xref: /linux/arch/x86/kernel/process_32.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *  linux/arch/i386/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * This file handles the architecture-dependent parts of process handling..
12  */
13 
14 #include <stdarg.h>
15 
16 #include <linux/cpu.h>
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/elfcore.h>
23 #include <linux/smp.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <linux/user.h>
28 #include <linux/a.out.h>
29 #include <linux/interrupt.h>
30 #include <linux/utsname.h>
31 #include <linux/delay.h>
32 #include <linux/reboot.h>
33 #include <linux/init.h>
34 #include <linux/mc146818rtc.h>
35 #include <linux/module.h>
36 #include <linux/kallsyms.h>
37 #include <linux/ptrace.h>
38 #include <linux/random.h>
39 #include <linux/personality.h>
40 #include <linux/tick.h>
41 #include <linux/percpu.h>
42 
43 #include <asm/uaccess.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/ldt.h>
48 #include <asm/processor.h>
49 #include <asm/i387.h>
50 #include <asm/desc.h>
51 #include <asm/vm86.h>
52 #ifdef CONFIG_MATH_EMULATION
53 #include <asm/math_emu.h>
54 #endif
55 
56 #include <linux/err.h>
57 
58 #include <asm/tlbflush.h>
59 #include <asm/cpu.h>
60 
61 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
62 
63 static int hlt_counter;
64 
65 unsigned long boot_option_idle_override = 0;
66 EXPORT_SYMBOL(boot_option_idle_override);
67 
68 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
69 EXPORT_PER_CPU_SYMBOL(current_task);
70 
71 DEFINE_PER_CPU(int, cpu_number);
72 EXPORT_PER_CPU_SYMBOL(cpu_number);
73 
74 /*
75  * Return saved PC of a blocked thread.
76  */
77 unsigned long thread_saved_pc(struct task_struct *tsk)
78 {
79 	return ((unsigned long *)tsk->thread.esp)[3];
80 }
81 
82 /*
83  * Powermanagement idle function, if any..
84  */
85 void (*pm_idle)(void);
86 EXPORT_SYMBOL(pm_idle);
87 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
88 
89 void disable_hlt(void)
90 {
91 	hlt_counter++;
92 }
93 
94 EXPORT_SYMBOL(disable_hlt);
95 
96 void enable_hlt(void)
97 {
98 	hlt_counter--;
99 }
100 
101 EXPORT_SYMBOL(enable_hlt);
102 
103 /*
104  * We use this if we don't have any better
105  * idle routine..
106  */
107 void default_idle(void)
108 {
109 	if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
110 		current_thread_info()->status &= ~TS_POLLING;
111 		/*
112 		 * TS_POLLING-cleared state must be visible before we
113 		 * test NEED_RESCHED:
114 		 */
115 		smp_mb();
116 
117 		local_irq_disable();
118 		if (!need_resched())
119 			safe_halt();	/* enables interrupts racelessly */
120 		else
121 			local_irq_enable();
122 		current_thread_info()->status |= TS_POLLING;
123 	} else {
124 		/* loop is done by the caller */
125 		cpu_relax();
126 	}
127 }
128 #ifdef CONFIG_APM_MODULE
129 EXPORT_SYMBOL(default_idle);
130 #endif
131 
132 /*
133  * On SMP it's slightly faster (but much more power-consuming!)
134  * to poll the ->work.need_resched flag instead of waiting for the
135  * cross-CPU IPI to arrive. Use this option with caution.
