1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <linux/acpi.h> 26 #include <linux/elf-randomize.h> 27 #include <linux/static_call.h> 28 #include <trace/events/power.h> 29 #include <linux/hw_breakpoint.h> 30 #include <asm/cpu.h> 31 #include <asm/apic.h> 32 #include <linux/uaccess.h> 33 #include <asm/mwait.h> 34 #include <asm/fpu/api.h> 35 #include <asm/fpu/sched.h> 36 #include <asm/fpu/xstate.h> 37 #include <asm/debugreg.h> 38 #include <asm/nmi.h> 39 #include <asm/tlbflush.h> 40 #include <asm/mce.h> 41 #include <asm/vm86.h> 42 #include <asm/switch_to.h> 43 #include <asm/desc.h> 44 #include <asm/prctl.h> 45 #include <asm/spec-ctrl.h> 46 #include <asm/io_bitmap.h> 47 #include <asm/proto.h> 48 #include <asm/frame.h> 49 #include <asm/unwind.h> 50 #include <asm/tdx.h> 51 52 #include "process.h" 53 54 /* 55 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 56 * no more per-task TSS's. The TSS size is kept cacheline-aligned 57 * so they are allowed to end up in the .data..cacheline_aligned 58 * section. Since TSS's are completely CPU-local, we want them 59 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 60 */ 61 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 62 .x86_tss = { 63 /* 64 * .sp0 is only used when entering ring 0 from a lower 65 * privilege level. Since the init task never runs anything 66 * but ring 0 code, there is no need for a valid value here. 67 * Poison it. 68 */ 69 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 70 71 #ifdef CONFIG_X86_32 72 .sp1 = TOP_OF_INIT_STACK, 73 74 .ss0 = __KERNEL_DS, 75 .ss1 = __KERNEL_CS, 76 #endif 77 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 78 }, 79 }; 80 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 81 82 DEFINE_PER_CPU(bool, __tss_limit_invalid); 83 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 84 85 /* 86 * this gets called so that we can store lazy state into memory and copy the 87 * current task into the new thread. 88 */ 89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 90 { 91 memcpy(dst, src, arch_task_struct_size); 92 #ifdef CONFIG_VM86 93 dst->thread.vm86 = NULL; 94 #endif 95 /* Drop the copied pointer to current's fpstate */ 96 dst->thread.fpu.fpstate = NULL; 97 98 return 0; 99 } 100 101 #ifdef CONFIG_X86_64 102 void arch_release_task_struct(struct task_struct *tsk) 103 { 104 if (fpu_state_size_dynamic()) 105 fpstate_free(&tsk->thread.fpu); 106 } 107 #endif 108 109 /* 110 * Free thread data structures etc.. 111 */ 112 void exit_thread(struct task_struct *tsk) 113 { 114 struct thread_struct *t = &tsk->thread; 115 struct fpu *fpu = &t->fpu; 116 117 if (test_thread_flag(TIF_IO_BITMAP)) 118 io_bitmap_exit(tsk); 119 120 free_vm86(t); 121 122 fpu__drop(fpu); 123 } 124 125 static int set_new_tls(struct task_struct *p, unsigned long tls) 126 { 127 struct user_desc __user *utls = (struct user_desc __user *)tls; 128 129 if (in_ia32_syscall()) 130 return do_set_thread_area(p, -1, utls, 0); 131 else 132 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 133 } 134 135 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 136 { 137 unsigned long clone_flags = args->flags; 138 unsigned long sp = args->stack; 139 unsigned long tls = args->tls; 140 struct inactive_task_frame *frame; 141 struct fork_frame *fork_frame; 142 struct pt_regs *childregs; 143 int ret = 0; 144 145 childregs = task_pt_regs(p); 146 fork_frame = container_of(childregs, struct fork_frame, regs); 147 frame = &fork_frame->frame; 148 149 frame->bp = encode_frame_pointer(childregs); 150 frame->ret_addr = (unsigned long) ret_from_fork; 151 p->thread.sp = (unsigned long) fork_frame; 152 p->thread.io_bitmap = NULL; 153 p->thread.iopl_warn = 0; 154 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 155 156 #ifdef CONFIG_X86_64 157 current_save_fsgs(); 158 p->thread.fsindex = current->thread.fsindex; 159 p->thread.fsbase = current->thread.fsbase; 160 p->thread.gsindex = current->thread.gsindex; 161 p->thread.gsbase = current->thread.gsbase; 162 163 savesegment(es, p->thread.es); 164 savesegment(ds, p->thread.ds); 165 #else 166 p->thread.sp0 = (unsigned long) (childregs + 1); 167 savesegment(gs, p->thread.gs); 168 /* 169 * Clear all status flags including IF and set fixed bit. 64bit 170 * does not have this initialization as the frame does not contain 171 * flags. The flags consistency (especially vs. AC) is there 172 * ensured via objtool, which lacks 32bit support. 