377 * TIF_NOTSC in the current running context. 378 */ 379 hard_disable_TSC(); 380 preempt_enable(); 381 } 382 383 static void hard_enable_TSC(void) 384 { 385 write_cr4(read_cr4() & ~X86_CR4_TSD); 386 } 387 388 static void enable_TSC(void) 389 { 390 preempt_disable(); 391 if (test_and_clear_thread_flag(TIF_NOTSC)) 392 /* 393 * Must flip the CPU state synchronously with 394 * TIF_NOTSC in the current running context. 395 */ 396 hard_enable_TSC(); 397 preempt_enable(); 398 } 399 400 int get_tsc_mode(unsigned long adr) 401 { 402 unsigned int val; 403 404 if (test_thread_flag(TIF_NOTSC)) 405 val = PR_TSC_SIGSEGV; 406 else 407 val = PR_TSC_ENABLE; 408 409 return put_user(val, (unsigned int __user *)adr); 410 } 411 412 int set_tsc_mode(unsigned int val) 413 { 414 if (val == PR_TSC_SIGSEGV) 415 disable_TSC(); 416 else if (val == PR_TSC_ENABLE) 417 enable_TSC(); 418 else 419 return -EINVAL; 420 421 return 0; 422 } 423 424 static noinline void 425 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 426 struct tss_struct *tss) 427 { 428 struct thread_struct *prev, *next; 429 430 prev = &prev_p->thread; 431 next = &next_p->thread; 432 433 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || 434 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) 435 ds_switch_to(prev_p, next_p); 436 else if (next->debugctlmsr != prev->debugctlmsr) 437 update_debugctlmsr(next->debugctlmsr); 438 439 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { 440 set_debugreg(next->debugreg0, 0); 441 set_debugreg(next->debugreg1, 1); 442 set_debugreg(next->debugreg2, 2); 443 set_debugreg(next->debugreg3, 3); 444 /* no 4 and 5 */ 445 set_debugreg(next->debugreg6, 6); 446 set_debugreg(next->debugreg7, 7); 447 } 448 449 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 450 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 451 /* prev and next are different */ 452 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 453 hard_disable_TSC(); 454 else 455 hard_enable_TSC(); 456 } 457 458 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 459 /* 460 * Disable the bitmap via an invalid offset. We still cache 461 * the previous bitmap owner and the IO bitmap contents: 462 */ 463 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 464 return; 465 } 466 467 if (likely(next == tss->io_bitmap_owner)) { 468 /* 469 * Previous owner of the bitmap (hence the bitmap content) 470 * matches the next task, we dont have to do anything but 471 * to set a valid offset in the TSS: 472 */ 473 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 474 return; 475 } 476 /* 477 * Lazy TSS's I/O bitmap copy. We set an invalid offset here 478 * and we let the task to get a GPF in case an I/O instruction 479 * is performed. The handler of the GPF will verify that the 480 * faulting task has a valid I/O bitmap and, it true, does the 481 * real copy and restart the instruction. This will save us 482 * redundant copies when the currently switched task does not 483 * perform any I/O during its timeslice. 484 */ 485 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; 486 } 487 488 /* 489 * switch_to(x,yn) should switch tasks from x to y. 490 * 491 * We fsave/fwait so that an exception goes off at the right time 492 * (as a call from the fsave or fwait in effect) rather than to 493 * the wrong process. Lazy FP saving no longer makes any sense 494 * with modern CPU's, and this simplifies a lot of things (SMP 495 * and UP become the same). 496 * 497 * NOTE! We used to use the x86 hardware context switching. The 498 * reason for not using it any more becomes apparent when you 499 * try to recover gracefully from saved state that is no longer 500 * valid (stale segment register values in particular). With the 501 * hardware task-switch, there is no way to fix up bad state in 502 * a reasonable manner. 503 * 504 * The fact that Intel documents the hardware task-switching to 505 * be slow is a fairly red herring - this code is not noticeably 506 * faster. However, there _is_ some room for improvement here, 507 * so the performance issues may eventually be a valid point. 508 * More important, however, is the fact that this allows us much 509 * more flexibility. 510 * 511 * The return value (in %ax) will be the "prev" task after 512 * the task-switch, and shows up in ret_from_fork in entry.S, 513 * for example. 514 */ 515 __notrace_funcgraph struct task_struct * 516 __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 517 { 518 struct thread_struct *prev = &prev_p->thread, 519 *next = &next_p->thread; 520 int cpu = smp_processor_id(); 521 struct tss_struct *tss = &per_cpu(init_tss, cpu); 522 523 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ 524 525 __unlazy_fpu(prev_p); 526 527 528 /* we're going to use this soon, after a few expensive things */ 529 if (next_p->fpu_counter > 5) 530 prefetch(next->xstate); 531 532 /* 533 * Reload esp0. 