136  */
137 static void poll_idle (void)
138 {
139 	cpu_relax();
140 }
141 
142 #ifdef CONFIG_HOTPLUG_CPU
143 #include <asm/nmi.h>
144 /* We don't actually take CPU down, just spin without interrupts. */
145 static inline void play_dead(void)
146 {
147 	/* This must be done before dead CPU ack */
148 	cpu_exit_clear();
149 	wbinvd();
150 	mb();
151 	/* Ack it */
152 	__get_cpu_var(cpu_state) = CPU_DEAD;
153 
154 	/*
155 	 * With physical CPU hotplug, we should halt the cpu
156 	 */
157 	local_irq_disable();
158 	while (1)
159 		halt();
160 }
161 #else
162 static inline void play_dead(void)
163 {
164 	BUG();
165 }
166 #endif /* CONFIG_HOTPLUG_CPU */
167 
168 /*
169  * The idle thread. There's no useful work to be
170  * done, so just try to conserve power and have a
171  * low exit latency (ie sit in a loop waiting for
172  * somebody to say that they'd like to reschedule)
173  */
174 void cpu_idle(void)
175 {
176 	int cpu = smp_processor_id();
177 
178 	current_thread_info()->status |= TS_POLLING;
179 
180 	/* endless idle loop with no priority at all */
181 	while (1) {
182 		tick_nohz_stop_sched_tick();
183 		while (!need_resched()) {
184 			void (*idle)(void);
185 
186 			if (__get_cpu_var(cpu_idle_state))
187 				__get_cpu_var(cpu_idle_state) = 0;
188 
189 			check_pgt_cache();
190 			rmb();
191 			idle = pm_idle;
192 
193 			if (!idle)
194 				idle = default_idle;
195 
196 			if (cpu_is_offline(cpu))
197 				play_dead();
198 
199 			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
200 			idle();
201 		}
202 		tick_nohz_restart_sched_tick();
203 		preempt_enable_no_resched();
204 		schedule();
205 		preempt_disable();
206 	}
207 }
208 
209 void cpu_idle_wait(void)
210 {
211 	unsigned int cpu, this_cpu = get_cpu();
212 	cpumask_t map, tmp = current->cpus_allowed;
213 
214 	set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
215 	put_cpu();
216 
217 	cpus_clear(map);
218 	for_each_online_cpu(cpu) {
219 		per_cpu(cpu_idle_state, cpu) = 1;
220 		cpu_set(cpu, map);
221 	}
222 
223 	__get_cpu_var(cpu_idle_state) = 0;
224 
225 	wmb();
226 	do {
227 		ssleep(1);
228 		for_each_online_cpu(cpu) {
229 			if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
230 				cpu_clear(cpu, map);
231 		}
232 		cpus_and(map, map, cpu_online_map);
233 	} while (!cpus_empty(map));
234 
235 	set_cpus_allowed(current, tmp);
236 }
237 EXPORT_SYMBOL_GPL(cpu_idle_wait);
238 
239 /*
240  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
241  * which can obviate IPI to trigger checking of need_resched.
242  * We execute MONITOR against need_resched and enter optimized wait state
243  * through MWAIT. Whenever someone changes need_resched, we would be woken
244  * up from MWAIT (without an IPI).
245  *
246  * New with Core Duo processors, MWAIT can take some hints based on CPU
247  * capability.
248  */
249 void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
250 {
251 	if (!need_resched()) {
252 		__monitor((void *)&current_thread_info()->flags, 0, 0);
253 		smp_mb();
254 		if (!need_resched())
255 			__mwait(eax, ecx);
256 	}
257 }
258 
259 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
260 static void mwait_idle(void)
261 {
262 	local_irq_enable();
263 	mwait_idle_with_hints(0, 0);
264 }
265 
266 void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
267 {
268 	if (cpu_has(c, X86_FEATURE_MWAIT)) {
269 		printk("monitor/mwait feature present.\n");
270 		/*
271 		 * Skip, if setup has overridden idle.
