xref: /linux/arch/x86/kernel/process.c (revision ee665ecca6d6775f65b1a4154c34f551f62cec52)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/ftrace.h>
12 #include <asm/system.h>
13 #include <asm/apic.h>
14 #include <asm/idle.h>
15 #include <asm/uaccess.h>
16 #include <asm/i387.h>
17 
18 unsigned long idle_halt;
19 EXPORT_SYMBOL(idle_halt);
20 unsigned long idle_nomwait;
21 EXPORT_SYMBOL(idle_nomwait);
22 
23 struct kmem_cache *task_xstate_cachep;
24 
25 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
26 {
27 	*dst = *src;
28 	if (src->thread.xstate) {
29 		dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
30 						      GFP_KERNEL);
31 		if (!dst->thread.xstate)
32 			return -ENOMEM;
33 		WARN_ON((unsigned long)dst->thread.xstate & 15);
34 		memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
35 	}
36 	return 0;
37 }
38 
39 void free_thread_xstate(struct task_struct *tsk)
40 {
41 	if (tsk->thread.xstate) {
42 		kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
43 		tsk->thread.xstate = NULL;
44 	}
45 }
46 
47 void free_thread_info(struct thread_info *ti)
48 {
49 	free_thread_xstate(ti->task);
50 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
51 }
52 
53 void arch_task_cache_init(void)
54 {
55         task_xstate_cachep =
56         	kmem_cache_create("task_xstate", xstate_size,
57 				  __alignof__(union thread_xstate),
58 				  SLAB_PANIC, NULL);
59 }
60 
61 /*
62  * Free current thread data structures etc..
63  */
64 void exit_thread(void)
65 {
66 	struct task_struct *me = current;
67 	struct thread_struct *t = &me->thread;
68 
69 	if (me->thread.io_bitmap_ptr) {
70 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
71 
72 		kfree(t->io_bitmap_ptr);
73 		t->io_bitmap_ptr = NULL;
74 		clear_thread_flag(TIF_IO_BITMAP);
75 		/*
76 		 * Careful, clear this in the TSS too:
77 		 */
78 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
79 		t->io_bitmap_max = 0;
80 		put_cpu();
81 	}
82 
83 	ds_exit_thread(current);
84 }
85 
86 void flush_thread(void)
87 {
88 	struct task_struct *tsk = current;
89 
90 #ifdef CONFIG_X86_64
91 	if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
92 		clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
93 		if (test_tsk_thread_flag(tsk, TIF_IA32)) {
94 			clear_tsk_thread_flag(tsk, TIF_IA32);
95 		} else {
96 			set_tsk_thread_flag(tsk, TIF_IA32);
97 			current_thread_info()->status |= TS_COMPAT;
98 		}
99 	}
100 #endif
101 
102 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
103 
104 	tsk->thread.debugreg0 = 0;
105 	tsk->thread.debugreg1 = 0;
106 	tsk->thread.debugreg2 = 0;
107 	tsk->thread.debugreg3 = 0;
108 	tsk->thread.debugreg6 = 0;
109 	tsk->thread.debugreg7 = 0;
110 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
111 	/*
112 	 * Forget coprocessor state..
113 	 */
114 	tsk->fpu_counter = 0;
115 	clear_fpu(tsk);
116 	clear_used_math();
117 }
118 
119 static void hard_disable_TSC(void)
120 {
121 	write_cr4(read_cr4() | X86_CR4_TSD);
122 }
123 
124 void disable_TSC(void)
125 {
126 	preempt_disable();
127 	if (!test_and_set_thread_flag(TIF_NOTSC))
128 		/*
129 		 * Must flip the CPU state synchronously with
130 		 * TIF_NOTSC in the current running context.
131 		 */
132 		hard_disable_TSC();
133 	preempt_enable();
134 }
135 
136 static void hard_enable_TSC(void)
137 {
138 	write_cr4(read_cr4() & ~X86_CR4_TSD);
139 }
140 
141 static void enable_TSC(void)
142 {
143 	preempt_disable();
144 	if (test_and_clear_thread_flag(TIF_NOTSC))
145 		/*
146 		 * Must flip the CPU state synchronously with
147 		 * TIF_NOTSC in the current running context.
