xref: /linux/arch/x86/kernel/process_32.c (revision 6b2d2cec1081a979e0efd6a1e9559e5a01a3c10e)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/a.out.h>
27 #include <linux/interrupt.h>
28 #include <linux/utsname.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/init.h>
32 #include <linux/mc146818rtc.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/ptrace.h>
36 #include <linux/random.h>
37 #include <linux/personality.h>
38 #include <linux/tick.h>
39 #include <linux/percpu.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #include <asm/vm86.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53 
54 #include <linux/err.h>
55 
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60 
61 static int hlt_counter;
62 
63 unsigned long boot_option_idle_override = 0;
64 EXPORT_SYMBOL(boot_option_idle_override);
65 
66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67 EXPORT_PER_CPU_SYMBOL(current_task);
68 
69 DEFINE_PER_CPU(int, cpu_number);
70 EXPORT_PER_CPU_SYMBOL(cpu_number);
71 
72 /*
73  * Return saved PC of a blocked thread.
74  */
75 unsigned long thread_saved_pc(struct task_struct *tsk)
76 {
77 	return ((unsigned long *)tsk->thread.esp)[3];
78 }
79 
80 /*
81  * Powermanagement idle function, if any..
82  */
83 void (*pm_idle)(void);
84 EXPORT_SYMBOL(pm_idle);
85 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
86 
87 void disable_hlt(void)
88 {
89 	hlt_counter++;
90 }
91 
92 EXPORT_SYMBOL(disable_hlt);
93 
94 void enable_hlt(void)
95 {
96 	hlt_counter--;
97 }
98 
99 EXPORT_SYMBOL(enable_hlt);
100 
101 /*
102  * We use this if we don't have any better
103  * idle routine..
104  */
105 void default_idle(void)
106 {
107 	if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
108 		current_thread_info()->status &= ~TS_POLLING;
109 		/*
110 		 * TS_POLLING-cleared state must be visible before we
111 		 * test NEED_RESCHED:
112 		 */
113 		smp_mb();
114 
115 		local_irq_disable();
116 		if (!need_resched())
117 			safe_halt();	/* enables interrupts racelessly */
118 		else
119 			local_irq_enable();
120 		current_thread_info()->status |= TS_POLLING;
121 	} else {
122 		/* loop is done by the caller */
123 		cpu_relax();
124 	}
125 }
126 #ifdef CONFIG_APM_MODULE
127 EXPORT_SYMBOL(default_idle);
128 #endif
129 
130 /*
131  * On SMP it's slightly faster (but much more power-consuming!)
132  * to poll the ->work.need_resched flag instead of waiting for the
133  * cross-CPU IPI to arrive. Use this option with caution.
134  */
135 static void poll_idle (void)
136 {
137 	cpu_relax();
138 }
139 
140 #ifdef CONFIG_HOTPLUG_CPU
141 #include <asm/nmi.h>
142 /* We don't actually take CPU down, just spin without interrupts. */
143 static inline void play_dead(void)
144 {
145 	/* This must be done before dead CPU ack */
146 	cpu_exit_clear();
147 	wbinvd();
148 	mb();
149 	/* Ack it */
150 	__get_cpu_var(cpu_state) = CPU_DEAD;
151 
152 	/*
153 	 * With physical CPU hotplug, we should halt the cpu
154 	 */
155 	local_irq_disable();
156 	while (1)
157 		halt();
158 }
159 #else
160 static inline void play_dead(void)
161 {
162 	BUG();
163 }
164 #endif /* CONFIG_HOTPLUG_CPU */
165 
166 /*
167  * The idle thread. There's no useful work to be
168  * done, so just try to conserve power and have a
169  * low exit latency (ie sit in a loop waiting for
170  * somebody to say that they'd like to reschedule)
171  */
172 void cpu_idle(void)
173 {
174 	int cpu = smp_processor_id();
175 
176 	current_thread_info()->status |= TS_POLLING;
177 
178 	/* endless idle loop with no priority at all */
179 	while (1) {
180 		tick_nohz_stop_sched_tick();
181 		while (!need_resched()) {
182 			void (*idle)(void);
183 
184 			if (__get_cpu_var(cpu_idle_state))