534 */ 535 load_sp0(tss, next); 536 537 /* 538 * Save away %gs. No need to save %fs, as it was saved on the 539 * stack on entry. No need to save %es and %ds, as those are 540 * always kernel segments while inside the kernel. Doing this 541 * before setting the new TLS descriptors avoids the situation 542 * where we temporarily have non-reloadable segments in %fs 543 * and %gs. This could be an issue if the NMI handler ever 544 * used %fs or %gs (it does not today), or if the kernel is 545 * running inside of a hypervisor layer. 546 */ 547 savesegment(gs, prev->gs); 548 549 /* 550 * Load the per-thread Thread-Local Storage descriptor. 551 */ 552 load_TLS(next, cpu); 553 554 /* 555 * Restore IOPL if needed. In normal use, the flags restore 556 * in the switch assembly will handle this. But if the kernel 557 * is running virtualized at a non-zero CPL, the popf will 558 * not restore flags, so it must be done in a separate step. 559 */ 560 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) 561 set_iopl_mask(next->iopl); 562 563 /* 564 * Now maybe handle debug registers and/or IO bitmaps 565 */ 566 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || 567 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) 568 __switch_to_xtra(prev_p, next_p, tss); 569 570 /* 571 * Leave lazy mode, flushing any hypercalls made here. 572 * This must be done before restoring TLS segments so 573 * the GDT and LDT are properly updated, and must be 574 * done before math_state_restore, so the TS bit is up 575 * to date. 576 */ 577 arch_leave_lazy_cpu_mode(); 578 579 /* If the task has used fpu the last 5 timeslices, just do a full 580 * restore of the math state immediately to avoid the trap; the 581 * chances of needing FPU soon are obviously high now 582 * 583 * tsk_used_math() checks prevent calling math_state_restore(), 584 * which can sleep in the case of !tsk_used_math() 585 */ 586 if (tsk_used_math(next_p) && next_p->fpu_counter > 5) 587 math_state_restore(); 588 589 /* 590 * Restore %gs if needed (which is common) 591 */ 592 if (prev->gs | next->gs) 593 loadsegment(gs, next->gs); 594 595 x86_write_percpu(current_task, next_p); 596 597 return prev_p; 598 } 599 600 asmlinkage int sys_fork(struct pt_regs regs) 601 { 602 return do_fork(SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 603 } 604 605 asmlinkage int sys_clone(struct pt_regs regs) 606 { 607 unsigned long clone_flags; 608 unsigned long newsp; 609 int __user *parent_tidptr, *child_tidptr; 610 611 clone_flags = regs.bx; 612 newsp = regs.cx; 613 parent_tidptr = (int __user *)regs.dx; 614 child_tidptr = (int __user *)regs.di; 615 if (!newsp) 616 newsp = regs.sp; 617 return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); 618 } 619 620 /* 621 * This is trivial, and on the face of it looks like it 622 * could equally well be done in user mode. 623 * 624 * Not so, for quite unobvious reasons - register pressure. 625 * In user mode vfork() cannot have a stack frame, and if 626 * done by calling the "clone()" system call directly, you 627 * do not have enough call-clobbered registers to hold all 628 * the information you need. 629 */ 630 asmlinkage int sys_vfork(struct pt_regs regs) 631 { 632 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 633 } 634 635 /* 636 * sys_execve() executes a new program. 637 */ 638 asmlinkage int sys_execve(struct pt_regs regs) 639 { 640 int error; 641 char * filename; 642 643 filename = getname((char __user *) regs.bx); 644 error = PTR_ERR(filename); 645 if (IS_ERR(filename)) 646 goto out; 647 error = do_execve(filename, 648 (char __user * __user *) regs.cx, 649 (char __user * __user *) regs.dx, 650 ®s); 651 if (error == 0) { 652 /* Make sure we don't return using sysenter.. */ 653 set_thread_flag(TIF_IRET); 654 } 655 putname(filename); 656 out: 657 return error; 658 } 659 660 #define top_esp (THREAD_SIZE - sizeof(unsigned long)) 661 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) 662 663 unsigned long get_wchan(struct task_struct *p) 664 { 665 unsigned long bp, sp, ip; 666 unsigned long stack_page; 667 int count = 0; 668 if (!p || p == current || p->state == TASK_RUNNING) 669 return 0; 670 stack_page = (unsigned long)task_stack_page(p); 671 sp = p->thread.sp; 672 if (!stack_page || sp < stack_page || sp > top_esp+stack_page) 673 return 0; 674 /* include/asm-i386/system.h:switch_to() pushes bp last. */ 675 bp = *(unsigned long *) sp; 676 do { 677 if (bp < stack_page || bp > top_ebp+stack_page) 678 return 0; 679 ip = *(unsigned long *) (bp+4); 680 if (!in_sched_functions(ip)) 681 return ip; 682 bp = *(unsigned long *) bp; 683 } while (count++ < 16); 684 return 0; 685 } 686 687 unsigned long arch_align_stack(unsigned long sp) 688 { 689 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 690 sp -= get_random_int() % 8192; 691 return sp & ~0xf; 692 } 693 694 unsigned long arch_randomize_brk(struct mm_struct *mm) 695 { 696 unsigned long range_end = mm->brk + 0x02000000; 697 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 698 } 699