1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * Gareth Hughes <gareth@valinux.com>, May 2000 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/cpu.h> 15 #include <linux/errno.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/elfcore.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/user.h> 26 #include <linux/interrupt.h> 27 #include <linux/utsname.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/init.h> 31 #include <linux/mc146818rtc.h> 32 #include <linux/module.h> 33 #include <linux/kallsyms.h> 34 #include <linux/ptrace.h> 35 #include <linux/random.h> 36 #include <linux/personality.h> 37 #include <linux/tick.h> 38 #include <linux/percpu.h> 39 #include <linux/prctl.h> 40 #include <linux/dmi.h> 41 #include <linux/ftrace.h> 42 #include <linux/uaccess.h> 43 #include <linux/io.h> 44 #include <linux/kdebug.h> 45 46 #include <asm/pgtable.h> 47 #include <asm/system.h> 48 #include <asm/ldt.h> 49 #include <asm/processor.h> 50 #include <asm/i387.h> 51 #include <asm/desc.h> 52 #ifdef CONFIG_MATH_EMULATION 53 #include <asm/math_emu.h> 54 #endif 55 56 #include <linux/err.h> 57 58 #include <asm/tlbflush.h> 59 #include <asm/cpu.h> 60 #include <asm/idle.h> 61 #include <asm/syscalls.h> 62 #include <asm/ds.h> 63 64 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); 65 66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 67 EXPORT_PER_CPU_SYMBOL(current_task); 68 69 DEFINE_PER_CPU(int, cpu_number); 70 EXPORT_PER_CPU_SYMBOL(cpu_number); 71 72 /* 73 * Return saved PC of a blocked thread. 74 */ 75 unsigned long thread_saved_pc(struct task_struct *tsk) 76 { 77 return ((unsigned long *)tsk->thread.sp)[3]; 78 } 79 80 #ifndef CONFIG_SMP 81 static inline void play_dead(void) 82 { 83 BUG(); 84 } 85 #endif 86 87 /* 88 * The idle thread. There's no useful work to be 89 * done, so just try to conserve power and have a 90 * low exit latency (ie sit in a loop waiting for 91 * somebody to say that they'd like to reschedule) 92 */ 93 void cpu_idle(void) 94 { 95 int cpu = smp_processor_id(); 96 97 current_thread_info()->status |= TS_POLLING; 98 99 /* endless idle loop with no priority at all */ 100 while (1) { 101 tick_nohz_stop_sched_tick(1); 102 while (!need_resched()) { 103 104 check_pgt_cache(); 105 rmb(); 106 107 if (cpu_is_offline(cpu)) 108 play_dead(); 109 110 local_irq_disable(); 111 __get_cpu_var(irq_stat).idle_timestamp = jiffies; 112 /* Don't trace irqs off for idle */ 113 stop_critical_timings(); 114 pm_idle(); 115 start_critical_timings(); 116 } 117 tick_nohz_restart_sched_tick(); 118 preempt_enable_no_resched(); 119 schedule(); 120 preempt_disable(); 121 } 122 } 123 124 void __show_regs(struct pt_regs *regs, int all) 125 { 126 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; 127 unsigned long d0, d1, d2, d3, d6, d7; 128 unsigned long sp; 129 unsigned short ss, gs; 130 const char *board; 131 132 if (user_mode_vm(regs)) { 133 sp = regs->sp; 134 ss = regs->ss & 0xffff; 135 savesegment(gs, gs); 136 } else { 137 sp = (unsigned long) (®s->sp); 138 savesegment(ss, ss); 139 savesegment(gs, gs); 140 } 141 142 printk("\n"); 143 144 board = dmi_get_system_info(DMI_PRODUCT_NAME); 145 if (!board) 146 board = ""; 147 printk("Pid: %d, comm: %s %s (%s %.*s) %s\n", 148 task_pid_nr(current), current->comm, 149 print_tainted(), init_utsname()->release, 150 (int)strcspn(init_utsname()->version, " "), 151 init_utsname()->version, board); 152 153 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", 154 (u16)regs->cs, regs->ip, regs->flags, 155 smp_processor_id()); 156 print_symbol("EIP is at %s\n", regs->ip); 157 158 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", 159 regs->ax, regs->bx, regs->cx, regs->dx); 160 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", 161 regs->si, regs->di, regs->bp, sp); 162 