xref: /linux/arch/x86/kernel/process_32.c (revision 3252b11fc4790d046b93f300c898df2f7cd7c176)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/stackprotector.h>
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/fs.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/elfcore.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/user.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/reboot.h>
28 #include <linux/init.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/module.h>
31 #include <linux/kallsyms.h>
32 #include <linux/ptrace.h>
33 #include <linux/personality.h>
34 #include <linux/tick.h>
35 #include <linux/percpu.h>
36 #include <linux/prctl.h>
37 #include <linux/ftrace.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/kdebug.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/ldt.h>
45 #include <asm/processor.h>
46 #include <asm/i387.h>
47 #include <asm/desc.h>
48 #ifdef CONFIG_MATH_EMULATION
49 #include <asm/math_emu.h>
50 #endif
51 
52 #include <linux/err.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/cpu.h>
56 #include <asm/idle.h>
57 #include <asm/syscalls.h>
58 #include <asm/ds.h>
59 #include <asm/debugreg.h>
60 
61 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
62 
63 /*
64  * Return saved PC of a blocked thread.
65  */
66 unsigned long thread_saved_pc(struct task_struct *tsk)
67 {
68 	return ((unsigned long *)tsk->thread.sp)[3];
69 }
70 
71 #ifndef CONFIG_SMP
72 static inline void play_dead(void)
73 {
74 	BUG();
75 }
76 #endif
77 
78 /*
79  * The idle thread. There's no useful work to be
80  * done, so just try to conserve power and have a
81  * low exit latency (ie sit in a loop waiting for
82  * somebody to say that they'd like to reschedule)
83  */
84 void cpu_idle(void)
85 {
86 	int cpu = smp_processor_id();
87 
88 	/*
89 	 * If we're the non-boot CPU, nothing set the stack canary up
90 	 * for us.  CPU0 already has it initialized but no harm in
91 	 * doing it again.  This is a good place for updating it, as
92 	 * we wont ever return from this function (so the invalid
93 	 * canaries already on the stack wont ever trigger).
94 	 */
95 	boot_init_stack_canary();
96 
97 	current_thread_info()->status |= TS_POLLING;
98 
99 	/* endless idle loop with no priority at all */
100 	while (1) {
101 		tick_nohz_stop_sched_tick(1);
102 		while (!need_resched()) {
103 
104 			check_pgt_cache();
105 			rmb();
106 
107 			if (cpu_is_offline(cpu))
108 				play_dead();
109 
110 			local_irq_disable();
111 			/* Don't trace irqs off for idle */
112 			stop_critical_timings();
113 			pm_idle();
114 			start_critical_timings();
115 		}
116 		tick_nohz_restart_sched_tick();
117 		preempt_enable_no_resched();
118 		schedule();
119 		preempt_disable();
120 	}
121 }
122 
123 void __show_regs(struct pt_regs *regs, int all)
124 {
125 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
126 	unsigned long d0, d1, d2, d3, d6, d7;
127 	unsigned long sp;
128 	unsigned short ss, gs;
129 
130 	if (user_mode_vm(regs)) {
131 		sp = regs->sp;
132 		ss = regs->ss & 0xffff;
133 		gs = get_user_gs(regs);
134 	} else {
135 		sp = kernel_stack_pointer(regs);
136 		savesegment(ss, ss);
137 		savesegment(gs, gs);
138 	}
139 
140 	show_regs_common();
141 
142 	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
143 			(u16)regs->cs, regs->ip, regs->flags,
144 			smp_processor_id());
145 	print_symbol("EIP is at %s\n", regs->ip);
146 
147 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
148 		regs->ax, regs->bx, regs->cx, regs->dx);
149 	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
150 		regs->si, regs->di, regs->bp, sp);
151 	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
152 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
153 
154 	if (!all)
155 		return;
156 
157 	cr0 = read_cr0();
158 	cr2 = read_cr2();
159 	cr3 = read_cr3();
160 	cr4 = read_cr4_safe();
161 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
162 			cr0, cr2, cr3, cr4);
163 
164 	get_debugreg(d0, 0);
165 	get_debugreg(d1, 1);
166 	get_debugreg(d2, 2);
167 	get_debugreg(d3, 3);
168 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
169 			d0, d1, d2, d3);
170 
171 	get_debugreg(d6, 6);
172 	get_debugreg(d7, 7);
173 	printk("DR6: %08lx DR7: %08lx\n",
174 			d6, d7);
175 }
176 
177 void show_regs(struct pt_regs *regs)
178 {
179 	show_registers(regs);
180 	show_trace(NULL, regs, &regs->sp, regs->bp);
181 }
182 
183 /*
184  * This gets run with %bx containing the
185  * function to call, and %dx containing
186  * the "args".
