xref: /linux/arch/x86/kernel/process_32.c (revision 2bbb6817c0ac1b5f2a68d720f364f98eeb1ac4fd)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <linux/stackprotector.h>
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/fs.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/elfcore.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/user.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/reboot.h>
28 #include <linux/init.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/module.h>
31 #include <linux/kallsyms.h>
32 #include <linux/ptrace.h>
33 #include <linux/personality.h>
34 #include <linux/tick.h>
35 #include <linux/percpu.h>
36 #include <linux/prctl.h>
37 #include <linux/ftrace.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/kdebug.h>
41 #include <linux/cpuidle.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/system.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
52 
53 #include <linux/err.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/idle.h>
58 #include <asm/syscalls.h>
59 #include <asm/debugreg.h>
60 #include <asm/nmi.h>
61 
62 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
63 
64 /*
65  * Return saved PC of a blocked thread.
66  */
67 unsigned long thread_saved_pc(struct task_struct *tsk)
68 {
69 	return ((unsigned long *)tsk->thread.sp)[3];
70 }
71 
72 #ifndef CONFIG_SMP
73 static inline void play_dead(void)
74 {
75 	BUG();
76 }
77 #endif
78 
79 /*
80  * The idle thread. There's no useful work to be
81  * done, so just try to conserve power and have a
82  * low exit latency (ie sit in a loop waiting for
83  * somebody to say that they'd like to reschedule)
84  */
85 void cpu_idle(void)
86 {
87 	int cpu = smp_processor_id();
88 
89 	/*
90 	 * If we're the non-boot CPU, nothing set the stack canary up
91 	 * for us.  CPU0 already has it initialized but no harm in
92 	 * doing it again.  This is a good place for updating it, as
93 	 * we wont ever return from this function (so the invalid
94 	 * canaries already on the stack wont ever trigger).
95 	 */
96 	boot_init_stack_canary();
97 
98 	current_thread_info()->status |= TS_POLLING;
99 
100 	/* endless idle loop with no priority at all */
101 	while (1) {
102 		tick_nohz_idle_enter_norcu();
103 		while (!need_resched()) {
104 
105 			check_pgt_cache();
106 			rmb();
107 
108 			if (cpu_is_offline(cpu))
109 				play_dead();
110 
111 			local_touch_nmi();
112 			local_irq_disable();
113 			/* Don't trace irqs off for idle */
114 			stop_critical_timings();
115 			if (cpuidle_idle_call())
116 				pm_idle();
117 			start_critical_timings();
118 		}
119 		tick_nohz_idle_exit_norcu();
120 		preempt_enable_no_resched();
121 		schedule();
122 		preempt_disable();
123 	}
124 }
125 
126 void __show_regs(struct pt_regs *regs, int all)
127 {
128 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
129 	unsigned long d0, d1, d2, d3, d6, d7;
130 	unsigned long sp;
131 	unsigned short ss, gs;
132 
133 	if (user_mode_vm(regs)) {
134 		sp = regs->sp;
135 		ss = regs->ss & 0xffff;
136 		gs = get_user_gs(regs);
137 	} else {
138 		sp = kernel_stack_pointer(regs);
139 		savesegment(ss, ss);
140 		savesegment(gs, gs);
141 	}
142 
143 	show_regs_common();
144 
145 	printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
146 			(u16)regs->cs, regs->ip, regs->flags,
147 			smp_processor_id());
148 	print_symbol("EIP is at %s\n", regs->ip);
149 
150 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
151 		regs->ax, regs->bx, regs->cx, regs->dx);
152 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
153 		regs->si, regs->di, regs->bp, sp);
154 	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
155 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
156 
157 	if (!all)
158 		return;
159 
160 	cr0 = read_cr0();
161 	cr2 = read_cr2();
162 	cr3 = read_cr3();
163 	cr4 = read_cr4_safe();
164 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
165 			cr0, cr2, cr3, cr4);
166 
167 	get_debugreg(d0, 0);
168 	get_debugreg(d1, 1);
169 	get_debugreg(d2, 2);
170 	get_debugreg(d3, 3);
171 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
172 			d0, d1, d2, d3);
173 
174 	get_debugreg(d6, 6);
175 	get_debugreg(d7, 7);
176 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
177 			d6, d7);
178 }
179 
180 void release_thread(struct task_struct *dead_task)
181 {
182 	BUG_ON(dead_task->mm);
183 	release_vm86_irqs(dead_task);
184 }
185 
186 /*
187  * This gets called before we allocate a new thread and copy
188  * the current task into it.