173 */ 174 frame->flags = X86_EFLAGS_FIXED; 175 #endif 176 177 fpu_clone(p, clone_flags, args->fn); 178 179 /* Kernel thread ? */ 180 if (unlikely(p->flags & PF_KTHREAD)) { 181 p->thread.pkru = pkru_get_init_value(); 182 memset(childregs, 0, sizeof(struct pt_regs)); 183 kthread_frame_init(frame, args->fn, args->fn_arg); 184 return 0; 185 } 186 187 /* 188 * Clone current's PKRU value from hardware. tsk->thread.pkru 189 * is only valid when scheduled out. 190 */ 191 p->thread.pkru = read_pkru(); 192 193 frame->bx = 0; 194 *childregs = *current_pt_regs(); 195 childregs->ax = 0; 196 if (sp) 197 childregs->sp = sp; 198 199 if (unlikely(args->fn)) { 200 /* 201 * A user space thread, but it doesn't return to 202 * ret_after_fork(). 203 * 204 * In order to indicate that to tools like gdb, 205 * we reset the stack and instruction pointers. 206 * 207 * It does the same kernel frame setup to return to a kernel 208 * function that a kernel thread does. 209 */ 210 childregs->sp = 0; 211 childregs->ip = 0; 212 kthread_frame_init(frame, args->fn, args->fn_arg); 213 return 0; 214 } 215 216 /* Set a new TLS for the child thread? */ 217 if (clone_flags & CLONE_SETTLS) 218 ret = set_new_tls(p, tls); 219 220 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 221 io_bitmap_share(p); 222 223 return ret; 224 } 225 226 static void pkru_flush_thread(void) 227 { 228 /* 229 * If PKRU is enabled the default PKRU value has to be loaded into 230 * the hardware right here (similar to context switch). 231 */ 232 pkru_write_default(); 233 } 234 235 void flush_thread(void) 236 { 237 struct task_struct *tsk = current; 238 239 flush_ptrace_hw_breakpoint(tsk); 240 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 241 242 fpu_flush_thread(); 243 pkru_flush_thread(); 244 } 245 246 void disable_TSC(void) 247 { 248 preempt_disable(); 249 if (!test_and_set_thread_flag(TIF_NOTSC)) 250 /* 251 * Must flip the CPU state synchronously with 252 * TIF_NOTSC in the current running context. 253 */ 254 cr4_set_bits(X86_CR4_TSD); 255 preempt_enable(); 256 } 257 258 static void enable_TSC(void) 259 { 260 preempt_disable(); 261 if (test_and_clear_thread_flag(TIF_NOTSC)) 262 /* 263 * Must flip the CPU state synchronously with 264 * TIF_NOTSC in the current running context. 265 */ 266 cr4_clear_bits(X86_CR4_TSD); 267 preempt_enable(); 268 } 269 270 int get_tsc_mode(unsigned long adr) 271 { 272 unsigned int val; 273 274 if (test_thread_flag(TIF_NOTSC)) 275 val = PR_TSC_SIGSEGV; 276 else 277 val = PR_TSC_ENABLE; 278 279 return put_user(val, (unsigned int __user *)adr); 280 } 281 282 int set_tsc_mode(unsigned int val) 283 { 284 if (val == PR_TSC_SIGSEGV) 285 disable_TSC(); 286 else if (val == PR_TSC_ENABLE) 287 enable_TSC(); 288 else 289 return -EINVAL; 290 291 return 0; 292 } 293 294 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 295 296 static void set_cpuid_faulting(bool on) 297 { 298 u64 msrval; 299 300 msrval = this_cpu_read(msr_misc_features_shadow); 301 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 302 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 303 this_cpu_write(msr_misc_features_shadow, msrval); 304 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 305 } 306 307 static void disable_cpuid(void) 308 { 309 preempt_disable(); 310 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 311 /* 312 * Must flip the CPU state synchronously with 313 * TIF_NOCPUID in the current running context. 