187  */
188 extern void kernel_thread_helper(void);
189 
190 /*
191  * Create a kernel thread
192  */
193 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
194 {
195 	struct pt_regs regs;
196 
197 	memset(&regs, 0, sizeof(regs));
198 
199 	regs.bx = (unsigned long) fn;
200 	regs.dx = (unsigned long) arg;
201 
202 	regs.ds = __USER_DS;
203 	regs.es = __USER_DS;
204 	regs.fs = __KERNEL_PERCPU;
205 	regs.gs = __KERNEL_STACK_CANARY;
206 	regs.orig_ax = -1;
207 	regs.ip = (unsigned long) kernel_thread_helper;
208 	regs.cs = __KERNEL_CS | get_kernel_rpl();
209 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
210 
211 	/* Ok, create the new process.. */
212 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
213 }
214 EXPORT_SYMBOL(kernel_thread);
215 
216 void release_thread(struct task_struct *dead_task)
217 {
218 	BUG_ON(dead_task->mm);
219 	release_vm86_irqs(dead_task);
220 }
221 
222 /*
223  * This gets called before we allocate a new thread and copy
224  * the current task into it.
225  */
226 void prepare_to_copy(struct task_struct *tsk)
227 {
228 	unlazy_fpu(tsk);
229 }
230 
231 int copy_thread(unsigned long clone_flags, unsigned long sp,
232 	unsigned long unused,
233 	struct task_struct *p, struct pt_regs *regs)
234 {
235 	struct pt_regs *childregs;
236 	struct task_struct *tsk;
237 	int err;
238 
239 	childregs = task_pt_regs(p);
240 	*childregs = *regs;
241 	childregs->ax = 0;
242 	childregs->sp = sp;
243 
244 	p->thread.sp = (unsigned long) childregs;
245 	p->thread.sp0 = (unsigned long) (childregs+1);
246 
247 	p->thread.ip = (unsigned long) ret_from_fork;
248 
249 	task_user_gs(p) = get_user_gs(regs);
250 
251 	p->thread.io_bitmap_ptr = NULL;
252 	tsk = current;
253 	err = -ENOMEM;
254 
255 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
256 
257 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
258 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
259 						IO_BITMAP_BYTES, GFP_KERNEL);
260 		if (!p->thread.io_bitmap_ptr) {
261 			p->thread.io_bitmap_max = 0;
262 			return -ENOMEM;
263 		}
264 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
265 	}
266 
267 	err = 0;
268 
269 	/*
270 	 * Set a new TLS for the child thread?
271 	 */
272 	if (clone_flags & CLONE_SETTLS)
273 		err = do_set_thread_area(p, -1,
274 			(struct user_desc __user *)childregs->si, 0);
275 
276 	if (err && p->thread.io_bitmap_ptr) {
277 		kfree(p->thread.io_bitmap_ptr);
278 		p->thread.io_bitmap_max = 0;
279 	}
280 
281 	clear_tsk_thread_flag(p, TIF_DS_AREA_MSR);
282 	p->thread.ds_ctx = NULL;
283 
284 	clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR);
285 	p->thread.debugctlmsr = 0;
286 
287 	return err;
288 }
289 
290 void
291 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
292 {
293 	set_user_gs(regs, 0);
294 	regs->fs		= 0;
295 	set_fs(USER_DS);
296 	regs->ds		= __USER_DS;
297 	regs->es		= __USER_DS;
298 	regs->ss		= __USER_DS;
299 	regs->cs		= __USER_CS;
300 	regs->ip		= new_ip;
301 	regs->sp		= new_sp;
302 	/*
303 	 * Free the old FP and other extended state
304 	 */
305 	free_thread_xstate(current);
306 }
307 EXPORT_SYMBOL_GPL(start_thread);
308 
309 
310 /*
311  *	switch_to(x,yn) should switch tasks from x to y.
312  *
313  * We fsave/fwait so that an exception goes off at the right time
314  * (as a call from the fsave or fwait in effect) rather than to
315  * the wrong process. Lazy FP saving no longer makes any sense
316  * with modern CPU's, and this simplifies a lot of things (SMP
317  * and UP become the same).
318  *
319  * NOTE! We used to use the x86 hardware context switching. The
320  * reason for not using it any more becomes apparent when you
321  * try to recover gracefully from saved state that is no longer
322  * valid (stale segment register values in particular). With the
323  * hardware task-switch, there is no way to fix up bad state in
324  * a reasonable manner.
325  *
326  * The fact that Intel documents the hardware task-switching to
327  * be slow is a fairly red herring - this code is not noticeably
328  * faster. However, there _is_ some room for improvement here,
329  * so the performance issues may eventually be a valid point.
330  * More important, however, is the fact that this allows us much
331  * more flexibility.
332  *
333  * The return value (in %ax) will be the "prev" task after
334  * the task-switch, and shows up in ret_from_fork in entry.S,
335  * for example.