189  */
190 void prepare_to_copy(struct task_struct *tsk)
191 {
192 	unlazy_fpu(tsk);
193 }
194 
195 int copy_thread(unsigned long clone_flags, unsigned long sp,
196 	unsigned long unused,
197 	struct task_struct *p, struct pt_regs *regs)
198 {
199 	struct pt_regs *childregs;
200 	struct task_struct *tsk;
201 	int err;
202 
203 	childregs = task_pt_regs(p);
204 	*childregs = *regs;
205 	childregs->ax = 0;
206 	childregs->sp = sp;
207 
208 	p->thread.sp = (unsigned long) childregs;
209 	p->thread.sp0 = (unsigned long) (childregs+1);
210 
211 	p->thread.ip = (unsigned long) ret_from_fork;
212 
213 	task_user_gs(p) = get_user_gs(regs);
214 
215 	p->thread.io_bitmap_ptr = NULL;
216 	tsk = current;
217 	err = -ENOMEM;
218 
219 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
220 
221 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
222 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
223 						IO_BITMAP_BYTES, GFP_KERNEL);
224 		if (!p->thread.io_bitmap_ptr) {
225 			p->thread.io_bitmap_max = 0;
226 			return -ENOMEM;
227 		}
228 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
229 	}
230 
231 	err = 0;
232 
233 	/*
234 	 * Set a new TLS for the child thread?
235 	 */
236 	if (clone_flags & CLONE_SETTLS)
237 		err = do_set_thread_area(p, -1,
238 			(struct user_desc __user *)childregs->si, 0);
239 
240 	if (err && p->thread.io_bitmap_ptr) {
241 		kfree(p->thread.io_bitmap_ptr);
242 		p->thread.io_bitmap_max = 0;
243 	}
244 	return err;
245 }
246 
247 void
248 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
249 {
250 	set_user_gs(regs, 0);
251 	regs->fs		= 0;
252 	regs->ds		= __USER_DS;
253 	regs->es		= __USER_DS;
254 	regs->ss		= __USER_DS;
255 	regs->cs		= __USER_CS;
256 	regs->ip		= new_ip;
257 	regs->sp		= new_sp;
258 	/*
259 	 * Free the old FP and other extended state
260 	 */
261 	free_thread_xstate(current);
262 }
263 EXPORT_SYMBOL_GPL(start_thread);
264 
265 
266 /*
267  *	switch_to(x,y) should switch tasks from x to y.
268  *
269  * We fsave/fwait so that an exception goes off at the right time
270  * (as a call from the fsave or fwait in effect) rather than to
271  * the wrong process. Lazy FP saving no longer makes any sense
272  * with modern CPU's, and this simplifies a lot of things (SMP
273  * and UP become the same).
274  *
275  * NOTE! We used to use the x86 hardware context switching. The
276  * reason for not using it any more becomes apparent when you
277  * try to recover gracefully from saved state that is no longer
278  * valid (stale segment register values in particular). With the
279  * hardware task-switch, there is no way to fix up bad state in
280  * a reasonable manner.
281  *
282  * The fact that Intel documents the hardware task-switching to
283  * be slow is a fairly red herring - this code is not noticeably
284  * faster. However, there _is_ some room for improvement here,
285  * so the performance issues may eventually be a valid point.
286  * More important, however, is the fact that this allows us much
287  * more flexibility.
