xref: /linux/arch/x86/kernel/process_32.c (revision 40d3057ac036f2501c1930728a6179be4fca577b)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
52 
53 #include <linux/err.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/kdebug.h>
58 
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60 
61 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
62 EXPORT_PER_CPU_SYMBOL(current_task);
63 
64 DEFINE_PER_CPU(int, cpu_number);
65 EXPORT_PER_CPU_SYMBOL(cpu_number);
66 
67 /*
68  * Return saved PC of a blocked thread.
69  */
70 unsigned long thread_saved_pc(struct task_struct *tsk)
71 {
72 	return ((unsigned long *)tsk->thread.sp)[3];
73 }
74 
75 #ifdef CONFIG_HOTPLUG_CPU
76 #include <asm/nmi.h>
77 
78 static void cpu_exit_clear(void)
79 {
80 	int cpu = raw_smp_processor_id();
81 
82 	idle_task_exit();
83 
84 	cpu_uninit();
85 	irq_ctx_exit(cpu);
86 
87 	cpu_clear(cpu, cpu_callout_map);
88 	cpu_clear(cpu, cpu_callin_map);
89 
90 	numa_remove_cpu(cpu);
91 }
92 
93 /* We don't actually take CPU down, just spin without interrupts. */
94 static inline void play_dead(void)
95 {
96 	/* This must be done before dead CPU ack */
97 	cpu_exit_clear();
98 	mb();
99 	/* Ack it */
100 	__get_cpu_var(cpu_state) = CPU_DEAD;
101 
102 	/*
103 	 * With physical CPU hotplug, we should halt the cpu
104 	 */
105 	local_irq_disable();
106 	/* mask all interrupts, flush any and all caches, and halt */
107 	wbinvd_halt();
108 }
109 #else
110 static inline void play_dead(void)
111 {
112 	BUG();
113 }
114 #endif /* CONFIG_HOTPLUG_CPU */
115 
116 /*
117  * The idle thread. There's no useful work to be
118  * done, so just try to conserve power and have a
119  * low exit latency (ie sit in a loop waiting for
120  * somebody to say that they'd like to reschedule)
121  */
122 void cpu_idle(void)
123 {
124 	int cpu = smp_processor_id();
125 
126 	current_thread_info()->status |= TS_POLLING;
127 
128 	/* endless idle loop with no priority at all */
129 	while (1) {
130 		tick_nohz_stop_sched_tick(1);
131 		while (!need_resched()) {
132 
133 			check_pgt_cache();
134 			rmb();
135 
136 			if (rcu_pending(cpu))
137 				rcu_check_callbacks(cpu, 0);
138 
139 			if (cpu_is_offline(cpu))
140 				play_dead();
141 
142 			local_irq_disable();
143 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
144 			/* Don't trace irqs off for idle */
145 			stop_critical_timings();
146 			pm_idle();
147 			start_critical_timings();
148 		}
149 		tick_nohz_restart_sched_tick();
150 		preempt_enable_no_resched();
151 		schedule();
152 		preempt_disable();
153 	}
154 }
155 
156 void __show_registers(struct pt_regs *regs, int all)
157 {
158 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
159 	unsigned long d0, d1, d2, d3, d6, d7;
160 	unsigned long sp;
161 	unsigned short ss, gs;
162 
163 	if (user_mode_vm(regs)) {
164 		sp = regs->sp;
165 		ss = regs->ss & 0xffff;
166 		savesegment(gs, gs);
167 	} else {
168 		sp = (unsigned long) (&regs->sp);
169 		savesegment(ss, ss);
170 		savesegment(gs, gs);
171 	}
172 
173 	printk("\n");
174 	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
175 			task_pid_nr(current), current->comm,
176 			print_tainted(), init_utsname()->release,
177 			(int)strcspn(init_utsname()->version, " "),
178 			init_utsname()->version);
179 
180 	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
181 			(u16)regs->cs, regs->ip, regs->flags,
182 			smp_processor_id());
183 	print_symbol("EIP is at %s\n", regs->ip);
184 
185 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
186 		regs->ax, regs->bx, regs->cx, regs->dx);
187 	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
188 		regs->si, regs->di, regs->bp, sp);
189 	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
190 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
191 
192 	if (!all)
193 		return;
194 
195 	cr0 = read_cr0();
196 	cr2 = read_cr2();
197 	cr3 = read_cr3();
198 	cr4 = read_cr4_safe();
199 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
200 			cr0, cr2, cr3, cr4);
201 
202 	get_debugreg(d0, 0);
203 	get_debugreg(d1, 1);
204 	get_debugreg(d2, 2);
205 	get_debugreg(d3, 3);
206 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
207 			d0, d1, d2, d3);
208 
209 	get_debugreg(d6, 6);
210 	get_debugreg(d7, 7);
211 	printk("DR6: %08lx DR7: %08lx\n",
212 			d6, d7);
213 }
214 
215 void show_regs(struct pt_regs *regs)
216 {
217 	__show_registers(regs, 1);
218 	show_trace(NULL, regs, &regs->sp, regs->bp);
219 }
220 
221 /*
222  * This gets run with %bx containing the
223  * function to call, and %dx containing
224  * the "args".
