1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <trace/events/power.h> 26 #include <linux/hw_breakpoint.h> 27 #include <asm/cpu.h> 28 #include <asm/apic.h> 29 #include <asm/syscalls.h> 30 #include <linux/uaccess.h> 31 #include <asm/mwait.h> 32 #include <asm/fpu/internal.h> 33 #include <asm/debugreg.h> 34 #include <asm/nmi.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mce.h> 37 #include <asm/vm86.h> 38 #include <asm/switch_to.h> 39 #include <asm/desc.h> 40 #include <asm/prctl.h> 41 #include <asm/spec-ctrl.h> 42 43 #include "process.h" 44 45 /* 46 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 47 * no more per-task TSS's. The TSS size is kept cacheline-aligned 48 * so they are allowed to end up in the .data..cacheline_aligned 49 * section. Since TSS's are completely CPU-local, we want them 50 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 51 */ 52 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 53 .x86_tss = { 54 /* 55 * .sp0 is only used when entering ring 0 from a lower 56 * privilege level. Since the init task never runs anything 57 * but ring 0 code, there is no need for a valid value here. 58 * Poison it. 59 */ 60 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 61 62 /* 63 * .sp1 is cpu_current_top_of_stack. The init task never 64 * runs user code, but cpu_current_top_of_stack should still 65 * be well defined before the first context switch. 66 */ 67 .sp1 = TOP_OF_INIT_STACK, 68 69 #ifdef CONFIG_X86_32 70 .ss0 = __KERNEL_DS, 71 .ss1 = __KERNEL_CS, 72 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 73 #endif 74 }, 75 #ifdef CONFIG_X86_32 76 /* 77 * Note that the .io_bitmap member must be extra-big. This is because 78 * the CPU will access an additional byte beyond the end of the IO 79 * permission bitmap. The extra byte must be all 1 bits, and must 80 * be within the limit. 81 */ 82 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 83 #endif 84 }; 85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 86 87 DEFINE_PER_CPU(bool, __tss_limit_invalid); 88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 89 90 /* 91 * this gets called so that we can store lazy state into memory and copy the 92 * current task into the new thread. 93 */ 94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 95 { 96 memcpy(dst, src, arch_task_struct_size); 97 #ifdef CONFIG_VM86 98 dst->thread.vm86 = NULL; 99 #endif 100 101 return fpu__copy(&dst->thread.fpu, &src->thread.fpu); 102 } 103 104 /* 105 * Free current thread data structures etc.. 106 */ 107 void exit_thread(struct task_struct *tsk) 108 { 109 struct thread_struct *t = &tsk->thread; 110 unsigned long *bp = t->io_bitmap_ptr; 111 struct fpu *fpu = &t->fpu; 112 113 if (bp) { 114 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu()); 115 116 t->io_bitmap_ptr = NULL; 117 clear_thread_flag(TIF_IO_BITMAP); 118 /* 119 * Careful, clear this in the TSS too: 120 */ 121 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 122 t->io_bitmap_max = 0; 123 put_cpu(); 124 kfree(bp); 125 } 126 127 free_vm86(t); 128 129 fpu__drop(fpu); 130 } 131 132 void flush_thread(void) 133 { 134 struct task_struct *tsk = current; 135 136 flush_ptrace_hw_breakpoint(tsk); 137 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 138 139 fpu__clear(&tsk->thread.fpu); 140 } 141 142 void disable_TSC(void) 143 { 144 preempt_disable(); 145 if (!test_and_set_thread_flag(TIF_NOTSC)) 146 /* 147 * Must flip the CPU state synchronously with 148 * TIF_NOTSC in the current running context. 149 */ 150 cr4_set_bits(X86_CR4_TSD); 151 preempt_enable(); 152 } 153 154 static void enable_TSC(void) 155 { 156 preempt_disable(); 157 if (test_and_clear_thread_flag(TIF_NOTSC)) 158 /* 159 * Must flip the CPU state synchronously with 160 * TIF_NOTSC in the current running context. 