272 		 * One CPU supports mwait => All CPUs supports mwait
273 		 */
274 		if (!pm_idle) {
275 			printk("using mwait in idle threads.\n");
276 			pm_idle = mwait_idle;
277 		}
278 	}
279 }
280 
281 static int __init idle_setup(char *str)
282 {
283 	if (!strcmp(str, "poll")) {
284 		printk("using polling idle threads.\n");
285 		pm_idle = poll_idle;
286 #ifdef CONFIG_X86_SMP
287 		if (smp_num_siblings > 1)
288 			printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
289 #endif
290 	} else if (!strcmp(str, "mwait"))
291 		force_mwait = 1;
292 	else
293 		return -1;
294 
295 	boot_option_idle_override = 1;
296 	return 0;
297 }
298 early_param("idle", idle_setup);
299 
300 void show_regs(struct pt_regs * regs)
301 {
302 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
303 	unsigned long d0, d1, d2, d3, d6, d7;
304 
305 	printk("\n");
306 	printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
307 	printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
308 	print_symbol("EIP is at %s\n", regs->eip);
309 
310 	if (user_mode_vm(regs))
311 		printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
312 	printk(" EFLAGS: %08lx    %s  (%s %.*s)\n",
313 	       regs->eflags, print_tainted(), init_utsname()->release,
314 	       (int)strcspn(init_utsname()->version, " "),
315 	       init_utsname()->version);
316 	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
317 		regs->eax,regs->ebx,regs->ecx,regs->edx);
318 	printk("ESI: %08lx EDI: %08lx EBP: %08lx",
319 		regs->esi, regs->edi, regs->ebp);
320 	printk(" DS: %04x ES: %04x FS: %04x\n",
321 	       0xffff & regs->xds,0xffff & regs->xes, 0xffff & regs->xfs);
322 
323 	cr0 = read_cr0();
324 	cr2 = read_cr2();
325 	cr3 = read_cr3();
326 	cr4 = read_cr4_safe();
327 	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
328 
329 	get_debugreg(d0, 0);
330 	get_debugreg(d1, 1);
331 	get_debugreg(d2, 2);
332 	get_debugreg(d3, 3);
333 	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
334 			d0, d1, d2, d3);
335 	get_debugreg(d6, 6);
336 	get_debugreg(d7, 7);
337 	printk("DR6: %08lx DR7: %08lx\n", d6, d7);
338 
339 	show_trace(NULL, regs, &regs->esp);
340 }
341 
342 /*
343  * This gets run with %ebx containing the
344  * function to call, and %edx containing
345  * the "args".
346  */
347 extern void kernel_thread_helper(void);
348 
349 /*
350  * Create a kernel thread
351  */
352 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
353 {
354 	struct pt_regs regs;
355 
356 	memset(&regs, 0, sizeof(regs));
357 
358 	regs.ebx = (unsigned long) fn;
359 	regs.edx = (unsigned long) arg;
360 
361 	regs.xds = __USER_DS;
362 	regs.xes = __USER_DS;
363 	regs.xfs = __KERNEL_PERCPU;
364 	regs.orig_eax = -1;
365 	regs.eip = (unsigned long) kernel_thread_helper;
366 	regs.xcs = __KERNEL_CS | get_kernel_rpl();
367 	regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
368 
369 	/* Ok, create the new process.. */
370 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
371 }
372 EXPORT_SYMBOL(kernel_thread);
373 
374 /*
375  * Free current thread data structures etc..
376  */
377 void exit_thread(void)
378 {
379 	/* The process may have allocated an io port bitmap... nuke it. */
380 	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
381 		struct task_struct *tsk = current;
382 		struct thread_struct *t = &tsk->thread;
383 		int cpu = get_cpu();
384 		struct tss_struct *tss = &per_cpu(init_tss, cpu);
385 
386 		kfree(t->io_bitmap_ptr);
387 		t->io_bitmap_ptr = NULL;
388 		clear_thread_flag(TIF_IO_BITMAP);
389 		/*
390 		 * Careful, clear this in the TSS too:
391 		 */
392 		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
393 		t->io_bitmap_max = 0;
394 		tss->io_bitmap_owner = NULL;
395 		tss->io_bitmap_max = 0;
396 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
397 		put_cpu();
398 	}
399 }
400 
401 void flush_thread(void)
402 {
403 	struct task_struct *tsk = current;
404 
405 	memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
406 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
407 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
408 	/*
409 	 * Forget coprocessor state..
410 	 */
411 	clear_fpu(tsk);
412 	clear_used_math();
413 }
414 
415 void release_thread(struct task_struct *dead_task)
416 {
417 	BUG_ON(dead_task->mm);
418 	release_vm86_irqs(dead_task);
419 }
420 
421 /*
422  * This gets called before we allocate a new thread and copy
423  * the current task into it.