288  *
289  * The return value (in %ax) will be the "prev" task after
290  * the task-switch, and shows up in ret_from_fork in entry.S,
291  * for example.
292  */
293 __notrace_funcgraph struct task_struct *
294 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
295 {
296 	struct thread_struct *prev = &prev_p->thread,
297 				 *next = &next_p->thread;
298 	int cpu = smp_processor_id();
299 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
300 	bool preload_fpu;
301 
302 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
303 
304 	/*
305 	 * If the task has used fpu the last 5 timeslices, just do a full
306 	 * restore of the math state immediately to avoid the trap; the
307 	 * chances of needing FPU soon are obviously high now
308 	 */
309 	preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;
310 
311 	__unlazy_fpu(prev_p);
312 
313 	/* we're going to use this soon, after a few expensive things */
314 	if (preload_fpu)
315 		prefetch(next->fpu.state);
316 
317 	/*
318 	 * Reload esp0.
319 	 */
320 	load_sp0(tss, next);
321 
322 	/*
323 	 * Save away %gs. No need to save %fs, as it was saved on the
324 	 * stack on entry.  No need to save %es and %ds, as those are
325 	 * always kernel segments while inside the kernel.  Doing this
326 	 * before setting the new TLS descriptors avoids the situation
327 	 * where we temporarily have non-reloadable segments in %fs
328 	 * and %gs.  This could be an issue if the NMI handler ever
329 	 * used %fs or %gs (it does not today), or if the kernel is
330 	 * running inside of a hypervisor layer.
331 	 */
332 	lazy_save_gs(prev->gs);
333 
334 	/*
335 	 * Load the per-thread Thread-Local Storage descriptor.
336 	 */
337 	load_TLS(next, cpu);
338 
339 	/*
340 	 * Restore IOPL if needed.  In normal use, the flags restore
341 	 * in the switch assembly will handle this.  But if the kernel
342 	 * is running virtualized at a non-zero CPL, the popf will
343 	 * not restore flags, so it must be done in a separate step.
344 	 */
345 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
346 		set_iopl_mask(next->iopl);
347 
348 	/*
349 	 * Now maybe handle debug registers and/or IO bitmaps
350 	 */
351 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
352 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
353 		__switch_to_xtra(prev_p, next_p, tss);
354 
355 	/* If we're going to preload the fpu context, make sure clts
356 	   is run while we're batching the cpu state updates. */
357 	if (preload_fpu)
358 		clts();
359 
360 	/*
361 	 * Leave lazy mode, flushing any hypercalls made here.
362 	 * This must be done before restoring TLS segments so
363 	 * the GDT and LDT are properly updated, and must be
364 	 * done before math_state_restore, so the TS bit is up
365 	 * to date.
366 	 */
367 	arch_end_context_switch(next_p);
368 
369 	if (preload_fpu)
370 		__math_state_restore();
371 
372 	/*
373 	 * Restore %gs if needed (which is common)
374 	 */
375 	if (prev->gs | next->gs)
376 		lazy_load_gs(next->gs);
377 
378 	percpu_write(current_task, next_p);
379 
380 	return prev_p;
381 }
382 
383 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
384 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
385 
386 unsigned long get_wchan(struct task_struct *p)
387 {
388 	unsigned long bp, sp, ip;
389 	unsigned long stack_page;
390 	int count = 0;
391 	if (!p || p == current || p->state == TASK_RUNNING)
392 		return 0;
393 	stack_page = (unsigned long)task_stack_page(p);
394 	sp = p->thread.sp;
395 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
396 		return 0;
397 	/* include/asm-i386/system.h:switch_to() pushes bp last. */
398 	bp = *(unsigned long *) sp;
399 	do {
400 		if (bp < stack_page || bp > top_ebp+stack_page)
401 			return 0;
402 		ip = *(unsigned long *) (bp+4);
403 		if (!in_sched_functions(ip))
404 			return ip;
405 		bp = *(unsigned long *) bp;
406 	} while (count++ < 16);
407 	return 0;
408 }
409 
410