148 		 */
149 		hard_enable_TSC();
150 	preempt_enable();
151 }
152 
153 int get_tsc_mode(unsigned long adr)
154 {
155 	unsigned int val;
156 
157 	if (test_thread_flag(TIF_NOTSC))
158 		val = PR_TSC_SIGSEGV;
159 	else
160 		val = PR_TSC_ENABLE;
161 
162 	return put_user(val, (unsigned int __user *)adr);
163 }
164 
165 int set_tsc_mode(unsigned int val)
166 {
167 	if (val == PR_TSC_SIGSEGV)
168 		disable_TSC();
169 	else if (val == PR_TSC_ENABLE)
170 		enable_TSC();
171 	else
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 
177 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178 		      struct tss_struct *tss)
179 {
180 	struct thread_struct *prev, *next;
181 
182 	prev = &prev_p->thread;
183 	next = &next_p->thread;
184 
185 	if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
186 	    test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
187 		ds_switch_to(prev_p, next_p);
188 	else if (next->debugctlmsr != prev->debugctlmsr)
189 		update_debugctlmsr(next->debugctlmsr);
190 
191 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
192 		set_debugreg(next->debugreg0, 0);
193 		set_debugreg(next->debugreg1, 1);
194 		set_debugreg(next->debugreg2, 2);
195 		set_debugreg(next->debugreg3, 3);
196 		/* no 4 and 5 */
197 		set_debugreg(next->debugreg6, 6);
198 		set_debugreg(next->debugreg7, 7);
199 	}
200 
201 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
202 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
203 		/* prev and next are different */
204 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
205 			hard_disable_TSC();
206 		else
207 			hard_enable_TSC();
208 	}
209 
210 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
211 		/*
212 		 * Copy the relevant range of the IO bitmap.
213 		 * Normally this is 128 bytes or less:
214 		 */
215 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
216 		       max(prev->io_bitmap_max, next->io_bitmap_max));
217 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
218 		/*
219 		 * Clear any possible leftover bits:
220 		 */
221 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
222 	}
223 }
224 
225 int sys_fork(struct pt_regs *regs)
226 {
227 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
228 }
229 
230 /*
231  * This is trivial, and on the face of it looks like it
232  * could equally well be done in user mode.
233  *
234  * Not so, for quite unobvious reasons - register pressure.
235  * In user mode vfork() cannot have a stack frame, and if
236  * done by calling the "clone()" system call directly, you
237  * do not have enough call-clobbered registers to hold all
238  * the information you need.
239  */
240 int sys_vfork(struct pt_regs *regs)
241 {
242 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
243 		       NULL, NULL);
244 }
245 
246 
247 /*
248  * Idle related variables and functions
249  */
250 unsigned long boot_option_idle_override = 0;
251 EXPORT_SYMBOL(boot_option_idle_override);
252 
253 /*
254  * Powermanagement idle function, if any..
255  */
256 void (*pm_idle)(void);
257 EXPORT_SYMBOL(pm_idle);
258 
259 #ifdef CONFIG_X86_32
260 /*
261  * This halt magic was a workaround for ancient floppy DMA
262  * wreckage. It should be safe to remove.
263  */
264 static int hlt_counter;
265 void disable_hlt(void)
266 {
267 	hlt_counter++;
268 }
269 EXPORT_SYMBOL(disable_hlt);
270 
271 void enable_hlt(void)
272 {
273 	hlt_counter--;
274 }
275 EXPORT_SYMBOL(enable_hlt);
276 
277 static inline int hlt_use_halt(void)
278 {
279 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
280 }
281 #else
282 static inline int hlt_use_halt(void)
283 {
284 	return 1;
285 }
286 #endif
287 
288 /*
289  * We use this if we don't have any better
290  * idle routine..