161 */ 162 cr4_clear_bits(X86_CR4_TSD); 163 preempt_enable(); 164 } 165 166 int get_tsc_mode(unsigned long adr) 167 { 168 unsigned int val; 169 170 if (test_thread_flag(TIF_NOTSC)) 171 val = PR_TSC_SIGSEGV; 172 else 173 val = PR_TSC_ENABLE; 174 175 return put_user(val, (unsigned int __user *)adr); 176 } 177 178 int set_tsc_mode(unsigned int val) 179 { 180 if (val == PR_TSC_SIGSEGV) 181 disable_TSC(); 182 else if (val == PR_TSC_ENABLE) 183 enable_TSC(); 184 else 185 return -EINVAL; 186 187 return 0; 188 } 189 190 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 191 192 static void set_cpuid_faulting(bool on) 193 { 194 u64 msrval; 195 196 msrval = this_cpu_read(msr_misc_features_shadow); 197 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 198 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 199 this_cpu_write(msr_misc_features_shadow, msrval); 200 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 201 } 202 203 static void disable_cpuid(void) 204 { 205 preempt_disable(); 206 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 207 /* 208 * Must flip the CPU state synchronously with 209 * TIF_NOCPUID in the current running context. 210 */ 211 set_cpuid_faulting(true); 212 } 213 preempt_enable(); 214 } 215 216 static void enable_cpuid(void) 217 { 218 preempt_disable(); 219 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 220 /* 221 * Must flip the CPU state synchronously with 222 * TIF_NOCPUID in the current running context. 223 */ 224 set_cpuid_faulting(false); 225 } 226 preempt_enable(); 227 } 228 229 static int get_cpuid_mode(void) 230 { 231 return !test_thread_flag(TIF_NOCPUID); 232 } 233 234 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 235 { 236 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT)) 237 return -ENODEV; 238 239 if (cpuid_enabled) 240 enable_cpuid(); 241 else 242 disable_cpuid(); 243 244 return 0; 245 } 246 247 /* 248 * Called immediately after a successful exec. 249 */ 250 void arch_setup_new_exec(void) 251 { 252 /* If cpuid was previously disabled for this task, re-enable it. */ 253 if (test_thread_flag(TIF_NOCPUID)) 254 enable_cpuid(); 255 } 256 257 static inline void switch_to_bitmap(struct thread_struct *prev, 258 struct thread_struct *next, 259 unsigned long tifp, unsigned long tifn) 260 { 261 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 262 263 if (tifn & _TIF_IO_BITMAP) { 264 /* 265 * Copy the relevant range of the IO bitmap. 266 * Normally this is 128 bytes or less: 267 */ 268 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 269 max(prev->io_bitmap_max, next->io_bitmap_max)); 270 /* 271 * Make sure that the TSS limit is correct for the CPU 272 * to notice the IO bitmap. 273 */ 274 refresh_tss_limit(); 275 } else if (tifp & _TIF_IO_BITMAP) { 276 /* 277 * Clear any possible leftover bits: 278 */ 279 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 280 } 281 } 282 283 #ifdef CONFIG_SMP 284 285 struct ssb_state { 286 struct ssb_state *shared_state; 287 raw_spinlock_t lock; 288 unsigned int disable_state; 289 unsigned long local_state; 290 }; 291 292 #define LSTATE_SSB 0 293 294 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 295 296 void speculative_store_bypass_ht_init(void) 297 { 298 struct ssb_state *st = this_cpu_ptr(&ssb_state); 299 unsigned int this_cpu = smp_processor_id(); 300 unsigned int cpu; 301 302 st->local_state = 0; 303 304 /* 305 * Shared state setup happens once on the first bringup 306 * of the CPU. It's not destroyed on CPU hotunplug. 307 */ 308 if (st->shared_state) 309 return; 310 311 raw_spin_lock_init(&st->lock); 312 313 /* 314 * Go over HT siblings and check whether one of them has set up the 315 * shared state pointer already. 316 */ 317 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 318 if (cpu == this_cpu) 319 continue; 320 321 if (!per_cpu(ssb_state, cpu).shared_state) 322 continue; 323 324 /* Link it to the state of the sibling: */ 325 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 326 return; 327 } 328 329 /* 330 * First HT sibling to come up on the core. Link shared state of 331 * the first HT sibling to itself. The siblings on the same core 332 * which come up later will see the shared state pointer and link 333 * themself to the state of this CPU. 334 */ 335 st->shared_state = st; 336 } 337 338 /* 339 * Logic is: First HT sibling enables SSBD for both siblings in the core 340 * and last sibling to disable it, disables it for the whole core. This how 341 * MSR_SPEC_CTRL works in "hardware": 342 * 343 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 344 */ 345 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 346 { 347 struct ssb_state *st = this_cpu_ptr(&ssb_state); 348 u64 msr = x86_amd_ls_cfg_base; 349 350 if (!static_cpu_has(X86_FEATURE_ZEN)) { 351 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 352 wrmsrl(MSR_AMD64_LS_CFG, msr); 353 return; 354 } 355 356 if (tifn & _TIF_SSBD) { 357 /* 358 * Since this can race with prctl(), block reentry on the 359 * same CPU. 360 */ 361 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 362 return; 363 364 msr |= x86_amd_ls_cfg_ssbd_mask; 365 366 raw_spin_lock(&st->shared_state->lock); 367 /* First sibling enables SSBD: */ 368 if (!st->shared_state->disable_state) 369 wrmsrl(MSR_AMD64_LS_CFG, msr); 370 st->shared_state->disable_state++; 371 raw_spin_unlock(&st->shared_state->lock); 372 } else { 373 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 374 return; 375 376 raw_spin_lock(&st->shared_state->lock); 377 st->shared_state->disable_state--; 378 if (!st->shared_state->disable_state) 379 wrmsrl(MSR_AMD64_LS_CFG, msr); 380 raw_spin_unlock(&st->shared_state->lock); 381 } 382 } 383 #else 384 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 385 { 386 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 387 388 wrmsrl(MSR_AMD64_LS_CFG, msr); 389 } 390 #endif 391 392 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 393 { 394 /* 395 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 396 * so ssbd_tif_to_spec_ctrl() just works. 397 */ 398 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 399 } 400 401 /* 402 * Update the MSRs managing speculation control, during context switch. 403 * 404 * tifp: Previous task's thread flags 405 * tifn: Next task's thread flags 406 */ 407 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 408 unsigned long tifn) 409 { 410 unsigned long tif_diff = tifp ^ tifn; 411 u64 msr = x86_spec_ctrl_base; 412 bool updmsr = false; 413 414 /* 415 * If TIF_SSBD is different, select the proper mitigation 416 * method. Note that if SSBD mitigation is disabled or permanentely 417 * enabled this branch can't be taken because nothing can set 418 * TIF_SSBD. 419 */ 420 if (tif_diff & _TIF_SSBD) { 421 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 422 amd_set_ssb_virt_state(tifn); 423 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 424 amd_set_core_ssb_state(tifn); 425 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 426 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 427 msr |= ssbd_tif_to_spec_ctrl(tifn); 428 updmsr = true; 429 } 430 } 431 432 /* 433 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled, 434 * otherwise avoid the MSR write. 435 */ 436 if (IS_ENABLED(CONFIG_SMP) && 437 static_branch_unlikely(&switch_to_cond_stibp)) { 438 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 439 msr |= stibp_tif_to_spec_ctrl(tifn); 440 } 441 442 if (updmsr) 443 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 444 } 445 446 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 447 { 448 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 449 if (task_spec_ssb_disable(tsk)) 450 set_tsk_thread_flag(tsk, TIF_SSBD); 451 else 452 clear_tsk_thread_flag(tsk, TIF_SSBD); 453 454 if (task_spec_ib_disable(tsk)) 455 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 456 else 457 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 458 } 459 /* Return the updated threadinfo flags*/ 460 return task_thread_info(tsk)->flags; 461 } 462 463 void speculation_ctrl_update(unsigned long tif) 464 { 465 /* Forced update. Make sure all relevant TIF flags are different */ 466 preempt_disable(); 467 __speculation_ctrl_update(~tif, tif); 468 preempt_enable(); 469 } 470 471 /* Called from seccomp/prctl update */ 472 void speculation_ctrl_update_current(void) 473 { 474 preempt_disable(); 475 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 476 preempt_enable(); 477 } 478 479 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 480 { 481 struct thread_struct *prev, *next; 482 unsigned long tifp, tifn; 483 484 prev = &prev_p->thread; 485 next = &next_p->thread; 486 487 tifn = READ_ONCE(task_thread_info(next_p)->flags); 488 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 489 switch_to_bitmap(prev, next, tifp, tifn); 490 491 propagate_user_return_notify(prev_p, next_p); 492 493 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 494 arch_has_block_step()) { 495 unsigned long debugctl, msk; 496 497 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 498 debugctl &= ~DEBUGCTLMSR_BTF; 499 msk = tifn & _TIF_BLOCKSTEP; 500 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 501 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 502 } 503 