314 */ 315 set_cpuid_faulting(true); 316 } 317 preempt_enable(); 318 } 319 320 static void enable_cpuid(void) 321 { 322 preempt_disable(); 323 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 324 /* 325 * Must flip the CPU state synchronously with 326 * TIF_NOCPUID in the current running context. 327 */ 328 set_cpuid_faulting(false); 329 } 330 preempt_enable(); 331 } 332 333 static int get_cpuid_mode(void) 334 { 335 return !test_thread_flag(TIF_NOCPUID); 336 } 337 338 static int set_cpuid_mode(unsigned long cpuid_enabled) 339 { 340 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 341 return -ENODEV; 342 343 if (cpuid_enabled) 344 enable_cpuid(); 345 else 346 disable_cpuid(); 347 348 return 0; 349 } 350 351 /* 352 * Called immediately after a successful exec. 353 */ 354 void arch_setup_new_exec(void) 355 { 356 /* If cpuid was previously disabled for this task, re-enable it. */ 357 if (test_thread_flag(TIF_NOCPUID)) 358 enable_cpuid(); 359 360 /* 361 * Don't inherit TIF_SSBD across exec boundary when 362 * PR_SPEC_DISABLE_NOEXEC is used. 363 */ 364 if (test_thread_flag(TIF_SSBD) && 365 task_spec_ssb_noexec(current)) { 366 clear_thread_flag(TIF_SSBD); 367 task_clear_spec_ssb_disable(current); 368 task_clear_spec_ssb_noexec(current); 369 speculation_ctrl_update(read_thread_flags()); 370 } 371 } 372 373 #ifdef CONFIG_X86_IOPL_IOPERM 374 static inline void switch_to_bitmap(unsigned long tifp) 375 { 376 /* 377 * Invalidate I/O bitmap if the previous task used it. This prevents 378 * any possible leakage of an active I/O bitmap. 379 * 380 * If the next task has an I/O bitmap it will handle it on exit to 381 * user mode. 382 */ 383 if (tifp & _TIF_IO_BITMAP) 384 tss_invalidate_io_bitmap(); 385 } 386 387 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 388 { 389 /* 390 * Copy at least the byte range of the incoming tasks bitmap which 391 * covers the permitted I/O ports. 392 * 393 * If the previous task which used an I/O bitmap had more bits 394 * permitted, then the copy needs to cover those as well so they 395 * get turned off. 396 */ 397 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 398 max(tss->io_bitmap.prev_max, iobm->max)); 399 400 /* 401 * Store the new max and the sequence number of this bitmap 402 * and a pointer to the bitmap itself. 403 */ 404 tss->io_bitmap.prev_max = iobm->max; 405 tss->io_bitmap.prev_sequence = iobm->sequence; 406 } 407 408 /** 409 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode 410 */ 411 void native_tss_update_io_bitmap(void) 412 { 413 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 414 struct thread_struct *t = ¤t->thread; 415 u16 *base = &tss->x86_tss.io_bitmap_base; 416 417 if (!test_thread_flag(TIF_IO_BITMAP)) { 418 native_tss_invalidate_io_bitmap(); 419 return; 420 } 421 422 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 423 *base = IO_BITMAP_OFFSET_VALID_ALL; 424 } else { 425 struct io_bitmap *iobm = t->io_bitmap; 426 427 /* 428 * Only copy bitmap data when the sequence number differs. The 429 * update time is accounted to the incoming task. 430 */ 431 if (tss->io_bitmap.prev_sequence != iobm->sequence) 432 tss_copy_io_bitmap(tss, iobm); 433 434 /* Enable the bitmap */ 435 *base = IO_BITMAP_OFFSET_VALID_MAP; 436 } 437 438 /* 439 * Make sure that the TSS limit is covering the IO bitmap. It might have 440 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 441 * access from user space to trigger a #GP because tbe bitmap is outside 442 * the TSS limit. 