1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/cpu.h> 15 #include <linux/errno.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/elfcore.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/user.h> 26 #include <linux/interrupt.h> 27 #include <linux/utsname.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/init.h> 31 #include <linux/mc146818rtc.h> 32 #include <linux/module.h> 33 #include <linux/kallsyms.h> 34 #include <linux/ptrace.h> 35 #include <linux/random.h> 36 #include <linux/personality.h> 37 #include <linux/tick.h> 38 #include <linux/percpu.h> 39 #include <linux/prctl.h> 40 41 #include <asm/uaccess.h> 42 #include <asm/pgtable.h> 43 #include <asm/system.h> 44 #include <asm/io.h> 45 #include <asm/ldt.h> 46 #include <asm/processor.h> 47 #include <asm/i387.h> 48 #include <asm/desc.h> 49 #ifdef CONFIG_MATH_EMULATION 50 #include <asm/math_emu.h> 51 #endif 52 53 #include <linux/err.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/cpu.h> 57 #include <asm/kdebug.h> 58 59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); 60 61 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 62 EXPORT_PER_CPU_SYMBOL(current_task); 63 64 DEFINE_PER_CPU(int, cpu_number); 65 EXPORT_PER_CPU_SYMBOL(cpu_number); 66 67 /* 68 * Return saved PC of a blocked thread. 69 */ 70 unsigned long thread_saved_pc(struct task_struct *tsk) 71 { 72 return ((unsigned long *)tsk->thread.sp)[3]; 73 } 74 75 #ifdef CONFIG_HOTPLUG_CPU 76 #include <asm/nmi.h> 77 78 static void cpu_exit_clear(void) 79 { 80 int cpu = raw_smp_processor_id(); 81 82 idle_task_exit(); 83 84 cpu_uninit(); 85 irq_ctx_exit(cpu); 86 87 cpu_clear(cpu, cpu_callout_map); 88 cpu_clear(cpu, cpu_callin_map); 89 90 numa_remove_cpu(cpu); 91 } 92 93 /* We don't actually take CPU down, just spin without interrupts. */ 94 static inline void play_dead(void) 95 { 96 /* This must be done before dead CPU ack */ 97 cpu_exit_clear(); 98 mb(); 99 /* Ack it */ 100 __get_cpu_var(cpu_state) = CPU_DEAD; 101 102 /* 103 * With physical CPU hotplug, we should halt the cpu 104 */ 105 local_irq_disable(); 106 /* mask all interrupts, flush any and all caches, and halt */ 107 wbinvd_halt(); 108 } 109 #else 110 static inline void play_dead(void) 111 { 112 BUG(); 113 } 114 #endif /* CONFIG_HOTPLUG_CPU */ 115 116 /* 117 * The idle thread. There's no useful work to be 118 * done, so just try to conserve power and have a 119 * low exit latency (ie sit in a loop waiting for 120 * somebody to say that they'd like to reschedule) 121 */ 122 void cpu_idle(void) 123 { 124 int cpu = smp_processor_id(); 125 126 current_thread_info()->status |= TS_POLLING; 127 128 /* endless idle loop with no priority at all */ 129 while (1) { 130 tick_nohz_stop_sched_tick(1); 131 while (!need_resched()) { 132 133 check_pgt_cache(); 134 rmb(); 135 136 if (rcu_pending(cpu)) 137 rcu_check_callbacks(cpu, 0); 138 139 if (cpu_is_offline(cpu)) 140 play_dead(); 141 142 local_irq_disable(); 143 __get_cpu_var(irq_stat).idle_timestamp = jiffies; 144 /* Don't trace irqs off for idle */ 145 stop_critical_timings(); 146 pm_idle(); 147 start_critical_timings(); 148 } 149 tick_nohz_restart_sched_tick(); 150 preempt_enable_no_resched(); 151 schedule(); 152 preempt_disable(); 153 } 154 } 155 156 void __show_registers(struct pt_regs *regs, int all) 157 { 158 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; 159 unsigned long d0, d1, d2, d3, d6, d7; 160 unsigned long sp; 161 unsigned short ss, gs; 162 163 if (user_mode_vm(regs)) { 164 sp = regs->sp; 165 ss = regs->ss & 0xffff; 166 savesegment(gs, gs); 167 } else { 168 sp = (unsigned long) (®s->sp); 169 savesegment(ss, ss); 170 savesegment(gs, gs); 171 } 172 173 printk("\n"); 174 printk("Pid: %d, comm: %s %s (%s %.