424  */
425 void prepare_to_copy(struct task_struct *tsk)
426 {
427 	unlazy_fpu(tsk);
428 }
429 
430 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
431 	unsigned long unused,
432 	struct task_struct * p, struct pt_regs * regs)
433 {
434 	struct pt_regs * childregs;
435 	struct task_struct *tsk;
436 	int err;
437 
438 	childregs = task_pt_regs(p);
439 	*childregs = *regs;
440 	childregs->eax = 0;
441 	childregs->esp = esp;
442 
443 	p->thread.esp = (unsigned long) childregs;
444 	p->thread.esp0 = (unsigned long) (childregs+1);
445 
446 	p->thread.eip = (unsigned long) ret_from_fork;
447 
448 	savesegment(gs,p->thread.gs);
449 
450 	tsk = current;
451 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
452 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
453 						IO_BITMAP_BYTES, GFP_KERNEL);
454 		if (!p->thread.io_bitmap_ptr) {
455 			p->thread.io_bitmap_max = 0;
456 			return -ENOMEM;
457 		}
458 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
459 	}
460 
461 	/*
462 	 * Set a new TLS for the child thread?
463 	 */
464 	if (clone_flags & CLONE_SETTLS) {
465 		struct desc_struct *desc;
466 		struct user_desc info;
467 		int idx;
468 
469 		err = -EFAULT;
470 		if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
471 			goto out;
472 		err = -EINVAL;
473 		if (LDT_empty(&info))
474 			goto out;
475 
476 		idx = info.entry_number;
477 		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
478 			goto out;
479 
480 		desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
481 		desc->a = LDT_entry_a(&info);
482 		desc->b = LDT_entry_b(&info);
483 	}
484 
485 	err = 0;
486  out:
487 	if (err && p->thread.io_bitmap_ptr) {
488 		kfree(p->thread.io_bitmap_ptr);
489 		p->thread.io_bitmap_max = 0;
490 	}
491 	return err;
492 }
493 
494 /*
495  * fill in the user structure for a core dump..
496  */
497 void dump_thread(struct pt_regs * regs, struct user * dump)
498 {
499 	int i;
500 
501 /* changed the size calculations - should hopefully work better. lbt */
502 	dump->magic = CMAGIC;
503 	dump->start_code = 0;
504 	dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
505 	dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
506 	dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
507 	dump->u_dsize -= dump->u_tsize;
508 	dump->u_ssize = 0;
509 	for (i = 0; i < 8; i++)
510 		dump->u_debugreg[i] = current->thread.debugreg[i];
511 
512 	if (dump->start_stack < TASK_SIZE)
513 		dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
514 
515 	dump->regs.ebx = regs->ebx;
516 	dump->regs.ecx = regs->ecx;
517 	dump->regs.edx = regs->edx;
518 	dump->regs.esi = regs->esi;
519 	dump->regs.edi = regs->edi;
520 	dump->regs.ebp = regs->ebp;
521 	dump->regs.eax = regs->eax;
522 	dump->regs.ds = regs->xds;
523 	dump->regs.es = regs->xes;
524 	dump->regs.fs = regs->xfs;
525 	savesegment(gs,dump->regs.gs);
526 	dump->regs.orig_eax = regs->orig_eax;
527 	dump->regs.eip = regs->eip;
528 	dump->regs.cs = regs->xcs;
529 	dump->regs.eflags = regs->eflags;
530 	dump->regs.esp = regs->esp;
531 	dump->regs.ss = regs->xss;
532 
533 	dump->u_fpvalid = dump_fpu (regs, &dump->i387);
534 }
535 EXPORT_SYMBOL(dump_thread);
536 
537 /*
538  * Capture the user space registers if the task is not running (in user space)
539  */
540 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
541 {
542 	struct pt_regs ptregs = *task_pt_regs(tsk);
543 	ptregs.xcs &= 0xffff;
544 	ptregs.xds &= 0xffff;
545 	ptregs.xes &= 0xffff;
546 	ptregs.xss &= 0xffff;
547 
548 	elf_core_copy_regs(regs, &ptregs);
549 
550 	return 1;
551 }
552 
553 #ifdef CONFIG_SECCOMP
554 void hard_disable_TSC(void)
555 {
556 	write_cr4(read_cr4() | X86_CR4_TSD);
557 }
558 void disable_TSC(void)
559 {
560 	preempt_disable();
561 	if (!test_and_set_thread_flag(TIF_NOTSC))
562 		/*
563 		 * Must flip the CPU state synchronously with
564 		 * TIF_NOTSC in the current running context.