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", 163 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); 164 165 if (!all) 166 return; 167 168 cr0 = read_cr0(); 169 cr2 = read_cr2(); 170 cr3 = read_cr3(); 171 cr4 = read_cr4_safe(); 172 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", 173 cr0, cr2, cr3, cr4); 174 175 get_debugreg(d0, 0); 176 get_debugreg(d1, 1); 177 get_debugreg(d2, 2); 178 get_debugreg(d3, 3); 179 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", 180 d0, d1, d2, d3); 181 182 get_debugreg(d6, 6); 183 get_debugreg(d7, 7); 184 printk("DR6: %08lx DR7: %08lx\n", 185 d6, d7); 186 } 187 188 void show_regs(struct pt_regs *regs) 189 { 190 __show_regs(regs, 1); 191 show_trace(NULL, regs, ®s->sp, regs->bp); 192 } 193 194 /* 195 * This gets run with %bx containing the 196 * function to call, and %dx containing 197 * the "args". 198 */ 199 extern void kernel_thread_helper(void); 200 201 /* 202 * Create a kernel thread 203 */ 204 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 205 { 206 struct pt_regs regs; 207 208 memset(®s, 0, sizeof(regs)); 209 210 regs.bx = (unsigned long) fn; 211 regs.dx = (unsigned long) arg; 212 213 regs.ds = __USER_DS; 214 regs.es = __USER_DS; 215 regs.fs = __KERNEL_PERCPU; 216 regs.orig_ax = -1; 217 regs.ip = (unsigned long) kernel_thread_helper; 218 regs.cs = __KERNEL_CS | get_kernel_rpl(); 219 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; 220 221 /* Ok, create the new process.. */ 222 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 223 } 224 EXPORT_SYMBOL(kernel_thread); 225 226 /* 227 * Free current thread data structures etc.. 228 */ 229 void exit_thread(void) 230 { 231 /* The process may have allocated an io port bitmap... nuke it. */ 232 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { 233 struct task_struct *tsk = current; 234 struct thread_struct *t = &tsk->thread; 235 int cpu = get_cpu(); 236 struct tss_struct *tss = &per_cpu(init_tss, cpu); 237 238 kfree(t->io_bitmap_ptr); 239 t->io_bitmap_ptr = NULL; 240 clear_thread_flag(TIF_IO_BITMAP); 241 /* 242 * Careful, clear this in the TSS too: 243 */ 244 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); 245 t->io_bitmap_max = 0; 246 tss->io_bitmap_owner = NULL; 247 tss->io_bitmap_max = 0; 248 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 249 put_cpu(); 250 } 251 252 ds_exit_thread(current); 253 } 254 255 void flush_thread(void) 256 { 257 struct task_struct *tsk = current; 258 259 tsk->thread.debugreg0 = 0; 260 tsk->thread.debugreg1 = 0; 261 tsk->thread.debugreg2 = 0; 262 tsk->thread.debugreg3 = 0; 263 tsk->thread.debugreg6 = 0; 264 tsk->thread.debugreg7 = 0; 265 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 266 clear_tsk_thread_flag(tsk, TIF_DEBUG); 267 /* 268 * Forget coprocessor state.. 269 */ 270 tsk->fpu_counter = 0; 271 clear_fpu(tsk); 272 clear_used_math(); 273 } 274 275 void release_thread(struct task_struct *dead_task) 276 { 277 BUG_ON(dead_task->mm); 278 release_vm86_irqs(dead_task); 279 } 280 281 /* 282 * This gets called before we allocate a new thread and copy 283 * the current task into it. 284 */ 285 void prepare_to_copy(struct task_struct *tsk) 286 { 287 unlazy_fpu(tsk); 288 } 289 290 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, 291 unsigned long unused, 292 struct task_struct *p, struct pt_regs *regs) 293 { 294 struct pt_regs *childregs; 295 struct task_struct *tsk; 296 int err; 297 298 childregs = task_pt_regs(p); 299 *childregs = *regs; 300 childregs->ax = 0; 301 childregs->sp = sp; 302 303 p->thread.sp = (unsigned long) childregs; 304 p->thread.sp0 = (unsigned long) (childregs+1); 305 306 p->thread.ip = (unsigned long) ret_from_fork; 307 308 savesegment(gs, p->thread.gs); 309 310 tsk = current; 311 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { 312 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, 313 IO_BITMAP_BYTES, GFP_KERNEL); 314 if (!p->thread.io_bitmap_ptr) { 315 p->thread.io_bitmap_max = 0; 316 return -ENOMEM; 317 } 318 set_tsk_thread_flag(p, TIF_IO_BITMAP); 319 } 320 321 err = 0; 322 323 /* 324 * Set a new TLS for the child thread? 