*s)\n", 175 task_pid_nr(current), current->comm, 176 print_tainted(), init_utsname()->release, 177 (int)strcspn(init_utsname()->version, " "), 178 init_utsname()->version); 179 180 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", 181 (u16)regs->cs, regs->ip, regs->flags, 182 smp_processor_id()); 183 print_symbol("EIP is at %s\n", regs->ip); 184 185 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", 186 regs->ax, regs->bx, regs->cx, regs->dx); 187 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", 188 regs->si, regs->di, regs->bp, sp); 189 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", 190 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); 191 192 if (!all) 193 return; 194 195 cr0 = read_cr0(); 196 cr2 = read_cr2(); 197 cr3 = read_cr3(); 198 cr4 = read_cr4_safe(); 199 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", 200 cr0, cr2, cr3, cr4); 201 202 get_debugreg(d0, 0); 203 get_debugreg(d1, 1); 204 get_debugreg(d2, 2); 205 get_debugreg(d3, 3); 206 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", 207 d0, d1, d2, d3); 208 209 get_debugreg(d6, 6); 210 get_debugreg(d7, 7); 211 printk("DR6: %08lx DR7: %08lx\n", 212 d6, d7); 213 } 214 215 void show_regs(struct pt_regs *regs) 216 { 217 __show_registers(regs, 1); 218 show_trace(NULL, regs, ®s->sp, regs->bp); 219 } 220 221 /* 222 * This gets run with %bx containing the 223 * function to call, and %dx containing 224 * the "args". 225 */ 226 extern void kernel_thread_helper(void); 227 228 /* 229 * Create a kernel thread 230 */ 231 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 232 { 233 struct pt_regs regs; 234 235 memset(®s, 0, sizeof(regs)); 236 237 regs.bx = (unsigned long) fn; 238 regs.dx = (unsigned long) arg; 239 240 regs.ds = __USER_DS; 241 regs.es = __USER_DS; 242 regs.fs = __KERNEL_PERCPU; 243 regs.orig_ax = -1; 244 regs.ip = (unsigned long) kernel_thread_helper; 245 regs.cs = __KERNEL_CS | get_kernel_rpl(); 246 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; 247 248 /* Ok, create the new process.. */ 249 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 250 } 251 EXPORT_SYMBOL(kernel_thread); 252 253 /* 254 * Free current thread data structures etc.. 255 */ 256 void exit_thread(void) 257 { 258 /* The process may have allocated an io port bitmap... nuke it. */ 259 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { 260 struct task_struct *tsk = current; 261 struct thread_struct *t = &tsk->thread; 262 int cpu = get_cpu(); 263 struct tss_struct *tss = &per_cpu(init_tss, cpu); 264 265 kfree(t->io_bitmap_ptr); 266 t->io_bitmap_ptr = NULL; 267 clear_thread_flag(TIF_IO_BITMAP); 268 /* 269 * Careful, clear this in the TSS too: 270 */ 271 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); 272 t->io_bitmap_max = 0; 273 tss->io_bitmap_owner = NULL; 274 tss->io_bitmap_max = 0; 275 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 276 put_cpu(); 277 } 278 } 279 280 void flush_thread(void) 281 { 282 struct task_struct *tsk = current; 283 284 tsk->thread.debugreg0 = 0; 285 tsk->thread.debugreg1 = 0; 286 tsk->thread.debugreg2 = 0; 287 tsk->thread.debugreg3 = 0; 288 tsk->thread.debugreg6 = 0; 289 tsk->thread.debugreg7 = 0; 290 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 291 clear_tsk_thread_flag(tsk, TIF_DEBUG); 292 /* 293 * Forget coprocessor state.. 294 */ 295 tsk->fpu_counter = 0; 296 clear_fpu(tsk); 297 clear_used_math(); 298 } 299 300 void release_thread(struct task_struct *dead_task) 301 { 302 BUG_ON(dead_task->mm); 303 release_vm86_irqs(dead_task); 304 } 305 306 /* 307 * This gets called before we allocate a new thread and copy 308 * the current task into it. 309 */ 310 void prepare_to_copy(struct task_struct *tsk) 311 { 312 unlazy_fpu(tsk); 313 } 314 315 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, 316 unsigned long unused, 317 struct task_struct * p, struct pt_regs * regs) 318 { 319 struct pt_regs * childregs; 320 struct task_struct *tsk; 321 int err; 322 323 childregs = task_pt_regs(p); 324 *childregs = *regs; 325 childregs->ax = 0; 326 childregs->sp = sp; 327 328 p->thread.sp = (unsigned long) childregs; 329 p->thread.sp0 = (unsigned long) (childregs+1); 330 331 p->thread.ip = (unsigned long) ret_from_fork; 332 333 savesegment(gs, p->thread.gs); 334 335 tsk = current; 336 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { 337 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, 338 IO_BITMAP_BYTES, GFP_KERNEL); 339 if (!p->thread.io_bitmap_ptr) { 340 p->thread.io_bitmap_max = 0; 341 return -ENOMEM; 342 } 343 set_tsk_thread_flag(p, TIF_IO_BITMAP); 344 } 345 346 err = 0; 347 348 /* 349 * Set a new TLS for the child thread? 