185 				__get_cpu_var(cpu_idle_state) = 0;
186 
187 			check_pgt_cache();
188 			rmb();
189 			idle = pm_idle;
190 
191 			if (!idle)
192 				idle = default_idle;
193 
194 			if (cpu_is_offline(cpu))
195 				play_dead();
196 
197 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
198 			idle();
199 		}
200 		tick_nohz_restart_sched_tick();
201 		preempt_enable_no_resched();
202 		schedule();
203 		preempt_disable();
204 	}
205 }
206 
207 static void do_nothing(void *unused)
208 {
209 }
210 
211 void cpu_idle_wait(void)
212 {
213 	unsigned int cpu, this_cpu = get_cpu();
214 	cpumask_t map, tmp = current->cpus_allowed;
215 
216 	set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
217 	put_cpu();
218 
219 	cpus_clear(map);
220 	for_each_online_cpu(cpu) {
221 		per_cpu(cpu_idle_state, cpu) = 1;
222 		cpu_set(cpu, map);
223 	}
224 
225 	__get_cpu_var(cpu_idle_state) = 0;
226 
227 	wmb();
228 	do {
229 		ssleep(1);
230 		for_each_online_cpu(cpu) {
231 			if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
232 				cpu_clear(cpu, map);
233 		}
234 		cpus_and(map, map, cpu_online_map);
235 		/*
236 		 * We waited 1 sec, if a CPU still did not call idle
237 		 * it may be because it is in idle and not waking up
238 		 * because it has nothing to do.
239 		 * Give all the remaining CPUS a kick.
240 		 */
241 		smp_call_function_mask(map, do_nothing, 0, 0);
242 	} while (!cpus_empty(map));
243 
244 	set_cpus_allowed(current, tmp);
245 }
246 EXPORT_SYMBOL_GPL(cpu_idle_wait);
247 
248 /*
249  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
250  * which can obviate IPI to trigger checking of need_resched.
251  * We execute MONITOR against need_resched and enter optimized wait state
252  * through MWAIT. Whenever someone changes need_resched, we would be woken
253  * up from MWAIT (without an IPI).
254  *
255  * New with Core Duo processors, MWAIT can take some hints based on CPU
256  * capability.
257  */
258 void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
259 {
260 	if (!need_resched()) {
261 		__monitor((void *)&current_thread_info()->flags, 0, 0);
262 		smp_mb();
263 		if (!need_resched())
264 			__mwait(eax, ecx);
265 	}
266 }
267 
268 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
269 static void mwait_idle(void)
270 {
271 	local_irq_enable();
272 	mwait_idle_with_hints(0, 0);
273 }
274 
275 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
276 {
277 	if (cpu_has(c, X86_FEATURE_MWAIT)) {
278 		printk("monitor/mwait feature present.\n");
279 		/*
280 		 * Skip, if setup has overridden idle.
281 		 * One CPU supports mwait => All CPUs supports mwait
282 		 */
283 		if (!pm_idle) {
284 			printk("using mwait in idle threads.\n");
285 			pm_idle = mwait_idle;
286 		}
287 	}
288 }
289 
290 static int __init idle_setup(char *str)
291 {
292 	if (!strcmp(str, "poll")) {
293 		printk("using polling idle threads.\n");
294 		pm_idle = poll_idle;
295 #ifdef CONFIG_X86_SMP
296 		if (smp_num_siblings > 1)
297 			printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
298 #endif
299 	} else if (!strcmp(str, "mwait"))
300 		force_mwait = 1;
301 	else
302 		return -1;
303 
304 	boot_option_idle_override = 1;
305 	return 0;
306 }
307 early_param("idle", idle_setup);
308 
309 void __show_registers(struct pt_regs *regs, int all)
310 {
311 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
312 	unsigned long d0, d1, d2, d3, d6, d7;
313 	unsigned long esp;
314 	unsigned short ss, gs;
315 
316 	if (user_mode_vm(regs)) {
317 		esp = regs->esp;
318 		ss = regs->xss & 0xffff;
319 		savesegment(gs, gs);
320 	} else {
321 		esp = (unsigned long) (&regs->esp);
322 		savesegment(ss, ss);
323 		savesegment(gs, gs);
324 	}
325 
326 	printk("\n");