336  */
337 __notrace_funcgraph struct task_struct *
338 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
339 {
340 	struct thread_struct *prev = &prev_p->thread,
341 				 *next = &next_p->thread;
342 	int cpu = smp_processor_id();
343 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
344 	bool preload_fpu;
345 
346 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
347 
348 	/*
349 	 * If the task has used fpu the last 5 timeslices, just do a full
350 	 * restore of the math state immediately to avoid the trap; the
351 	 * chances of needing FPU soon are obviously high now
352 	 */
353 	preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;
354 
355 	__unlazy_fpu(prev_p);
356 
357 	/* we're going to use this soon, after a few expensive things */
358 	if (preload_fpu)
359 		prefetch(next->xstate);
360 
361 	/*
362 	 * Reload esp0.
363 	 */
364 	load_sp0(tss, next);
365 
366 	/*
367 	 * Save away %gs. No need to save %fs, as it was saved on the
368 	 * stack on entry.  No need to save %es and %ds, as those are
369 	 * always kernel segments while inside the kernel.  Doing this
370 	 * before setting the new TLS descriptors avoids the situation
371 	 * where we temporarily have non-reloadable segments in %fs
372 	 * and %gs.  This could be an issue if the NMI handler ever
373 	 * used %fs or %gs (it does not today), or if the kernel is
374 	 * running inside of a hypervisor layer.
375 	 */
376 	lazy_save_gs(prev->gs);
377 
378 	/*
379 	 * Load the per-thread Thread-Local Storage descriptor.
380 	 */
381 	load_TLS(next, cpu);
382 
383 	/*
384 	 * Restore IOPL if needed.  In normal use, the flags restore
385 	 * in the switch assembly will handle this.  But if the kernel
386 	 * is running virtualized at a non-zero CPL, the popf will
387 	 * not restore flags, so it must be done in a separate step.
388 	 */
389 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
390 		set_iopl_mask(next->iopl);
391 
392 	/*
393 	 * Now maybe handle debug registers and/or IO bitmaps
394 	 */
395 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
396 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
397 		__switch_to_xtra(prev_p, next_p, tss);
398 
399 	/* If we're going to preload the fpu context, make sure clts
400 	   is run while we're batching the cpu state updates. */
401 	if (preload_fpu)
402 		clts();
403 
404 	/*
405 	 * Leave lazy mode, flushing any hypercalls made here.
406 	 * This must be done before restoring TLS segments so
407 	 * the GDT and LDT are properly updated, and must be
408 	 * done before math_state_restore, so the TS bit is up
409 	 * to date.
410 	 */
411 	arch_end_context_switch(next_p);
412 
413 	if (preload_fpu)
414 		__math_state_restore();
415 
416 	/*
417 	 * Restore %gs if needed (which is common)
418 	 */
419 	if (prev->gs | next->gs)
420 		lazy_load_gs(next->gs);
421 
422 	percpu_write(current_task, next_p);
423 
424 	return prev_p;
425 }
426 
427 int sys_clone(struct pt_regs *regs)
428 {
429 	unsigned long clone_flags;
430 	unsigned long newsp;
431 	int __user *parent_tidptr, *child_tidptr;
432 
433 	clone_flags = regs->bx;
434 	newsp = regs->cx;
435 	parent_tidptr = (int __user *)regs->dx;
436 	child_tidptr = (int __user *)regs->di;
437 	if (!newsp)
438 		newsp = regs->sp;
439 	return do_fork(clone_flags, newsp, regs, 0, parent_tidptr, child_tidptr);
440 }
441 
442 /*
443  * sys_execve() executes a new program.
444  */
445 int sys_execve(struct pt_regs *regs)
446 {
447 	int error;
448 	char *filename;
449 
450 	filename = getname((char __user *) regs->bx);
451 	error = PTR_ERR(filename);
452 	if (IS_ERR(filename))
453 		goto out;
454 	error = do_execve(filename,
455 			(char __user * __user *) regs->cx,
456 			(char __user * __user *) regs->dx,
457 			regs);
458 	if (error == 0) {
459 		/* Make sure we don't return using sysenter.. */
460 		set_thread_flag(TIF_IRET);
461 	}
462 	putname(filename);
463 out:
464 	return error;
465 }
466 
467 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
468 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
469 
470 unsigned long get_wchan(struct task_struct *p)
471 {
472 	unsigned long bp, sp, ip;
473 	unsigned long stack_page;
474 	int count = 0;
475 	if (!p || p == current || p->state == TASK_RUNNING)
476 		return 0;
477 	stack_page = (unsigned long)task_stack_page(p);
478 	sp = p->thread.sp;
479 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
480 		return 0;
481 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
482 	bp = *(unsigned long *) sp;
483 	do {
484 		if (bp < stack_page || bp > top_ebp+stack_page)
485 			return 0;
486 		ip = *(unsigned long *) (bp+4);
487 		if (!in_sched_functions(ip))
488 			return ip;
489 		bp = *(unsigned long *) bp;
490 	} while (count++ < 16);
491 	return 0;
492 }
493 
494