565 		 */
566 		hard_disable_TSC();
567 	preempt_enable();
568 }
569 void hard_enable_TSC(void)
570 {
571 	write_cr4(read_cr4() & ~X86_CR4_TSD);
572 }
573 #endif /* CONFIG_SECCOMP */
574 
575 static noinline void
576 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
577 		 struct tss_struct *tss)
578 {
579 	struct thread_struct *next;
580 
581 	next = &next_p->thread;
582 
583 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
584 		set_debugreg(next->debugreg[0], 0);
585 		set_debugreg(next->debugreg[1], 1);
586 		set_debugreg(next->debugreg[2], 2);
587 		set_debugreg(next->debugreg[3], 3);
588 		/* no 4 and 5 */
589 		set_debugreg(next->debugreg[6], 6);
590 		set_debugreg(next->debugreg[7], 7);
591 	}
592 
593 #ifdef CONFIG_SECCOMP
594 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
595 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
596 		/* prev and next are different */
597 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
598 			hard_disable_TSC();
599 		else
600 			hard_enable_TSC();
601 	}
602 #endif
603 
604 	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
605 		/*
606 		 * Disable the bitmap via an invalid offset. We still cache
607 		 * the previous bitmap owner and the IO bitmap contents:
608 		 */
609 		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
610 		return;
611 	}
612 
613 	if (likely(next == tss->io_bitmap_owner)) {
614 		/*
615 		 * Previous owner of the bitmap (hence the bitmap content)
616 		 * matches the next task, we dont have to do anything but
617 		 * to set a valid offset in the TSS:
618 		 */
619 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
620 		return;
621 	}
622 	/*
623 	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
624 	 * and we let the task to get a GPF in case an I/O instruction
625 	 * is performed.  The handler of the GPF will verify that the
626 	 * faulting task has a valid I/O bitmap and, it true, does the
627 	 * real copy and restart the instruction.  This will save us
628 	 * redundant copies when the currently switched task does not
629 	 * perform any I/O during its timeslice.
630 	 */
631 	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
632 }
633 
634 /*
635  *	switch_to(x,yn) should switch tasks from x to y.
636  *
637  * We fsave/fwait so that an exception goes off at the right time
638  * (as a call from the fsave or fwait in effect) rather than to
639  * the wrong process. Lazy FP saving no longer makes any sense
640  * with modern CPU's, and this simplifies a lot of things (SMP
641  * and UP become the same).
642  *
643  * NOTE! We used to use the x86 hardware context switching. The
644  * reason for not using it any more becomes apparent when you
645  * try to recover gracefully from saved state that is no longer
646  * valid (stale segment register values in particular). With the
647  * hardware task-switch, there is no way to fix up bad state in
648  * a reasonable manner.
649  *
650  * The fact that Intel documents the hardware task-switching to
651  * be slow is a fairly red herring - this code is not noticeably
652  * faster. However, there _is_ some room for improvement here,
653  * so the performance issues may eventually be a valid point.
654  * More important, however, is the fact that this allows us much
655  * more flexibility.
656  *
657  * The return value (in %eax) will be the "prev" task after
658  * the task-switch, and shows up in ret_from_fork in entry.S,
659  * for example.
660  */
661 struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
662 {
663 	struct thread_struct *prev = &prev_p->thread,
664 				 *next = &next_p->thread;
665 	int cpu = smp_processor_id();
666 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
667 
668 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
669 
670 	__unlazy_fpu(prev_p);
671 
672 
673 	/* we're going to use this soon, after a few expensive things */
674 	if (next_p->fpu_counter > 5)
675 		prefetch(&next->i387.fxsave);
676 
677 	/*
678 	 * Reload esp0.
679 	 */
680 	load_esp0(tss, next);
681 
682 	/*
683 	 * Save away %gs. No need to save %fs, as it was saved on the
684 	 * stack on entry.  No need to save %es and %ds, as those are
685 	 * always kernel segments while inside the kernel.  Doing this
686 	 * before setting the new TLS descriptors avoids the situation
687 	 * where we temporarily have non-reloadable segments in %fs
688 	 * and %gs.  This could be an issue if the NMI handler ever
689 	 * used %fs or %gs (it does not today), or if the kernel is
690 	 * running inside of a hypervisor layer.