350 */ 351 if (clone_flags & CLONE_SETTLS) 352 err = do_set_thread_area(p, -1, 353 (struct user_desc __user *)childregs->si, 0); 354 355 if (err && p->thread.io_bitmap_ptr) { 356 kfree(p->thread.io_bitmap_ptr); 357 p->thread.io_bitmap_max = 0; 358 } 359 return err; 360 } 361 362 void 363 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 364 { 365 __asm__("movl %0, %%gs" :: "r"(0)); 366 regs->fs = 0; 367 set_fs(USER_DS); 368 regs->ds = __USER_DS; 369 regs->es = __USER_DS; 370 regs->ss = __USER_DS; 371 regs->cs = __USER_CS; 372 regs->ip = new_ip; 373 regs->sp = new_sp; 374 /* 375 * Free the old FP and other extended state 376 */ 377 free_thread_xstate(current); 378 } 379 EXPORT_SYMBOL_GPL(start_thread); 380 381 static void hard_disable_TSC(void) 382 { 383 write_cr4(read_cr4() | X86_CR4_TSD); 384 } 385 386 void disable_TSC(void) 387 { 388 preempt_disable(); 389 if (!test_and_set_thread_flag(TIF_NOTSC)) 390 /* 391 * Must flip the CPU state synchronously with 392 * TIF_NOTSC in the current running context. 393 */ 394 hard_disable_TSC(); 395 preempt_enable(); 396 } 397 398 static void hard_enable_TSC(void) 399 { 400 write_cr4(read_cr4() & ~X86_CR4_TSD); 401 } 402 403 static void enable_TSC(void) 404 { 405 preempt_disable(); 406 if (test_and_clear_thread_flag(TIF_NOTSC)) 407 /* 408 * Must flip the CPU state synchronously with 409 * TIF_NOTSC in the current running context. 410 */ 411 hard_enable_TSC(); 412 preempt_enable(); 413 } 414 415 int get_tsc_mode(unsigned long adr) 416 { 417 unsigned int val; 418 419 if (test_thread_flag(TIF_NOTSC)) 420 val = PR_TSC_SIGSEGV; 421 else 422 val = PR_TSC_ENABLE; 423 424 return put_user(val, (unsigned int __user *)adr); 425 } 426 427 int set_tsc_mode(unsigned int val) 428 { 429 if (val == PR_TSC_SIGSEGV) 430 disable_TSC(); 431 else if (val == PR_TSC_ENABLE) 432 enable_TSC(); 433 else 434 return -EINVAL; 435 436 return 0; 437 } 438 439 static noinline void 440 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 441 struct tss_struct *tss) 442 { 443 struct thread_struct *prev, *next; 444 unsigned long debugctl; 445 446 prev = &prev_p->thread; 447 next = &next_p->thread; 448 449 debugctl = prev->debugctlmsr; 450 if (next->ds_area_msr != prev->ds_area_msr) { 451 /* we clear debugctl to make sure DS 452 * is not in use when we change it */ 453 debugctl = 0; 454 update_debugctlmsr(0); 455 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0); 456 } 457 458 if (next->debugctlmsr != debugctl) 459 update_debugctlmsr(next->debugctlmsr); 460 461 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { 462 set_debugreg(next->debugreg0, 0); 463 set_debugreg(next->debugreg1, 1); 464 set_debugreg(next->debugreg2, 2); 465 set_debugreg(next->debugreg3, 3); 466 /* no 4 and 5 */ 467 set_debugreg(next->debugreg6, 6); 468 set_debugreg(next->debugreg7, 7); 469 } 470 471 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 472 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 473 /* prev and next are different */ 474 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 475 hard_disable_TSC(); 476 else 477 hard_enable_TSC(); 478 } 479 480 #ifdef X86_BTS 481 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS)) 482 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS); 483 484 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS)) 485 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES); 486 #endif 487 488 489 