225  */
226 extern void kernel_thread_helper(void);
227 
228 /*
229  * Create a kernel thread
230  */
231 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
232 {
233 	struct pt_regs regs;
234 
235 	memset(&regs, 0, sizeof(regs));
236 
237 	regs.bx = (unsigned long) fn;
238 	regs.dx = (unsigned long) arg;
239 
240 	regs.ds = __USER_DS;
241 	regs.es = __USER_DS;
242 	regs.fs = __KERNEL_PERCPU;
243 	regs.orig_ax = -1;
244 	regs.ip = (unsigned long) kernel_thread_helper;
245 	regs.cs = __KERNEL_CS | get_kernel_rpl();
246 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
247 
248 	/* Ok, create the new process.. */
249 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
250 }
251 EXPORT_SYMBOL(kernel_thread);
252 
253 /*
254  * Free current thread data structures etc..
255  */
256 void exit_thread(void)
257 {
258 	/* The process may have allocated an io port bitmap... nuke it. */
259 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
260 		struct task_struct *tsk = current;
261 		struct thread_struct *t = &tsk->thread;
262 		int cpu = get_cpu();
263 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
264 
265 		kfree(t->io_bitmap_ptr);
266 		t->io_bitmap_ptr = NULL;
267 		clear_thread_flag(TIF_IO_BITMAP);
268 		/*
269 		 * Careful, clear this in the TSS too:
270 		 */
271 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
272 		t->io_bitmap_max = 0;
273 		tss->io_bitmap_owner = NULL;
274 		tss->io_bitmap_max = 0;
275 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
276 		put_cpu();
277 	}
278 }
279 
280 void flush_thread(void)
281 {
282 	struct task_struct *tsk = current;
283 
284 	tsk->thread.debugreg0 = 0;
285 	tsk->thread.debugreg1 = 0;
286 	tsk->thread.debugreg2 = 0;
287 	tsk->thread.debugreg3 = 0;
288 	tsk->thread.debugreg6 = 0;
289 	tsk->thread.debugreg7 = 0;
290 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
291 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
292 	/*
293 	 * Forget coprocessor state..
294 	 */
295 	tsk->fpu_counter = 0;
296 	clear_fpu(tsk);
297 	clear_used_math();
298 }
299 
300 void release_thread(struct task_struct *dead_task)
301 {
302 	BUG_ON(dead_task->mm);
303 	release_vm86_irqs(dead_task);
304 }
305 
306 /*
307  * This gets called before we allocate a new thread and copy
308  * the current task into it.
309  */
310 void prepare_to_copy(struct task_struct *tsk)
311 {
312 	unlazy_fpu(tsk);
313 }
314 
315 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
316 	unsigned long unused,
317 	struct task_struct * p, struct pt_regs * regs)
318 {
319 	struct pt_regs * childregs;
320 	struct task_struct *tsk;
321 	int err;
322 
323 	childregs = task_pt_regs(p);
324 	*childregs = *regs;
325 	childregs->ax = 0;
326 	childregs->sp = sp;
327 
328 	p->thread.sp = (unsigned long) childregs;
329 	p->thread.sp0 = (unsigned long) (childregs+1);
330 
331 	p->thread.ip = (unsigned long) ret_from_fork;
332 
333 	savesegment(gs, p->thread.gs);
334 
335 	tsk = current;
336 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
337 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
338 						IO_BITMAP_BYTES, GFP_KERNEL);
339 		if (!p->thread.io_bitmap_ptr) {
340 			p->thread.io_bitmap_max = 0;
341 			return -ENOMEM;
342 		}
343 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
344 	}
345 
346 	err = 0;
347 
348 	/*
349 	 * Set a new TLS for the child thread?