691 	 */
692 	savesegment(gs, prev->gs);
693 
694 	/*
695 	 * Load the per-thread Thread-Local Storage descriptor.
696 	 */
697 	load_TLS(next, cpu);
698 
699 	/*
700 	 * Restore IOPL if needed.  In normal use, the flags restore
701 	 * in the switch assembly will handle this.  But if the kernel
702 	 * is running virtualized at a non-zero CPL, the popf will
703 	 * not restore flags, so it must be done in a separate step.
704 	 */
705 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
706 		set_iopl_mask(next->iopl);
707 
708 	/*
709 	 * Now maybe handle debug registers and/or IO bitmaps
710 	 */
711 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
712 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
713 		__switch_to_xtra(prev_p, next_p, tss);
714 
715 	/*
716 	 * Leave lazy mode, flushing any hypercalls made here.
717 	 * This must be done before restoring TLS segments so
718 	 * the GDT and LDT are properly updated, and must be
719 	 * done before math_state_restore, so the TS bit is up
720 	 * to date.
721 	 */
722 	arch_leave_lazy_cpu_mode();
723 
724 	/* If the task has used fpu the last 5 timeslices, just do a full
725 	 * restore of the math state immediately to avoid the trap; the
726 	 * chances of needing FPU soon are obviously high now
727 	 */
728 	if (next_p->fpu_counter > 5)
729 		math_state_restore();
730 
731 	/*
732 	 * Restore %gs if needed (which is common)
733 	 */
734 	if (prev->gs | next->gs)
735 		loadsegment(gs, next->gs);
736 
737 	x86_write_percpu(current_task, next_p);
738 
739 	return prev_p;
740 }
741 
742 asmlinkage int sys_fork(struct pt_regs regs)
743 {
744 	return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
745 }
746 
747 asmlinkage int sys_clone(struct pt_regs regs)
748 {
749 	unsigned long clone_flags;
750 	unsigned long newsp;
751 	int __user *parent_tidptr, *child_tidptr;
752 
753 	clone_flags = regs.ebx;
754 	newsp = regs.ecx;
755 	parent_tidptr = (int __user *)regs.edx;
756 	child_tidptr = (int __user *)regs.edi;
757 	if (!newsp)
758 		newsp = regs.esp;
759 	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
760 }
761 
762 /*
763  * This is trivial, and on the face of it looks like it
764  * could equally well be done in user mode.
765  *
766  * Not so, for quite unobvious reasons - register pressure.
767  * In user mode vfork() cannot have a stack frame, and if
768  * done by calling the "clone()" system call directly, you
769  * do not have enough call-clobbered registers to hold all
770  * the information you need.
771  */
772 asmlinkage int sys_vfork(struct pt_regs regs)
773 {
774 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
775 }
776 
777 /*
778  * sys_execve() executes a new program.
779  */
780 asmlinkage int sys_execve(struct pt_regs regs)
781 {
782 	int error;
783 	char * filename;
784 
785 	filename = getname((char __user *) regs.ebx);
786 	error = PTR_ERR(filename);
787 	if (IS_ERR(filename))
788 		goto out;
789 	error = do_execve(filename,
790 			(char __user * __user *) regs.ecx,
791 			(char __user * __user *) regs.edx,
792 			&regs);
793 	if (error == 0) {
794 		task_lock(current);
795 		current->ptrace &= ~PT_DTRACE;
796 		task_unlock(current);
797 		/* Make sure we don't return using sysenter.. */
798 		set_thread_flag(TIF_IRET);
799 	}
800 	putname(filename);
801 out:
802 	return error;
803 }
804 
805 #define top_esp                (THREAD_SIZE - sizeof(unsigned long))
806 #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
807 
808 unsigned long get_wchan(struct task_struct *p)
809 {
810 	unsigned long ebp, esp, eip;
811 	unsigned long stack_page;
812 	int count = 0;
813 	if (!p || p == current || p->state == TASK_RUNNING)
814 		return 0;
815 	stack_page = (unsigned long)task_stack_page(p);
816 	esp = p->thread.esp;
817 	if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
818 		return 0;
819 	/* include/asm-i386/system.h:switch_to() pushes ebp last. */
820 	ebp = *(unsigned long *) esp;
821 	do {
822 		if (ebp < stack_page || ebp > top_ebp+stack_page)
823 			return 0;
824 		eip = *(unsigned long *) (ebp+4);
825 		if (!in_sched_functions(eip))
826 			return eip;
827 		ebp = *(unsigned long *) ebp;
828 	} while (count++ < 16);
829 	return 0;
830 }
831 
832 /*
833  * sys_alloc_thread_area: get a yet unused TLS descriptor index.