327 	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
328 			task_pid_nr(current), current->comm,
329 			print_tainted(), init_utsname()->release,
330 			(int)strcspn(init_utsname()->version, " "),
331 			init_utsname()->version);
332 
333 	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
334 			0xffff & regs->xcs, regs->eip, regs->eflags,
335 			smp_processor_id());
336 	print_symbol("EIP is at %s\n", regs->eip);
337 
338 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
339 		regs->eax, regs->ebx, regs->ecx, regs->edx);
340 	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
341 		regs->esi, regs->edi, regs->ebp, esp);
342 	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
343 	       regs->xds & 0xffff, regs->xes & 0xffff,
344 	       regs->xfs & 0xffff, gs, ss);
345 
346 	if (!all)
347 		return;
348 
349 	cr0 = read_cr0();
350 	cr2 = read_cr2();
351 	cr3 = read_cr3();
352 	cr4 = read_cr4_safe();
353 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
354 			cr0, cr2, cr3, cr4);
355 
356 	get_debugreg(d0, 0);
357 	get_debugreg(d1, 1);
358 	get_debugreg(d2, 2);
359 	get_debugreg(d3, 3);
360 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
361 			d0, d1, d2, d3);
362 
363 	get_debugreg(d6, 6);
364 	get_debugreg(d7, 7);
365 	printk("DR6: %08lx DR7: %08lx\n",
366 			d6, d7);
367 }
368 
369 void show_regs(struct pt_regs *regs)
370 {
371 	__show_registers(regs, 1);
372 	show_trace(NULL, regs, &regs->esp);
373 }
374 
375 /*
376  * This gets run with %ebx containing the
377  * function to call, and %edx containing
378  * the "args".
379  */
380 extern void kernel_thread_helper(void);
381 
382 /*
383  * Create a kernel thread
384  */
385 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
386 {
387 	struct pt_regs regs;
388 
389 	memset(&regs, 0, sizeof(regs));
390 
391 	regs.ebx = (unsigned long) fn;
392 	regs.edx = (unsigned long) arg;
393 
394 	regs.xds = __USER_DS;
395 	regs.xes = __USER_DS;
396 	regs.xfs = __KERNEL_PERCPU;
397 	regs.orig_eax = -1;
398 	regs.eip = (unsigned long) kernel_thread_helper;
399 	regs.xcs = __KERNEL_CS | get_kernel_rpl();
400 	regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
401 
402 	/* Ok, create the new process.. */
403 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
404 }
405 EXPORT_SYMBOL(kernel_thread);
406 
407 /*
408  * Free current thread data structures etc..
409  */
410 void exit_thread(void)
411 {
412 	/* The process may have allocated an io port bitmap... nuke it. */
413 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
414 		struct task_struct *tsk = current;
415 		struct thread_struct *t = &tsk->thread;
416 		int cpu = get_cpu();
417 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
418 
419 		kfree(t->io_bitmap_ptr);
420 		t->io_bitmap_ptr = NULL;
421 		clear_thread_flag(TIF_IO_BITMAP);
422 		/*
423 		 * Careful, clear this in the TSS too:
424 		 */
425 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
426 		t->io_bitmap_max = 0;
427 		tss->io_bitmap_owner = NULL;
428 		tss->io_bitmap_max = 0;
429 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
430 		put_cpu();
431 	}
432 }
433 
434 void flush_thread(void)
435 {
436 	struct task_struct *tsk = current;
437 
438 	memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
439 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
440 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
441 	/*
442 	 * Forget coprocessor state..
443 	 */
444 	clear_fpu(tsk);
445 	clear_used_math();
446 }
447 
448 void release_thread(struct task_struct *dead_task)
449 {
450 	BUG_ON(dead_task->mm);
451 	release_vm86_irqs(dead_task);
452 }
453 
454 /*
455  * This gets called before we allocate a new thread and copy
456  * the current task into it.