291  */
292 void default_idle(void)
293 {
294 	if (hlt_use_halt()) {
295 		struct power_trace it;
296 
297 		trace_power_start(&it, POWER_CSTATE, 1);
298 		current_thread_info()->status &= ~TS_POLLING;
299 		/*
300 		 * TS_POLLING-cleared state must be visible before we
301 		 * test NEED_RESCHED:
302 		 */
303 		smp_mb();
304 
305 		if (!need_resched())
306 			safe_halt();	/* enables interrupts racelessly */
307 		else
308 			local_irq_enable();
309 		current_thread_info()->status |= TS_POLLING;
310 		trace_power_end(&it);
311 	} else {
312 		local_irq_enable();
313 		/* loop is done by the caller */
314 		cpu_relax();
315 	}
316 }
317 #ifdef CONFIG_APM_MODULE
318 EXPORT_SYMBOL(default_idle);
319 #endif
320 
321 void stop_this_cpu(void *dummy)
322 {
323 	local_irq_disable();
324 	/*
325 	 * Remove this CPU:
326 	 */
327 	cpu_clear(smp_processor_id(), cpu_online_map);
328 	disable_local_APIC();
329 
330 	for (;;) {
331 		if (hlt_works(smp_processor_id()))
332 			halt();
333 	}
334 }
335 
336 static void do_nothing(void *unused)
337 {
338 }
339 
340 /*
341  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
342  * pm_idle and update to new pm_idle value. Required while changing pm_idle
343  * handler on SMP systems.
344  *
345  * Caller must have changed pm_idle to the new value before the call. Old
346  * pm_idle value will not be used by any CPU after the return of this function.
347  */
348 void cpu_idle_wait(void)
349 {
350 	smp_mb();
351 	/* kick all the CPUs so that they exit out of pm_idle */
352 	smp_call_function(do_nothing, NULL, 1);
353 }
354 EXPORT_SYMBOL_GPL(cpu_idle_wait);
355 
356 /*
357  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
358  * which can obviate IPI to trigger checking of need_resched.
359  * We execute MONITOR against need_resched and enter optimized wait state
360  * through MWAIT. Whenever someone changes need_resched, we would be woken
361  * up from MWAIT (without an IPI).
362  *
363  * New with Core Duo processors, MWAIT can take some hints based on CPU
364  * capability.
365  */
366 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
367 {
368 	struct power_trace it;
369 
370 	trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
371 	if (!need_resched()) {
372 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
373 			clflush((void *)&current_thread_info()->flags);
374 
375 		__monitor((void *)&current_thread_info()->flags, 0, 0);
376 		smp_mb();
377 		if (!need_resched())
378 			__mwait(ax, cx);
379 	}
380 	trace_power_end(&it);
381 }
382 
383 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
384 static void mwait_idle(void)
385 {
386 	struct power_trace it;
387 	if (!need_resched()) {
388 		trace_power_start(&it, POWER_CSTATE, 1);
389 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
390 			clflush((void *)&current_thread_info()->flags);
391 
392 		__monitor((void *)&current_thread_info()->flags, 0, 0);
393 		smp_mb();
394 		if (!need_resched())
395 			__sti_mwait(0, 0);
396 		else
397 			local_irq_enable();
398 		trace_power_end(&it);
399 	} else
400 		local_irq_enable();
401 }
402 
403 /*
404  * On SMP it's slightly faster (but much more power-consuming!)
405  * to poll the ->work.need_resched flag instead of waiting for the
406  * cross-CPU IPI to arrive. Use this option with caution.
407  */
408 static void poll_idle(void)
409 {
410 	struct power_trace it;
411 
412 	trace_power_start(&it, POWER_CSTATE, 0);
413 	local_irq_enable();
414 	while (!need_resched())
415 		cpu_relax();
416 	trace_power_end(&it);
417 }
418 
419 /*
420  * mwait selection logic:
421  *
422  * It depends on the CPU. For AMD CPUs that support MWAIT this is
423  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
424  * then depend on a clock divisor and current Pstate of the core. If
425  * all cores of a processor are in halt state (C1) the processor can
426  * enter the C1E (C1 enhanced) state. If mwait is used this will never
427  * happen.
428  *
429  * idle=mwait overrides this decision and forces the usage of mwait.