350 	 */
351 	if (clone_flags & CLONE_SETTLS)
352 		err = do_set_thread_area(p, -1,
353 			(struct user_desc __user *)childregs->si, 0);
354 
355 	if (err && p->thread.io_bitmap_ptr) {
356 		kfree(p->thread.io_bitmap_ptr);
357 		p->thread.io_bitmap_max = 0;
358 	}
359 	return err;
360 }
361 
362 void
363 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
364 {
365 	__asm__("movl %0, %%gs" :: "r"(0));
366 	regs->fs		= 0;
367 	set_fs(USER_DS);
368 	regs->ds		= __USER_DS;
369 	regs->es		= __USER_DS;
370 	regs->ss		= __USER_DS;
371 	regs->cs		= __USER_CS;
372 	regs->ip		= new_ip;
373 	regs->sp		= new_sp;
374 	/*
375 	 * Free the old FP and other extended state
376 	 */
377 	free_thread_xstate(current);
378 }
379 EXPORT_SYMBOL_GPL(start_thread);
380 
381 static void hard_disable_TSC(void)
382 {
383 	write_cr4(read_cr4() | X86_CR4_TSD);
384 }
385 
386 void disable_TSC(void)
387 {
388 	preempt_disable();
389 	if (!test_and_set_thread_flag(TIF_NOTSC))
390 		/*
391 		 * Must flip the CPU state synchronously with
392 		 * TIF_NOTSC in the current running context.
393 		 */
394 		hard_disable_TSC();
395 	preempt_enable();
396 }
397 
398 static void hard_enable_TSC(void)
399 {
400 	write_cr4(read_cr4() & ~X86_CR4_TSD);
401 }
402 
403 static void enable_TSC(void)
404 {
405 	preempt_disable();
406 	if (test_and_clear_thread_flag(TIF_NOTSC))
407 		/*
408 		 * Must flip the CPU state synchronously with
409 		 * TIF_NOTSC in the current running context.
410 		 */
411 		hard_enable_TSC();
412 	preempt_enable();
413 }
414 
415 int get_tsc_mode(unsigned long adr)
416 {
417 	unsigned int val;
418 
419 	if (test_thread_flag(TIF_NOTSC))
420 		val = PR_TSC_SIGSEGV;
421 	else
422 		val = PR_TSC_ENABLE;
423 
424 	return put_user(val, (unsigned int __user *)adr);
425 }
426 
427 int set_tsc_mode(unsigned int val)
428 {
429 	if (val == PR_TSC_SIGSEGV)
430 		disable_TSC();
431 	else if (val == PR_TSC_ENABLE)
432 		enable_TSC();
433 	else
434 		return -EINVAL;
435 
436 	return 0;
437 }
438 
439 static noinline void
440 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
441 		 struct tss_struct *tss)
442 {
443 	struct thread_struct *prev, *next;
444 	unsigned long debugctl;
445 
446 	prev = &prev_p->thread;
447 	next = &next_p->thread;
448 
449 	debugctl = prev->debugctlmsr;
450 	if (next->ds_area_msr != prev->ds_area_msr) {
451 		/* we clear debugctl to make sure DS
452 		 * is not in use when we change it */
453 		debugctl = 0;
454 		update_debugctlmsr(0);
455 		wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
456 	}
457 
458 	if (next->debugctlmsr != debugctl)
459 		update_debugctlmsr(next->debugctlmsr);
460 
461 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
462 		set_debugreg(next->debugreg0, 0);
463 		set_debugreg(next->debugreg1, 1);
464 		set_debugreg(next->debugreg2, 2);
465 		set_debugreg(next->debugreg3, 3);
466 		/* no 4 and 5 */
467 		set_debugreg(next->debugreg6, 6);
468 		set_debugreg(next->debugreg7, 7);
469 	}
470 
471 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
472 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
473 		/* prev and next are different */
474 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
475 			hard_disable_TSC();
476 		else
477 			hard_enable_TSC();
478 	}
479 
480 #ifdef X86_BTS
481 	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
482 		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
483 
484 	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
485 		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
486 #endif
487 
488 
489 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
490 		/*
491 		 * Disable the bitmap via an invalid offset. We still cache
492 		 * the previous bitmap owner and the IO bitmap contents:
493 		 */
494 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
495 		return;
496 	}
497 
498 	if (likely(next == tss->io_bitmap_owner)) {
499 		/*
500 		 * Previous owner of the bitmap (hence the bitmap content)
501 		 * matches the next task, we dont have to do anything but
502 		 * to set a valid offset in the TSS:
503 		 */
504 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
505 		return;
506 	}
507 	/*
508 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
509 	 * and we let the task to get a GPF in case an I/O instruction
510 	 * is performed.  The handler of the GPF will verify that the
511 	 * faulting task has a valid I/O bitmap and, it true, does the
512 	 * real copy and restart the instruction.  This will save us
513 	 * redundant copies when the currently switched task does not
514 	 * perform any I/O during its timeslice.
515 	 */
516 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
517 }
518 
519 /*
520  *	switch_to(x,yn) should switch tasks from x to y.
521  *
522  * We fsave/fwait so that an exception goes off at the right time
523  * (as a call from the fsave or fwait in effect) rather than to
524  * the wrong process. Lazy FP saving no longer makes any sense
525  * with modern CPU's, and this simplifies a lot of things (SMP
526  * and UP become the same).
527  *
528  * NOTE! We used to use the x86 hardware context switching. The
529  * reason for not using it any more becomes apparent when you
530  * try to recover gracefully from saved state that is no longer
531  * valid (stale segment register values in particular). With the
532  * hardware task-switch, there is no way to fix up bad state in
533  * a reasonable manner.
534  *
535  * The fact that Intel documents the hardware task-switching to
536  * be slow is a fairly red herring - this code is not noticeably
537  * faster. However, there _is_ some room for improvement here,
538  * so the performance issues may eventually be a valid point.
539  * More important, however, is the fact that this allows us much
540  * more flexibility.
541  *
542  * The return value (in %ax) will be the "prev" task after
543  * the task-switch, and shows up in ret_from_fork in entry.S,
544  * for example.
545  */
546 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
547 {
548 	struct thread_struct *prev = &prev_p->thread,
549 				 *next = &next_p->thread;
550 	int cpu = smp_processor_id();
551 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
552 
553 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
554 
555 	__unlazy_fpu(prev_p);
556 
557 
558 	/* we're going to use this soon, after a few expensive things */
559 	if (next_p->fpu_counter > 5)
560 		prefetch(next->xstate);
561 
562 	/*
563 	 * Reload esp0.
564 	 */
565 	load_sp0(tss, next);
566 
567 	/*
568 	 * Save away %gs. No need to save %fs, as it was saved on the
569 	 * stack on entry.  No need to save %es and %ds, as those are
570 	 * always kernel segments while inside the kernel.  Doing this
571 	 * before setting the new TLS descriptors avoids the situation
572 	 * where we temporarily have non-reloadable segments in %fs
573 	 * and %gs.  This could be an issue if the NMI handler ever
574 	 * used %fs or %gs (it does not today), or if the kernel is
575 	 * running inside of a hypervisor layer.
576 	 */
577 	savesegment(gs, prev->gs);
578 
579 	/*
580 	 * Load the per-thread Thread-Local Storage descriptor.
581 	 */
582 	load_TLS(next, cpu);
583 
584 	/*
585 	 * Restore IOPL if needed.  In normal use, the flags restore
586 	 * in the switch assembly will handle this.  But if the kernel
587 	 * is running virtualized at a non-zero CPL, the popf will
588 	 * not restore flags, so it must be done in a separate step.