457  */
458 void prepare_to_copy(struct task_struct *tsk)
459 {
460 	unlazy_fpu(tsk);
461 }
462 
463 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
464 	unsigned long unused,
465 	struct task_struct * p, struct pt_regs * regs)
466 {
467 	struct pt_regs * childregs;
468 	struct task_struct *tsk;
469 	int err;
470 
471 	childregs = task_pt_regs(p);
472 	*childregs = *regs;
473 	childregs->eax = 0;
474 	childregs->esp = esp;
475 
476 	p->thread.esp = (unsigned long) childregs;
477 	p->thread.esp0 = (unsigned long) (childregs+1);
478 
479 	p->thread.eip = (unsigned long) ret_from_fork;
480 
481 	savesegment(gs,p->thread.gs);
482 
483 	tsk = current;
484 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
485 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
486 						IO_BITMAP_BYTES, GFP_KERNEL);
487 		if (!p->thread.io_bitmap_ptr) {
488 			p->thread.io_bitmap_max = 0;
489 			return -ENOMEM;
490 		}
491 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
492 	}
493 
494 	/*
495 	 * Set a new TLS for the child thread?
496 	 */
497 	if (clone_flags & CLONE_SETTLS) {
498 		struct desc_struct *desc;
499 		struct user_desc info;
500 		int idx;
501 
502 		err = -EFAULT;
503 		if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
504 			goto out;
505 		err = -EINVAL;
506 		if (LDT_empty(&info))
507 			goto out;
508 
509 		idx = info.entry_number;
510 		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
511 			goto out;
512 
513 		desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
514 		desc->a = LDT_entry_a(&info);
515 		desc->b = LDT_entry_b(&info);
516 	}
517 
518 	err = 0;
519  out:
520 	if (err && p->thread.io_bitmap_ptr) {
521 		kfree(p->thread.io_bitmap_ptr);
522 		p->thread.io_bitmap_max = 0;
523 	}
524 	return err;
525 }
526 
527 /*
528  * fill in the user structure for a core dump..
529  */
530 void dump_thread(struct pt_regs * regs, struct user * dump)
531 {
532 	int i;
533 
534 /* changed the size calculations - should hopefully work better. lbt */
535 	dump->magic = CMAGIC;
536 	dump->start_code = 0;
537 	dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
538 	dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
539 	dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
540 	dump->u_dsize -= dump->u_tsize;
541 	dump->u_ssize = 0;
542 	for (i = 0; i < 8; i++)
543 		dump->u_debugreg[i] = current->thread.debugreg[i];
544 
545 	if (dump->start_stack < TASK_SIZE)
546 		dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
547 
548 	dump->regs.ebx = regs->ebx;
549 	dump->regs.ecx = regs->ecx;
550 	dump->regs.edx = regs->edx;
551 	dump->regs.esi = regs->esi;
552 	dump->regs.edi = regs->edi;
553 	dump->regs.ebp = regs->ebp;
554 	dump->regs.eax = regs->eax;
555 	dump->regs.ds = regs->xds;
556 	dump->regs.es = regs->xes;
557 	dump->regs.fs = regs->xfs;
558 	savesegment(gs,dump->regs.gs);
559 	dump->regs.orig_eax = regs->orig_eax;
560 	dump->regs.eip = regs->eip;
561 	dump->regs.cs = regs->xcs;
562 	dump->regs.eflags = regs->eflags;
563 	dump->regs.esp = regs->esp;
564 	dump->regs.ss = regs->xss;
565 
566 	dump->u_fpvalid = dump_fpu (regs, &dump->i387);
567 }
568 EXPORT_SYMBOL(dump_thread);
569 
570 /*
571  * Capture the user space registers if the task is not running (in user space)
572  */
573 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
574 {
575 	struct pt_regs ptregs = *task_pt_regs(tsk);
576 	ptregs.xcs &= 0xffff;
577 	ptregs.xds &= 0xffff;
578 	ptregs.xes &= 0xffff;
579 	ptregs.xss &= 0xffff;
580 
581 	elf_core_copy_regs(regs, &ptregs);
582 
583 	return 1;
584 }
585 
586 #ifdef CONFIG_SECCOMP
587 void hard_disable_TSC(void)
588 {
589 	write_cr4(read_cr4() | X86_CR4_TSD);
590 }
591 void disable_TSC(void)
592 {
593 	preempt_disable();
594 	if (!test_and_set_thread_flag(TIF_NOTSC))
595 		/*
596 		 * Must flip the CPU state synchronously with
597 		 * TIF_NOTSC in the current running context.