325 */ 326 if (clone_flags & CLONE_SETTLS) 327 err = do_set_thread_area(p, -1, 328 (struct user_desc __user *)childregs->si, 0); 329 330 if (err && p->thread.io_bitmap_ptr) { 331 kfree(p->thread.io_bitmap_ptr); 332 p->thread.io_bitmap_max = 0; 333 } 334 335 ds_copy_thread(p, current); 336 337 clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR); 338 p->thread.debugctlmsr = 0; 339 340 return err; 341 } 342 343 void 344 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 345 { 346 __asm__("movl %0, %%gs" : : "r"(0)); 347 regs->fs = 0; 348 set_fs(USER_DS); 349 regs->ds = __USER_DS; 350 regs->es = __USER_DS; 351 regs->ss = __USER_DS; 352 regs->cs = __USER_CS; 353 regs->ip = new_ip; 354 regs->sp = new_sp; 355 /* 356 * Free the old FP and other extended state 357 */ 358 free_thread_xstate(current); 359 } 360 EXPORT_SYMBOL_GPL(start_thread); 361 362 static void hard_disable_TSC(void) 363 { 364 write_cr4(read_cr4() | X86_CR4_TSD); 365 } 366 367 void disable_TSC(void) 368 { 369 preempt_disable(); 370 if (!test_and_set_thread_flag(TIF_NOTSC)) 371 /* 372 * Must flip the CPU state synchronously with 373 * TIF_NOTSC in the current running context. 374 */ 375 hard_disable_TSC(); 376 preempt_enable(); 377 } 378 379 static void hard_enable_TSC(void) 380 { 381 write_cr4(read_cr4() & ~X86_CR4_TSD); 382 } 383 384 static void enable_TSC(void) 385 { 386 preempt_disable(); 387 if (test_and_clear_thread_flag(TIF_NOTSC)) 388 /* 389 * Must flip the CPU state synchronously with 390 * TIF_NOTSC in the current running context. 391 */ 392 hard_enable_TSC(); 393 preempt_enable(); 394 } 395 396 int get_tsc_mode(unsigned long adr) 397 { 398 unsigned int val; 399 400 if (test_thread_flag(TIF_NOTSC)) 401 val = PR_TSC_SIGSEGV; 402 else 403 val = PR_TSC_ENABLE; 404 405 return put_user(val, (unsigned int __user *)adr); 406 } 407 408 int set_tsc_mode(unsigned int val) 409 { 410 if (val == PR_TSC_SIGSEGV) 411 disable_TSC(); 412 else if (val == PR_TSC_ENABLE) 413 enable_TSC(); 414 else 415 return -EINVAL; 416 417 return 0; 418 } 419 420 static noinline void 421 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 422 struct tss_struct *tss) 423 { 424 struct thread_struct *prev, *next; 425 426 prev = &prev_p->thread; 427 next = &next_p->thread; 428 429 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || 430 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) 431 ds_switch_to(prev_p, next_p); 432 else if (next->debugctlmsr != prev->debugctlmsr) 433 update_debugctlmsr(next->debugctlmsr); 434 435 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { 436 set_debugreg(next->debugreg0, 0); 437 set_debugreg(next->debugreg1, 1); 438 set_debugreg(next->debugreg2, 2); 439 set_debugreg(next->debugreg3, 3); 440 /* no 4 and 5 */ 441 set_debugreg(next->debugreg6, 6); 442 set_debugreg(next->debugreg7, 7); 443 } 444 445 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 446 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 447 /* prev and next are different */ 448 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 449 hard_disable_TSC(); 450 else 451 hard_enable_TSC(); 452 } 453 454 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 455 /* 456 * Disable the bitmap via an invalid offset. We still cache 457 * the previous bitmap owner and the IO bitmap contents: 458 */ 459 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; 460 return; 461 } 462 463 if (likely(next == tss->io_bitmap_owner)) { 464 /* 465 * Previous owner of