589 	 */
590 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
591 		set_iopl_mask(next->iopl);
592 
593 	/*
594 	 * Now maybe handle debug registers and/or IO bitmaps
595 	 */
596 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
597 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
598 		__switch_to_xtra(prev_p, next_p, tss);
599 
600 	/*
601 	 * Leave lazy mode, flushing any hypercalls made here.
602 	 * This must be done before restoring TLS segments so
603 	 * the GDT and LDT are properly updated, and must be
604 	 * done before math_state_restore, so the TS bit is up
605 	 * to date.
606 	 */
607 	arch_leave_lazy_cpu_mode();
608 
609 	/* If the task has used fpu the last 5 timeslices, just do a full
610 	 * restore of the math state immediately to avoid the trap; the
611 	 * chances of needing FPU soon are obviously high now
612 	 *
613 	 * tsk_used_math() checks prevent calling math_state_restore(),
614 	 * which can sleep in the case of !tsk_used_math()
615 	 */
616 	if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
617 		math_state_restore();
618 
619 	/*
620 	 * Restore %gs if needed (which is common)
621 	 */
622 	if (prev->gs | next->gs)
623 		loadsegment(gs, next->gs);
624 
625 	x86_write_percpu(current_task, next_p);
626 
627 	return prev_p;
628 }
629 
630 asmlinkage int sys_fork(struct pt_regs regs)
631 {
632 	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
633 }
634 
635 asmlinkage int sys_clone(struct pt_regs regs)
636 {
637 	unsigned long clone_flags;
638 	unsigned long newsp;
639 	int __user *parent_tidptr, *child_tidptr;
640 
641 	clone_flags = regs.bx;
642 	newsp = regs.cx;
643 	parent_tidptr = (int __user *)regs.dx;
644 	child_tidptr = (int __user *)regs.di;
645 	if (!newsp)
646 		newsp = regs.sp;
647 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
648 }
649 
650 /*
651  * This is trivial, and on the face of it looks like it
652  * could equally well be done in user mode.
653  *
654  * Not so, for quite unobvious reasons - register pressure.
655  * In user mode vfork() cannot have a stack frame, and if
656  * done by calling the "clone()" system call directly, you
657  * do not have enough call-clobbered registers to hold all
658  * the information you need.
659  */
660 asmlinkage int sys_vfork(struct pt_regs regs)
661 {
662 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
663 }
664 
665 /*
666  * sys_execve() executes a new program.
667  */
668 asmlinkage int sys_execve(struct pt_regs regs)
669 {
670 	int error;
671 	char * filename;
672 
673 	filename = getname((char __user *) regs.bx);
674 	error = PTR_ERR(filename);
675 	if (IS_ERR(filename))
676 		goto out;
677 	error = do_execve(filename,
678 			(char __user * __user *) regs.cx,
679 			(char __user * __user *) regs.dx,
680 			&regs);
681 	if (error == 0) {
682 		/* Make sure we don't return using sysenter.. */
683 		set_thread_flag(TIF_IRET);
684 	}
685 	putname(filename);
686 out:
687 	return error;
688 }
689 
690 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
691 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
692 
693 unsigned long get_wchan(struct task_struct *p)
694 {
695 	unsigned long bp, sp, ip;
696 	unsigned long stack_page;
697 	int count = 0;
698 	if (!p || p == current || p->state == TASK_RUNNING)
699 		return 0;
700 	stack_page = (unsigned long)task_stack_page(p);
701 	sp = p->thread.sp;
702 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
703 		return 0;
704 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
705 	bp = *(unsigned long *) sp;
706 	do {
707 		if (bp < stack_page || bp > top_ebp+stack_page)
708 			return 0;
709 		ip = *(unsigned long *) (bp+4);
710 		if (!in_sched_functions(ip))
711 			return ip;
712 		bp = *(unsigned long *) bp;
713 	} while (count++ < 16);
714 	return 0;
715 }
716 
717 unsigned long arch_align_stack(unsigned long sp)
718 {
719 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
720 		sp -= get_random_int() % 8192;
721 	return sp & ~0xf;
722 }
723 
724 unsigned long arch_randomize_brk(struct mm_struct *mm)
725 {
726 	unsigned long range_end = mm->brk + 0x02000000;
727 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
728 }
729