598 		 */
599 		hard_disable_TSC();
600 	preempt_enable();
601 }
602 void hard_enable_TSC(void)
603 {
604 	write_cr4(read_cr4() & ~X86_CR4_TSD);
605 }
606 #endif /* CONFIG_SECCOMP */
607 
608 static noinline void
609 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
610 		 struct tss_struct *tss)
611 {
612 	struct thread_struct *next;
613 
614 	next = &next_p->thread;
615 
616 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
617 		set_debugreg(next->debugreg[0], 0);
618 		set_debugreg(next->debugreg[1], 1);
619 		set_debugreg(next->debugreg[2], 2);
620 		set_debugreg(next->debugreg[3], 3);
621 		/* no 4 and 5 */
622 		set_debugreg(next->debugreg[6], 6);
623 		set_debugreg(next->debugreg[7], 7);
624 	}
625 
626 #ifdef CONFIG_SECCOMP
627 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
628 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
629 		/* prev and next are different */
630 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
631 			hard_disable_TSC();
632 		else
633 			hard_enable_TSC();
634 	}
635 #endif
636 
637 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
638 		/*
639 		 * Disable the bitmap via an invalid offset. We still cache
640 		 * the previous bitmap owner and the IO bitmap contents:
641 		 */
642 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
643 		return;
644 	}
645 
646 	if (likely(next == tss->io_bitmap_owner)) {
647 		/*
648 		 * Previous owner of the bitmap (hence the bitmap content)
649 		 * matches the next task, we dont have to do anything but
650 		 * to set a valid offset in the TSS:
651 		 */
652 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
653 		return;
654 	}
655 	/*
656 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
657 	 * and we let the task to get a GPF in case an I/O instruction
658 	 * is performed.  The handler of the GPF will verify that the
659 	 * faulting task has a valid I/O bitmap and, it true, does the
660 	 * real copy and restart the instruction.  This will save us
661 	 * redundant copies when the currently switched task does not
662 	 * perform any I/O during its timeslice.
663 	 */
664 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
665 }
666 
667 /*
668  *	switch_to(x,yn) should switch tasks from x to y.
669  *
670  * We fsave/fwait so that an exception goes off at the right time
671  * (as a call from the fsave or fwait in effect) rather than to
672  * the wrong process. Lazy FP saving no longer makes any sense
673  * with modern CPU's, and this simplifies a lot of things (SMP
674  * and UP become the same).
675  *
676  * NOTE! We used to use the x86 hardware context switching. The
677  * reason for not using it any more becomes apparent when you
678  * try to recover gracefully from saved state that is no longer
679  * valid (stale segment register values in particular). With the
680  * hardware task-switch, there is no way to fix up bad state in
681  * a reasonable manner.
682  *
683  * The fact that Intel documents the hardware task-switching to
684  * be slow is a fairly red herring - this code is not noticeably
685  * faster. However, there _is_ some room for improvement here,
686  * so the performance issues may eventually be a valid point.
687  * More important, however, is the fact that this allows us much
688  * more flexibility.
689  *
690  * The return value (in %eax) will be the "prev" task after
691  * the task-switch, and shows up in ret_from_fork in entry.S,
692  * for example.
693  */
694 struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
695 {
696 	struct thread_struct *prev = &prev_p->thread,
697 				 *next = &next_p->thread;
698 	int cpu = smp_processor_id();
699 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
700 
701 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
702 
703 	__unlazy_fpu(prev_p);
704 
705 
706 	/* we're going to use this soon, after a few expensive things */
707 	if (next_p->fpu_counter > 5)
708 		prefetch(&next->i387.fxsave);
709 
710 	/*
711 	 * Reload esp0.
712 	 */
713 	load_esp0(tss, next);
714 
715 	/*
716 	 * Save away %gs. No need to save %fs, as it was saved on the
717 	 * stack on entry.  No need to save %es and %ds, as those are
718 	 * always kernel segments while inside the kernel.  Doing this
719 	 * before setting the new TLS descriptors avoids the situation
720 	 * where we temporarily have non-reloadable segments in %fs
721 	 * and %gs.  This could be an issue if the NMI handler ever
722 	 * used %fs or %gs (it does not today), or if the kernel is
723 	 * running inside of a hypervisor layer.