443 */ 444 refresh_tss_limit(); 445 } 446 #else /* CONFIG_X86_IOPL_IOPERM */ 447 static inline void switch_to_bitmap(unsigned long tifp) { } 448 #endif 449 450 #ifdef CONFIG_SMP 451 452 struct ssb_state { 453 struct ssb_state *shared_state; 454 raw_spinlock_t lock; 455 unsigned int disable_state; 456 unsigned long local_state; 457 }; 458 459 #define LSTATE_SSB 0 460 461 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 462 463 void speculative_store_bypass_ht_init(void) 464 { 465 struct ssb_state *st = this_cpu_ptr(&ssb_state); 466 unsigned int this_cpu = smp_processor_id(); 467 unsigned int cpu; 468 469 st->local_state = 0; 470 471 /* 472 * Shared state setup happens once on the first bringup 473 * of the CPU. It's not destroyed on CPU hotunplug. 474 */ 475 if (st->shared_state) 476 return; 477 478 raw_spin_lock_init(&st->lock); 479 480 /* 481 * Go over HT siblings and check whether one of them has set up the 482 * shared state pointer already. 483 */ 484 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 485 if (cpu == this_cpu) 486 continue; 487 488 if (!per_cpu(ssb_state, cpu).shared_state) 489 continue; 490 491 /* Link it to the state of the sibling: */ 492 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 493 return; 494 } 495 496 /* 497 * First HT sibling to come up on the core. Link shared state of 498 * the first HT sibling to itself. The siblings on the same core 499 * which come up later will see the shared state pointer and link 500 * themselves to the state of this CPU. 501 */ 502 st->shared_state = st; 503 } 504 505 /* 506 * Logic is: First HT sibling enables SSBD for both siblings in the core 507 * and last sibling to disable it, disables it for the whole core. This how 508 * MSR_SPEC_CTRL works in "hardware": 509 * 510 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 511 */ 512 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 513 { 514 struct ssb_state *st = this_cpu_ptr(&ssb_state); 515 u64 msr = x86_amd_ls_cfg_base; 516 517 if (!static_cpu_has(X86_FEATURE_ZEN)) { 518 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 519 wrmsrl(MSR_AMD64_LS_CFG, msr); 520 return; 521 } 522 523 if (tifn & _TIF_SSBD) { 524 /* 525 * Since this can race with prctl(), block reentry on the 526 * same CPU. 527 */ 528 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 529 return; 530 531 msr |= x86_amd_ls_cfg_ssbd_mask; 532 533 raw_spin_lock(&st->shared_state->lock); 534 /* First sibling enables SSBD: */ 535 if (!st->shared_state->disable_state) 536 wrmsrl(MSR_AMD64_LS_CFG, msr); 537 st->shared_state->disable_state++; 538 raw_spin_unlock(&st->shared_state->lock); 539 } else { 540 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 541 return; 542 543 raw_spin_lock(&st->shared_state->lock); 544 st->shared_state->disable_state--; 545 if (!st->shared_state->disable_state) 546 wrmsrl(MSR_AMD64_LS_CFG, msr); 547 raw_spin_unlock(&st->shared_state->lock); 548 } 549 } 550 #else 551 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 552 { 553 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 554 555 wrmsrl(MSR_AMD64_LS_CFG, msr); 556 } 557 #endif 558 559 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 560 { 561 /* 562 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 563 * so ssbd_tif_to_spec_ctrl() just works. 564 */ 565 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 566 } 567 568 /* 569 * Update the MSRs managing speculation control, during context switch. 570 * 571 * tifp: Previous task's thread flags 572 * tifn: Next task's thread flags 573 */ 574 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 575 unsigned long tifn) 576 { 577 unsigned long tif_diff = tifp ^ tifn; 578 u64 msr = x86_spec_ctrl_base; 579 bool updmsr = false; 580 581 lockdep_assert_irqs_disabled(); 582 583 /* Handle change of TIF_SSBD depending on the mitigation method. */ 584 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 585 if (tif_diff & _TIF_SSBD) 586 amd_set_ssb_virt_state(tifn); 587 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 588 if (tif_diff & _TIF_SSBD) 589 amd_set_core_ssb_state(tifn); 590 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 591 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 592 updmsr |= !!