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 490 /* 491 * Disable the bitmap via an invalid offset. We still cache 492 * the previous bitmap owner and the IO bitmap contents: 493 */ 494 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 495 return; 496 } 497 498 if (likely(next == tss->io_bitmap_owner)) { 499 /* 500 * Previous owner of the bitmap (hence the bitmap content) 501 * matches the next task, we dont have to do anything but 502 * to set a valid offset in the TSS: 503 */ 504 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 505 return; 506 } 507 /* 508 * Lazy TSS's I/O bitmap copy. We set an invalid offset here 509 * and we let the task to get a GPF in case an I/O instruction 510 * is performed. The handler of the GPF will verify that the 511 * faulting task has a valid I/O bitmap and, it true, does the 512 * real copy and restart the instruction. This will save us 513 * redundant copies when the currently switched task does not 514 * perform any I/O during its timeslice. 515 */ 516 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; 517 } 518 519 /* 520 * switch_to(x,yn) should switch tasks from x to y. 521 * 522 * We fsave/fwait so that an exception goes off at the right time 523 * (as a call from the fsave or fwait in effect) rather than to 524 * the wrong process. Lazy FP saving no longer makes any sense 525 * with modern CPU's, and this simplifies a lot of things (SMP 526 * and UP become the same). 527 * 528 * NOTE! We used to use the x86 hardware context switching. The 529 * reason for not using it any more becomes apparent when you 530 * try to recover gracefully from saved state that is no longer 531 * valid (stale segment register values in particular). With the 532 * hardware task-switch, there is no way to fix up bad state in 533 * a reasonable manner. 534 * 535 * The fact that Intel documents the hardware task-switching to 536 * be slow is a fairly red herring - this code is not noticeably 537 * faster. However, there _is_ some room for improvement here, 538 * so the performance issues may eventually be a valid point. 539 * More important, however, is the fact that this allows us much 540 * more flexibility. 541 * 542 * The return value (in %ax) will be the "prev" task after 543 * the task-switch, and shows up in ret_from_fork in entry.S, 544 * for example. 545 */ 546 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 547 { 548 struct thread_struct *prev = &prev_p->thread, 549 *next = &next_p->thread; 550 int cpu = smp_processor_id(); 551 struct tss_struct *tss = &per_cpu(init_tss, cpu); 552 553 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ 554 555 __unlazy_fpu(prev_p); 556 557 558 /* we're going to use this soon, after a few expensive things */ 559 if (next_p->fpu_counter > 5) 560 prefetch(next->xstate); 561 562 /* 563 * Reload esp0. 564 */ 565 load_sp0(tss, next); 566 567 /* 568 * Save away %gs. No need to save %fs, as it was saved on the 569 * stack on entry. No need to save %es and %ds, as those are 570 * always kernel segments while inside the kernel. Doing this 571 * before setting the new TLS descriptors avoids the situation 572 * where we temporarily have non-reloadable segments in %fs 573 * and %gs. This could be an issue if the NMI handler ever 574 * used %fs or %gs (it does not today), or if the kernel is 575 * running inside of a hypervisor layer. 576 */ 577 savesegment(gs, prev->gs); 578 579 /* 580 * Load the per-thread Thread-Local Storage descriptor. 