724 	 */
725 	savesegment(gs, prev->gs);
726 
727 	/*
728 	 * Load the per-thread Thread-Local Storage descriptor.
729 	 */
730 	load_TLS(next, cpu);
731 
732 	/*
733 	 * Restore IOPL if needed.  In normal use, the flags restore
734 	 * in the switch assembly will handle this.  But if the kernel
735 	 * is running virtualized at a non-zero CPL, the popf will
736 	 * not restore flags, so it must be done in a separate step.
737 	 */
738 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
739 		set_iopl_mask(next->iopl);
740 
741 	/*
742 	 * Now maybe handle debug registers and/or IO bitmaps
743 	 */
744 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
745 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
746 		__switch_to_xtra(prev_p, next_p, tss);
747 
748 	/*
749 	 * Leave lazy mode, flushing any hypercalls made here.
750 	 * This must be done before restoring TLS segments so
751 	 * the GDT and LDT are properly updated, and must be
752 	 * done before math_state_restore, so the TS bit is up
753 	 * to date.
754 	 */
755 	arch_leave_lazy_cpu_mode();
756 
757 	/* If the task has used fpu the last 5 timeslices, just do a full
758 	 * restore of the math state immediately to avoid the trap; the
759 	 * chances of needing FPU soon are obviously high now
760 	 */
761 	if (next_p->fpu_counter > 5)
762 		math_state_restore();
763 
764 	/*
765 	 * Restore %gs if needed (which is common)
766 	 */
767 	if (prev->gs | next->gs)
768 		loadsegment(gs, next->gs);
769 
770 	x86_write_percpu(current_task, next_p);
771 
772 	return prev_p;
773 }
774 
775 asmlinkage int sys_fork(struct pt_regs regs)
776 {
777 	return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
778 }
779 
780 asmlinkage int sys_clone(struct pt_regs regs)
781 {
782 	unsigned long clone_flags;
783 	unsigned long newsp;
784 	int __user *parent_tidptr, *child_tidptr;
785 
786 	clone_flags = regs.ebx;
787 	newsp = regs.ecx;
788 	parent_tidptr = (int __user *)regs.edx;
789 	child_tidptr = (int __user *)regs.edi;
790 	if (!newsp)
791 		newsp = regs.esp;
792 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
793 }
794 
795 /*
796  * This is trivial, and on the face of it looks like it
797  * could equally well be done in user mode.
798  *
799  * Not so, for quite unobvious reasons - register pressure.
800  * In user mode vfork() cannot have a stack frame, and if
801  * done by calling the "clone()" system call directly, you
802  * do not have enough call-clobbered registers to hold all
803  * the information you need.
804  */
805 asmlinkage int sys_vfork(struct pt_regs regs)
806 {
807 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
808 }
809 
810 /*
811  * sys_execve() executes a new program.
812  */
813 asmlinkage int sys_execve(struct pt_regs regs)
814 {
815 	int error;
816 	char * filename;
817 
818 	filename = getname((char __user *) regs.ebx);
819 	error = PTR_ERR(filename);
820 	if (IS_ERR(filename))
821 		goto out;
822 	error = do_execve(filename,
823 			(char __user * __user *) regs.ecx,
824 			(char __user * __user *) regs.edx,
825 			&regs);
826 	if (error == 0) {
827 		task_lock(current);
828 		current->ptrace &= ~PT_DTRACE;
829 		task_unlock(current);
830 		/* Make sure we don't return using sysenter.. */
831 		set_thread_flag(TIF_IRET);
832 	}
833 	putname(filename);
834 out:
835 	return error;
836 }
837 
838 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
839 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
840 
841 unsigned long get_wchan(struct task_struct *p)
842 {
843 	unsigned long ebp, esp, eip;
844 	unsigned long stack_page;
845 	int count = 0;
846 	if (!p || p == current || p->state == TASK_RUNNING)
847 		return 0;
848 	stack_page = (unsigned long)task_stack_page(p);
849 	esp = p->thread.esp;
850 	if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
851 		return 0;
852 	/* include/asm-i386/system.h:switch_to() pushes ebp last. */
853 	ebp = *(unsigned long *) esp;
854 	do {
855 		if (ebp < stack_page || ebp > top_ebp+stack_page)
856 			return 0;
857 		eip = *(unsigned long *) (ebp+4);
858 		if (!in_sched_functions(eip))
859 			return eip;
860 		ebp = *(unsigned long *) ebp;
861 	} while (count++ < 16);
862 	return 0;
863 }
864 
865 /*
866  * sys_alloc_thread_area: get a yet unused TLS descriptor index.