the bitmap (hence the bitmap content) 466 * matches the next task, we dont have to do anything but 467 * to set a valid offset in the TSS: 468 */ 469 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; 470 return; 471 } 472 /* 473 * Lazy TSS's I/O bitmap copy. We set an invalid offset here 474 * and we let the task to get a GPF in case an I/O instruction 475 * is performed. The handler of the GPF will verify that the 476 * faulting task has a valid I/O bitmap and, it true, does the 477 * real copy and restart the instruction. This will save us 478 * redundant copies when the currently switched task does not 479 * perform any I/O during its timeslice. 480 */ 481 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; 482 } 483 484 /* 485 * switch_to(x,yn) should switch tasks from x to y. 486 * 487 * We fsave/fwait so that an exception goes off at the right time 488 * (as a call from the fsave or fwait in effect) rather than to 489 * the wrong process. Lazy FP saving no longer makes any sense 490 * with modern CPU's, and this simplifies a lot of things (SMP 491 * and UP become the same). 492 * 493 * NOTE! We used to use the x86 hardware context switching. The 494 * reason for not using it any more becomes apparent when you 495 * try to recover gracefully from saved state that is no longer 496 * valid (stale segment register values in particular). With the 497 * hardware task-switch, there is no way to fix up bad state in 498 * a reasonable manner. 499 * 500 * The fact that Intel documents the hardware task-switching to 501 * be slow is a fairly red herring - this code is not noticeably 502 * faster. However, there _is_ some room for improvement here, 503 * so the performance issues may eventually be a valid point. 504 * More important, however, is the fact that this allows us much 505 * more flexibility. 506 * 507 * The return value (in %ax) will be the "prev" task after 508 * the task-switch, and shows up in ret_from_fork in entry.S, 509 * for example. 510 */ 511 __notrace_funcgraph struct task_struct * 512 __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 513 { 514 struct thread_struct *prev = &prev_p->thread, 515 *next = &next_p->thread; 516 int cpu = smp_processor_id(); 517 struct tss_struct *tss = &per_cpu(init_tss, cpu); 518 519 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ 520 521 __unlazy_fpu(prev_p); 522 523 524 /* we're going to use this soon, after a few expensive things */ 525 if (next_p->fpu_counter > 5) 526 prefetch(next->xstate); 527 528 /* 529 * Reload esp0. 530 */ 531 load_sp0(tss, next); 532 533 /* 534 * Save away %gs. No need to save %fs, as it was saved on the 535 * stack on entry. No need to save %es and %ds, as those are 536 * always kernel segments while inside the kernel. Doing this 537 * before setting the new TLS descriptors avoids the situation 538 * where we temporarily have non-reloadable segments in %fs 539 * and %gs. This could be an issue if the NMI handler ever 540 * used %fs or %gs (it does not today), or if the kernel is 541 * running inside of a hypervisor layer. 542 */ 543 savesegment(gs, prev->gs); 544 545 /* 546 * Load the per-thread Thread-Local Storage descriptor. 547 */ 548 load_TLS(next, cpu); 549 550 /* 551 * Restore IOPL if needed. In normal use, the flags restore 552 * in the switch assembly will handle this. But if the kernel 553 * is running virtualized at a non-zero CPL, the popf will 554 * not restore flags, so it must be done in a separate step. 555 */ 556 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) 557 set_iopl_mask(next->iopl); 558 559 /* 560 * Now maybe handle debug registers and/or IO bitmaps 561 */ 562 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || 563 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) 564 __switch_to_xtra(prev_p, next_p, tss); 565 566 /* 567 * Leave lazy mode, flushing any hypercalls made here. 568 * This must be done before restoring TLS segments so 569 * the GDT and LDT are properly updated, and must be 570 * done before math_state_restore, so the TS bit is up 571 * to date. 572 */ 573 arch_leave_lazy_cpu_mode(); 574 575 /* If the task has used fpu the last 5 timeslices, just do a full 576 * restore of the math state immediately to avoid the trap; the 577 * chances of needing FPU soon are obviously high now 578 * 579 * tsk_used_math() checks prevent calling math_state_restore(), 580 * which can sleep in the case of !tsk_used_math() 581 */ 582 if (tsk_used_math(next_p) && next_p->fpu_counter > 5) 583 math_state_restore(); 584 585 /* 586 * Restore %gs if needed (which is common) 587 */ 588 if (prev->gs | next->gs) 589 loadsegment(gs, next->gs); 590 591 x86_write_percpu(current_task, next_p); 592 593 return prev_p; 594 } 595 596 asmlinkage int sys_fork(struct pt_regs regs) 597 { 598 return do_fork(SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 599 } 600 601 asmlinkage int sys_clone(struct pt_regs regs) 602 { 603 unsigned long clone_flags; 604 unsigned long newsp; 605 int __user *parent_tidptr, *child_tidptr; 606 607 clone_flags = regs.bx; 608 newsp = regs.cx; 609 parent_tidptr = (int __user *)regs.dx; 610 child_tidptr = (int __user *)regs.di; 611 if (!newsp) 612 newsp = regs.sp; 613 return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); 614 } 615 616 /* 617 * This is trivial, and on the face of it looks like it 618 * could equally well be done in user mode. 619 * 620 * Not so, for quite unobvious reasons - register pressure. 621 * In user mode vfork() cannot have a stack frame, and if 622 * done by calling the "clone()" system call directly, you 623 * do not have enough call-clobbered registers to hold all 624 * the information you need. 625 */ 626 asmlinkage int sys_vfork(struct pt_regs regs) 627 { 628 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, ®s, 0, NULL, NULL); 629 } 630 631 /* 632 * sys_execve() executes a new program. 633 */ 634 asmlinkage int sys_execve(struct pt_regs regs) 635 { 636 int error; 637 char *filename; 638 639 filename = getname((char __user *) regs.bx); 640 error = PTR_ERR(filename); 641 if (IS_ERR(filename)) 642 goto out; 643 error = do_execve(filename, 644 (char __user * __user *) regs.cx, 645 (char __user * __user *) regs.dx, 646 ®s); 647 if (error == 0) { 648 /* Make sure we don't return using sysenter.. */ 649 set_thread_flag(TIF_IRET); 650 } 651 putname(filename); 652 out: 653 return error; 654 } 655 656 #define top_esp (THREAD_SIZE - sizeof(unsigned long)) 657 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) 658 659 unsigned long get_wchan(struct task_struct *p) 660 { 661 unsigned long bp, sp, ip; 662 unsigned long stack_page; 663 int count = 0; 664 if (!p || p == current || p->state == TASK_RUNNING) 665 return 0; 666 stack_page = (unsigned long)task_stack_page(p); 667 sp = p->thread.sp; 668 if (!stack_page || sp < stack_page || sp > top_esp+stack_page) 669 return 0; 670 /* include/asm-i386/system.h:switch_to() pushes bp last. */ 671 bp = *(unsigned long *) sp; 672 do { 673 if (bp < stack_page || bp > top_ebp+stack_page) 674 return 0; 675 ip = *(unsigned long *) (bp+4); 676 if (!in_sched_functions(ip)) 677 return ip; 678 bp = *(unsigned long *) bp; 679 } while (count++ < 16); 680 return 0; 681 } 682 683 unsigned long arch_align_stack(unsigned long sp) 684 { 685 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 686 sp -= get_random_int() % 8192; 687 return sp & ~0xf; 688 } 689 690 unsigned long arch_randomize_brk(struct mm_struct *mm) 691 { 692 unsigned long range_end = mm->brk + 0x02000000; 693 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 694 } 695