430  */
431 static int __cpuinitdata force_mwait;
432 
433 #define MWAIT_INFO			0x05
434 #define MWAIT_ECX_EXTENDED_INFO		0x01
435 #define MWAIT_EDX_C1			0xf0
436 
437 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
438 {
439 	u32 eax, ebx, ecx, edx;
440 
441 	if (force_mwait)
442 		return 1;
443 
444 	if (c->cpuid_level < MWAIT_INFO)
445 		return 0;
446 
447 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
448 	/* Check, whether EDX has extended info about MWAIT */
449 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
450 		return 1;
451 
452 	/*
453 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
454 	 * C1  supports MWAIT
455 	 */
456 	return (edx & MWAIT_EDX_C1);
457 }
458 
459 /*
460  * Check for AMD CPUs, which have potentially C1E support
461  */
462 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
463 {
464 	if (c->x86_vendor != X86_VENDOR_AMD)
465 		return 0;
466 
467 	if (c->x86 < 0x0F)
468 		return 0;
469 
470 	/* Family 0x0f models < rev F do not have C1E */
471 	if (c->x86 == 0x0f && c->x86_model < 0x40)
472 		return 0;
473 
474 	return 1;
475 }
476 
477 static cpumask_t c1e_mask = CPU_MASK_NONE;
478 static int c1e_detected;
479 
480 void c1e_remove_cpu(int cpu)
481 {
482 	cpu_clear(cpu, c1e_mask);
483 }
484 
485 /*
486  * C1E aware idle routine. We check for C1E active in the interrupt
487  * pending message MSR. If we detect C1E, then we handle it the same
488  * way as C3 power states (local apic timer and TSC stop)
489  */
490 static void c1e_idle(void)
491 {
492 	if (need_resched())
493 		return;
494 
495 	if (!c1e_detected) {
496 		u32 lo, hi;
497 
498 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
499 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
500 			c1e_detected = 1;
501 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
502 				mark_tsc_unstable("TSC halt in AMD C1E");
503 			printk(KERN_INFO "System has AMD C1E enabled\n");
504 			set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
505 		}
506 	}
507 
508 	if (c1e_detected) {
509 		int cpu = smp_processor_id();
510 
511 		if (!cpu_isset(cpu, c1e_mask)) {
512 			cpu_set(cpu, c1e_mask);
513 			/*
514 			 * Force broadcast so ACPI can not interfere. Needs
515 			 * to run with interrupts enabled as it uses
516 			 * smp_function_call.
517 			 */
518 			local_irq_enable();
519 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
520 					   &cpu);
521 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
522 			       cpu);
523 			local_irq_disable();
524 		}
525 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
526 
527 		default_idle();
528 
529 		/*
530 		 * The switch back from broadcast mode needs to be
531 		 * called with interrupts disabled.
532 		 */
533 		 local_irq_disable();
534 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
535 		 local_irq_enable();
536 	} else
537 		default_idle();
538 }
539 
540 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
541 {
542 #ifdef CONFIG_SMP
543 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
544 		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
545 			" performance may degrade.\n");
546 	}
547 #endif
548 	if (pm_idle)
549 		return;
550 
551 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
552 		/*
553 		 * One CPU supports mwait => All CPUs supports mwait
554 		 */
555 		printk(KERN_INFO "using mwait in idle threads.\n");
556 		pm_idle = mwait_idle;
557 	} else if (check_c1e_idle(c)) {
558 		printk(KERN_INFO "using C1E aware idle routine\n");
559 		pm_idle = c1e_idle;
560 	} else
561 		pm_idle = default_idle;
562 }
563 
564 static int __init idle_setup(char *str)
565 {
566 	if (!str)
567 		return -EINVAL;
568 
569 	if (!strcmp(str, "poll")) {
570 		printk("using polling idle threads.\n");
571 		pm_idle = poll_idle;
572 	} else if (!strcmp(str, "mwait"))
573 		force_mwait = 1;
574 	else if (!strcmp(str, "halt")) {
575 		/*
576 		 * When the boot option of idle=halt is added, halt is
577 		 * forced to be used for CPU idle. In such case CPU C2/C3
578 		 * won't be used again.
579 		 * To continue to load the CPU idle driver, don't touch
580 		 * the boot_option_idle_override.
581 		 */
582 		pm_idle = default_idle;
583 		idle_halt = 1;
584 		return 0;
585 	} else if (!strcmp(str, "nomwait")) {
586 		/*
587 		 * If the boot option of "idle=nomwait" is added,
588 		 * it means that mwait will be disabled for CPU C2/C3
589 		 * states. In such case it won't touch the variable
590 		 * of boot_option_idle_override.
591 		 */
592 		idle_nomwait = 1;
593 		return 0;
594 	} else
595 		return -1;
596 
597 	boot_option_idle_override = 1;
598 	return 0;
599 }
600 early_param("idle", idle_setup);
601 
602