(tif_diff & _TIF_SSBD); 593 msr |= ssbd_tif_to_spec_ctrl(tifn); 594 } 595 596 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ 597 if (IS_ENABLED(CONFIG_SMP) && 598 static_branch_unlikely(&switch_to_cond_stibp)) { 599 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 600 msr |= stibp_tif_to_spec_ctrl(tifn); 601 } 602 603 if (updmsr) 604 update_spec_ctrl_cond(msr); 605 } 606 607 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 608 { 609 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 610 if (task_spec_ssb_disable(tsk)) 611 set_tsk_thread_flag(tsk, TIF_SSBD); 612 else 613 clear_tsk_thread_flag(tsk, TIF_SSBD); 614 615 if (task_spec_ib_disable(tsk)) 616 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 617 else 618 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 619 } 620 /* Return the updated threadinfo flags*/ 621 return read_task_thread_flags(tsk); 622 } 623 624 void speculation_ctrl_update(unsigned long tif) 625 { 626 unsigned long flags; 627 628 /* Forced update. Make sure all relevant TIF flags are different */ 629 local_irq_save(flags); 630 __speculation_ctrl_update(~tif, tif); 631 local_irq_restore(flags); 632 } 633 634 /* Called from seccomp/prctl update */ 635 void speculation_ctrl_update_current(void) 636 { 637 preempt_disable(); 638 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 639 preempt_enable(); 640 } 641 642 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 643 { 644 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 645 646 newval = cr4 ^ mask; 647 if (newval != cr4) { 648 this_cpu_write(cpu_tlbstate.cr4, newval); 649 __write_cr4(newval); 650 } 651 } 652 653 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 654 { 655 unsigned long tifp, tifn; 656 657 tifn = read_task_thread_flags(next_p); 658 tifp = read_task_thread_flags(prev_p); 659 660 switch_to_bitmap(tifp); 661 662 propagate_user_return_notify(prev_p, next_p); 663 664 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 665 arch_has_block_step()) { 666 unsigned long debugctl, msk; 667 668 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 669 debugctl &= ~DEBUGCTLMSR_BTF; 670 msk = tifn & _TIF_BLOCKSTEP; 671 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 672 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 673 } 674 675 if ((tifp ^ tifn) & _TIF_NOTSC) 676 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 677 678 if ((tifp ^ tifn) & _TIF_NOCPUID) 679 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 680 681 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 682 __speculation_ctrl_update(tifp, tifn); 683 } else { 684 speculation_ctrl_update_tif(prev_p); 685 tifn = speculation_ctrl_update_tif(next_p); 686 687 /* Enforce MSR update to ensure consistent state */ 688 __speculation_ctrl_update(~tifn, tifn); 689 } 690 } 691 692 /* 693 * Idle related variables and functions 694 */ 695 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 696 EXPORT_SYMBOL(boot_option_idle_override); 697 698 /* 699 * We use this if we don't have any better idle routine.. 700 */ 701 void __cpuidle default_idle(void) 702 { 703 raw_safe_halt(); 704 raw_local_irq_disable(); 705 } 706 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 707 EXPORT_SYMBOL(default_idle); 708 #endif 709 710 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle); 711 712 static bool x86_idle_set(void) 713 { 714 return !!static_call_query(x86_idle); 715 } 716 717 #ifndef CONFIG_SMP 718 static inline void play_dead(void) 719 { 720 BUG(); 721 } 722 #endif 723 724 void arch_cpu_idle_enter(void) 725 { 726 tsc_verify_tsc_adjust(false); 727 local_touch_nmi(); 728 } 729 730 void arch_cpu_idle_dead(void) 731 { 732 play_dead(); 733 } 734 735 /* 736 * Called from the generic idle code. 737 */ 738 void __cpuidle arch_cpu_idle(void) 739 { 740 static_call(x86_idle)(); 741 } 742 EXPORT_SYMBOL_GPL(arch_cpu_idle); 743 744 #ifdef CONFIG_XEN 745 bool xen_set_default_idle(void) 746 { 