581 */ 582 load_TLS(next, cpu); 583 584 /* 585 * Restore IOPL if needed. In normal use, the flags restore 586 * in the switch assembly will handle this. But if the kernel 587 * is running virtualized at a non-zero CPL, the popf will 588 * not restore flags, so it must be done in a separate step. 589 */ 590 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) 591 set_iopl_mask(next->iopl); 592 593 /* 594 * Now maybe handle debug registers and/or IO bitmaps 595 */ 596 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || 597 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) 598 __switch_to_xtra(prev_p, next_p, tss); 599 600 /* 601 * Leave lazy mode, flushing any hypercalls made here. 602 * This must be done before restoring TLS segments so 603 * the GDT and LDT are properly updated, and must be 604 * done before math_state_restore, so the TS bit is up 605 * to date. 606 */ 607 arch_leave_lazy_cpu_mode(); 608 609 /* If the task has used fpu the last 5 timeslices, just do a full 610 * restore of the math state immediately to avoid the trap; the 611 * chances of needing FPU soon are obviously high now 612 * 613 * tsk_used_math() checks prevent calling math_state_restore(), 614 * which can sleep in the case of !tsk_used_math() 615 */ 616 if (tsk_used_math(next_p) && next_p->fpu_counter > 5) 617 math_state_restore(); 618 619 /* 620 * Restore %gs if needed (which is common) 621 */ 622 if (prev->gs | next->gs) 623 loadsegment(gs, next->gs); 624 625 x86_write_percpu(current_task, next_p); 626 627 return prev_p; 628 } 629 630 asmlinkage int sys_fork(struct pt_regs regs) 631 { 632 return do_fork(SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 633 } 634 635 asmlinkage int sys_clone(struct pt_regs regs) 636 { 637 unsigned long clone_flags; 638 unsigned long newsp; 639 int __user *parent_tidptr, *child_tidptr; 640 641 clone_flags = regs.bx; 642 newsp = regs.cx; 643 parent_tidptr = (int __user *)regs.dx; 644 child_tidptr = (int __user *)regs.di; 645 if (!newsp) 646 newsp = regs.sp; 647 return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); 648 } 649 650 /* 651 * This is trivial, and on the face of it looks like it 652 * could equally well be done in user mode. 653 * 654 * Not so, for quite unobvious reasons - register pressure. 655 * In user mode vfork() cannot have a stack frame, and if 656 * done by calling the "clone()" system call directly, you 657 * do not have enough call-clobbered registers to hold all 658 * the information you need. 659 */ 660 asmlinkage int sys_vfork(struct pt_regs regs) 661 { 662 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 663 } 664 665 /* 666 * sys_execve() executes a new program. 667 */ 668 asmlinkage int sys_execve(struct pt_regs regs) 669 { 670 int error; 671 char * filename; 672 673 filename = getname((char __user *) regs.bx); 674 error = PTR_ERR(filename); 675 if (IS_ERR(filename)) 676 goto out; 677 error = do_execve(filename, 678 (char __user * __user *) regs.cx, 679 (char __user * __user *) regs.dx, 680 ®s); 681 if (error == 0) { 682 /* Make sure we don't return using sysenter.. */ 683 set_thread_flag(TIF_IRET); 684 } 685 putname(filename); 686 out: 687 return error; 688 } 689 690 #define top_esp (THREAD_SIZE - sizeof(unsigned long)) 691 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) 692 693 unsigned long get_wchan(struct task_struct *p) 694 { 695 unsigned long bp, sp, ip; 696 unsigned long stack_page; 697 int count = 0; 698 if (!p || p == current || p->state == TASK_RUNNING) 699 return 0; 700 stack_page = (unsigned long)task_stack_page(p); 701 sp = p->thread.sp; 702 if (!stack_page || sp < stack_page || sp > top_esp+stack_page) 703 return 0; 704 /* include/asm-i386/system.h:switch_to() pushes bp last. */ 705 bp = *(unsigned long *) sp; 706 do { 707 if (bp < stack_page || bp > top_ebp+stack_page) 708 return 0; 709 ip = *(unsigned long *) (bp+4); 710 if (!in_sched_functions(ip)) 711 return ip; 712 bp = *(unsigned long *) bp; 713 } while (count++ < 16); 714 return 0; 715 } 716 717 unsigned long arch_align_stack(unsigned long sp) 718 { 719 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 720 sp -= get_random_int() % 8192; 721 return sp & ~0xf; 722 } 723 724 unsigned long arch_randomize_brk(struct mm_struct *mm) 725 { 726 unsigned long range_end = mm->brk + 0x02000000; 727 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 728 } 729