834  */
835 static int get_free_idx(void)
836 {
837 	struct thread_struct *t = &current->thread;
838 	int idx;
839 
840 	for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
841 		if (desc_empty(t->tls_array + idx))
842 			return idx + GDT_ENTRY_TLS_MIN;
843 	return -ESRCH;
844 }
845 
846 /*
847  * Set a given TLS descriptor:
848  */
849 asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
850 {
851 	struct thread_struct *t = &current->thread;
852 	struct user_desc info;
853 	struct desc_struct *desc;
854 	int cpu, idx;
855 
856 	if (copy_from_user(&info, u_info, sizeof(info)))
857 		return -EFAULT;
858 	idx = info.entry_number;
859 
860 	/*
861 	 * index -1 means the kernel should try to find and
862 	 * allocate an empty descriptor:
863 	 */
864 	if (idx == -1) {
865 		idx = get_free_idx();
866 		if (idx < 0)
867 			return idx;
868 		if (put_user(idx, &u_info->entry_number))
869 			return -EFAULT;
870 	}
871 
872 	if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
873 		return -EINVAL;
874 
875 	desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
876 
877 	/*
878 	 * We must not get preempted while modifying the TLS.
879 	 */
880 	cpu = get_cpu();
881 
882 	if (LDT_empty(&info)) {
883 		desc->a = 0;
884 		desc->b = 0;
885 	} else {
886 		desc->a = LDT_entry_a(&info);
887 		desc->b = LDT_entry_b(&info);
888 	}
889 	load_TLS(t, cpu);
890 
891 	put_cpu();
892 
893 	return 0;
894 }
895 
896 /*
897  * Get the current Thread-Local Storage area:
898  */
899 
900 #define GET_BASE(desc) ( \
901 	(((desc)->a >> 16) & 0x0000ffff) | \
902 	(((desc)->b << 16) & 0x00ff0000) | \
903 	( (desc)->b        & 0xff000000)   )
904 
905 #define GET_LIMIT(desc) ( \
906 	((desc)->a & 0x0ffff) | \
907 	 ((desc)->b & 0xf0000) )
908 
909 #define GET_32BIT(desc)		(((desc)->b >> 22) & 1)
910 #define GET_CONTENTS(desc)	(((desc)->b >> 10) & 3)
911 #define GET_WRITABLE(desc)	(((desc)->b >>  9) & 1)
912 #define GET_LIMIT_PAGES(desc)	(((desc)->b >> 23) & 1)
913 #define GET_PRESENT(desc)	(((desc)->b >> 15) & 1)
914 #define GET_USEABLE(desc)	(((desc)->b >> 20) & 1)
915 
916 asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
917 {
918 	struct user_desc info;
919 	struct desc_struct *desc;
920 	int idx;
921 
922 	if (get_user(idx, &u_info->entry_number))
923 		return -EFAULT;
924 	if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
925 		return -EINVAL;
926 
927 	memset(&info, 0, sizeof(info));
928 
929 	desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
930 
931 	info.entry_number = idx;
932 	info.base_addr = GET_BASE(desc);
933 	info.limit = GET_LIMIT(desc);
934 	info.seg_32bit = GET_32BIT(desc);
935 	info.contents = GET_CONTENTS(desc);
936 	info.read_exec_only = !GET_WRITABLE(desc);
937 	info.limit_in_pages = GET_LIMIT_PAGES(desc);
938 	info.seg_not_present = !GET_PRESENT(desc);
939 	info.useable = GET_USEABLE(desc);
940 
941 	if (copy_to_user(u_info, &info, sizeof(info)))
942 		return -EFAULT;
943 	return 0;
944 }
945 
946 unsigned long arch_align_stack(unsigned long sp)
947 {
948 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
949 		sp -= get_random_int() % 8192;
950 	return sp & ~0xf;
951 }
952