747 bool ret = x86_idle_set(); 748 749 static_call_update(x86_idle, default_idle); 750 751 return ret; 752 } 753 #endif 754 755 void __noreturn stop_this_cpu(void *dummy) 756 { 757 local_irq_disable(); 758 /* 759 * Remove this CPU: 760 */ 761 set_cpu_online(smp_processor_id(), false); 762 disable_local_APIC(); 763 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 764 765 /* 766 * Use wbinvd on processors that support SME. This provides support 767 * for performing a successful kexec when going from SME inactive 768 * to SME active (or vice-versa). The cache must be cleared so that 769 * if there are entries with the same physical address, both with and 770 * without the encryption bit, they don't race each other when flushed 771 * and potentially end up with the wrong entry being committed to 772 * memory. 773 * 774 * Test the CPUID bit directly because the machine might've cleared 775 * X86_FEATURE_SME due to cmdline options. 776 */ 777 if (cpuid_eax(0x8000001f) & BIT(0)) 778 native_wbinvd(); 779 for (;;) { 780 /* 781 * Use native_halt() so that memory contents don't change 782 * (stack usage and variables) after possibly issuing the 783 * native_wbinvd() above. 784 */ 785 native_halt(); 786 } 787 } 788 789 /* 790 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 791 * states (local apic timer and TSC stop). 792 * 793 * XXX this function is completely buggered vs RCU and tracing. 794 */ 795 static void amd_e400_idle(void) 796 { 797 /* 798 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 799 * gets set after static_cpu_has() places have been converted via 800 * alternatives. 801 */ 802 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 803 default_idle(); 804 return; 805 } 806 807 tick_broadcast_enter(); 808 809 default_idle(); 810 811 tick_broadcast_exit(); 812 } 813 814 /* 815 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf 816 * exists and whenever MONITOR/MWAIT extensions are present there is at 817 * least one C1 substate. 818 * 819 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait 820 * is passed to kernel commandline parameter. 821 */ 822 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 823 { 824 u32 eax, ebx, ecx, edx; 825 826 /* User has disallowed the use of MWAIT. Fallback to HALT */ 827 if (boot_option_idle_override == IDLE_NOMWAIT) 828 return 0; 829 830 /* MWAIT is not supported on this platform. Fallback to HALT */ 831 if (!cpu_has(c, X86_FEATURE_MWAIT)) 832 return 0; 833 834 /* Monitor has a bug. Fallback to HALT */ 835 if (boot_cpu_has_bug(X86_BUG_MONITOR)) 836 return 0; 837 838 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); 839 840 /* 841 * If MWAIT extensions are not available, it is safe to use MWAIT 842 * with EAX=0, ECX=0. 843 */ 844 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) 845 return 1; 846 847 /* 848 * If MWAIT extensions are available, there should be at least one 849 * MWAIT C1 substate present. 850 */ 851 return (edx & MWAIT_C1_SUBSTATE_MASK); 852 } 853 854 /* 855 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 856 * with interrupts enabled and no flags, which is backwards compatible with the 857 * original MWAIT implementation. 858 */ 859 static __cpuidle void mwait_idle(void) 860 { 861 if (!current_set_polling_and_test()) { 862 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 863 mb(); /* quirk */ 864 clflush((void *)¤t_thread_info()->flags); 865 mb(); /* quirk */ 866 } 867 868 __monitor((void *)¤t_thread_info()->flags, 0, 0); 869 if (!need_resched()) { 870 __sti_mwait(0, 0); 871 raw_local_irq_disable(); 872 } 873 } 874 __current_clr_polling(); 875 } 876 877 void select_idle_routine(const struct cpuinfo_x86 *c) 878 { 879 #ifdef CONFIG_SMP 880 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 881 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 882 #endif 883 if (x86_idle_set() || boot_option_idle_override == IDLE_POLL) 884 