867  */
868 static int get_free_idx(void)
869 {
870 	struct thread_struct *t = &current->thread;
871 	int idx;
872 
873 	for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
874 		if (desc_empty(t->tls_array + idx))
875 			return idx + GDT_ENTRY_TLS_MIN;
876 	return -ESRCH;
877 }
878 
879 /*
880  * Set a given TLS descriptor:
881  */
882 asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
883 {
884 	struct thread_struct *t = &current->thread;
885 	struct user_desc info;
886 	struct desc_struct *desc;
887 	int cpu, idx;
888 
889 	if (copy_from_user(&info, u_info, sizeof(info)))
890 		return -EFAULT;
891 	idx = info.entry_number;
892 
893 	/*
894 	 * index -1 means the kernel should try to find and
895 	 * allocate an empty descriptor:
896 	 */
897 	if (idx == -1) {
898 		idx = get_free_idx();
899 		if (idx < 0)
900 			return idx;
901 		if (put_user(idx, &u_info->entry_number))
902 			return -EFAULT;
903 	}
904 
905 	if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
906 		return -EINVAL;
907 
908 	desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
909 
910 	/*
911 	 * We must not get preempted while modifying the TLS.
912 	 */
913 	cpu = get_cpu();
914 
915 	if (LDT_empty(&info)) {
916 		desc->a = 0;
917 		desc->b = 0;
918 	} else {
919 		desc->a = LDT_entry_a(&info);
920 		desc->b = LDT_entry_b(&info);
921 	}
922 	load_TLS(t, cpu);
923 
924 	put_cpu();
925 
926 	return 0;
927 }
928 
929 /*
930  * Get the current Thread-Local Storage area:
931  */
932 
933 #define GET_BASE(desc) ( \
934 	(((desc)->a >> 16) & 0x0000ffff) | \
935 	(((desc)->b << 16) & 0x00ff0000) | \
936 	( (desc)->b        & 0xff000000)   )
937 
938 #define GET_LIMIT(desc) ( \
939 	((desc)->a & 0x0ffff) | \
940 	 ((desc)->b & 0xf0000) )
941 
942 #define GET_32BIT(desc)		(((desc)->b >> 22) & 1)
943 #define GET_CONTENTS(desc)	(((desc)->b >> 10) & 3)
944 #define GET_WRITABLE(desc)	(((desc)->b >>  9) & 1)
945 #define GET_LIMIT_PAGES(desc)	(((desc)->b >> 23) & 1)
946 #define GET_PRESENT(desc)	(((desc)->b >> 15) & 1)
947 #define GET_USEABLE(desc)	(((desc)->b >> 20) & 1)
948 
949 asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
950 {
951 	struct user_desc info;
952 	struct desc_struct *desc;
953 	int idx;
954 
955 	if (get_user(idx, &u_info->entry_number))
956 		return -EFAULT;
957 	if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
958 		return -EINVAL;
959 
960 	memset(&info, 0, sizeof(info));
961 
962 	desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
963 
964 	info.entry_number = idx;
965 	info.base_addr = GET_BASE(desc);
966 	info.limit = GET_LIMIT(desc);
967 	info.seg_32bit = GET_32BIT(desc);
968 	info.contents = GET_CONTENTS(desc);
969 	info.read_exec_only = !GET_WRITABLE(desc);
970 	info.limit_in_pages = GET_LIMIT_PAGES(desc);
971 	info.seg_not_present = !GET_PRESENT(desc);
972 	info.useable = GET_USEABLE(desc);
973 
974 	if (copy_to_user(u_info, &info, sizeof(info)))
975 		return -EFAULT;
976 	return 0;
977 }
978 
979 unsigned long arch_align_stack(unsigned long sp)
980 {
981 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
982 		sp -= get_random_int() % 8192;
983 	return sp & ~0xf;
984 }
985