return; 885 886 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 887 pr_info("using AMD E400 aware idle routine\n"); 888 static_call_update(x86_idle, amd_e400_idle); 889 } else if (prefer_mwait_c1_over_halt(c)) { 890 pr_info("using mwait in idle threads\n"); 891 static_call_update(x86_idle, mwait_idle); 892 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) { 893 pr_info("using TDX aware idle routine\n"); 894 static_call_update(x86_idle, tdx_safe_halt); 895 } else 896 static_call_update(x86_idle, default_idle); 897 } 898 899 void amd_e400_c1e_apic_setup(void) 900 { 901 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 902 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 903 local_irq_disable(); 904 tick_broadcast_force(); 905 local_irq_enable(); 906 } 907 } 908 909 void __init arch_post_acpi_subsys_init(void) 910 { 911 u32 lo, hi; 912 913 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 914 return; 915 916 /* 917 * AMD E400 detection needs to happen after ACPI has been enabled. If 918 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 919 * MSR_K8_INT_PENDING_MSG. 920 */ 921 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 922 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 923 return; 924 925 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 926 927 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 928 mark_tsc_unstable("TSC halt in AMD C1E"); 929 pr_info("System has AMD C1E enabled\n"); 930 } 931 932 static int __init idle_setup(char *str) 933 { 934 if (!str) 935 return -EINVAL; 936 937 if (!strcmp(str, "poll")) { 938 pr_info("using polling idle threads\n"); 939 boot_option_idle_override = IDLE_POLL; 940 cpu_idle_poll_ctrl(true); 941 } else if (!strcmp(str, "halt")) { 942 /* 943 * When the boot option of idle=halt is added, halt is 944 * forced to be used for CPU idle. In such case CPU C2/C3 945 * won't be used again. 946 * To continue to load the CPU idle driver, don't touch 947 * the boot_option_idle_override. 948 */ 949 static_call_update(x86_idle, default_idle); 950 boot_option_idle_override = IDLE_HALT; 951 } else if (!strcmp(str, "nomwait")) { 952 /* 953 * If the boot option of "idle=nomwait" is added, 954 * it means that mwait will be disabled for CPU C1/C2/C3 955 * states. 956 */ 957 boot_option_idle_override = IDLE_NOMWAIT; 958 } else 959 return -1; 960 961 return 0; 962 } 963 early_param("idle", idle_setup); 964 965 unsigned long arch_align_stack(unsigned long sp) 966 { 967 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 968 sp -= get_random_u32_below(8192); 969 return sp & ~0xf; 970 } 971 972 unsigned long arch_randomize_brk(struct mm_struct *mm) 973 { 974 return randomize_page(mm->brk, 0x02000000); 975 } 976 977 /* 978 * Called from fs/proc with a reference on @p to find the function 979 * which called into schedule(). This needs to be done carefully 980 * because the task might wake up and we might look at a stack 981 * changing under us. 982 */ 983 unsigned long __get_wchan(struct task_struct *p) 984 { 985 struct unwind_state state; 986 unsigned long addr = 0; 987 988 if (!try_get_task_stack(p)) 989 return 0; 990 991 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state); 992 unwind_next_frame(&state)) { 993 addr = unwind_get_return_address(&state); 994 if (!addr) 995 break; 996 if (in_sched_functions(addr)) 997 continue; 998 break; 999 } 1000 1001 put_task_stack(p); 1002 1003 return addr; 1004 } 1005 1006 long do_arch_prctl_common(int option, unsigned long arg2) 1007 { 1008 switch (option) { 1009 case ARCH_GET_CPUID: 1010 return get_cpuid_mode(); 1011 case ARCH_SET_CPUID: 1012 return set_cpuid_mode(arg2); 1013 case ARCH_GET_XCOMP_SUPP: 1014 case ARCH_GET_XCOMP_PERM: 1015 case ARCH_REQ_XCOMP_PERM: 1016 case ARCH_GET_XCOMP_GUEST_PERM: 1017 case ARCH_REQ_XCOMP_GUEST_PERM: 1018 return fpu_xstate_prctl(option, arg2); 1019 } 1020 1021 return -EINVAL; 1022 } 1023