504 if ((tifp ^ tifn) & _TIF_NOTSC) 505 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 506 507 if ((tifp ^ tifn) & _TIF_NOCPUID) 508 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 509 510 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 511 __speculation_ctrl_update(tifp, tifn); 512 } else { 513 speculation_ctrl_update_tif(prev_p); 514 tifn = speculation_ctrl_update_tif(next_p); 515 516 /* Enforce MSR update to ensure consistent state */ 517 __speculation_ctrl_update(~tifn, tifn); 518 } 519 } 520 521 /* 522 * Idle related variables and functions 523 */ 524 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 525 EXPORT_SYMBOL(boot_option_idle_override); 526 527 static void (*x86_idle)(void); 528 529 #ifndef CONFIG_SMP 530 static inline void play_dead(void) 531 { 532 BUG(); 533 } 534 #endif 535 536 void arch_cpu_idle_enter(void) 537 { 538 tsc_verify_tsc_adjust(false); 539 local_touch_nmi(); 540 } 541 542 void arch_cpu_idle_dead(void) 543 { 544 play_dead(); 545 } 546 547 /* 548 * Called from the generic idle code. 549 */ 550 void arch_cpu_idle(void) 551 { 552 x86_idle(); 553 } 554 555 /* 556 * We use this if we don't have any better idle routine.. 557 */ 558 void __cpuidle default_idle(void) 559 { 560 trace_cpu_idle_rcuidle(1, smp_processor_id()); 561 safe_halt(); 562 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 563 } 564 #ifdef CONFIG_APM_MODULE 565 EXPORT_SYMBOL(default_idle); 566 #endif 567 568 #ifdef CONFIG_XEN 569 bool xen_set_default_idle(void) 570 { 571 bool ret = !!x86_idle; 572 573 x86_idle = default_idle; 574 575 return ret; 576 } 577 #endif 578 579 void stop_this_cpu(void *dummy) 580 { 581 local_irq_disable(); 582 /* 583 * Remove this CPU: 584 */ 585 set_cpu_online(smp_processor_id(), false); 586 disable_local_APIC(); 587 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 588 589 /* 590 * Use wbinvd on processors that support SME. This provides support 591 * for performing a successful kexec when going from SME inactive 592 * to SME active (or vice-versa). The cache must be cleared so that 593 * if there are entries with the same physical address, both with and 594 * without the encryption bit, they don't race each other when flushed 595 * and potentially end up with the wrong entry being committed to 596 * memory. 597 */ 598 if (boot_cpu_has(X86_FEATURE_SME)) 599 native_wbinvd(); 600 for (;;) { 601 /* 602 * Use native_halt() so that memory contents don't change 603 * (stack usage and variables) after possibly issuing the 604 * native_wbinvd() above. 605 */ 606 native_halt(); 607 } 608 } 609 610 /* 611 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 612 * states (local apic timer and TSC stop). 613 */ 614 static void amd_e400_idle(void) 615 { 616 /* 617 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 618 * gets set after static_cpu_has() places have been converted via 619 * alternatives. 620 */ 621 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 622 default_idle(); 623 return; 624 } 625 626 tick_broadcast_enter(); 627 628 default_idle(); 629 630 /* 631 * The switch back from broadcast mode needs to be called with 632 * interrupts disabled. 633 */ 634 local_irq_disable(); 635 tick_broadcast_exit(); 636 local_irq_enable(); 637 } 638 639 /* 640 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 641 * We can't rely on cpuidle installing MWAIT, because it will not load 642 * on systems that support only C1 -- so the boot default must be MWAIT. 643 * 644 * Some AMD machines are the opposite, they depend on using HALT. 645 * 646 * So for default C1, which is used during boot until cpuidle loads, 647 * use MWAIT-C1 on Intel HW that has it, else use HALT. 648 */ 649 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 650 { 651 if (c->x86_vendor != X86_VENDOR_INTEL) 652 return 0; 653 654 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) 655 return 0; 656 657 return 1; 658 } 659 660 /* 661 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 662 * with interrupts enabled and no flags, which is backwards compatible with the 663 * original MWAIT implementation. 664 */ 665 static __cpuidle void mwait_idle(void) 666 { 667 if (!current_set_polling_and_test()) { 668 trace_cpu_idle_rcuidle(1, smp_processor_id()); 669 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 670 mb(); /* quirk */ 671 clflush((void *)¤t_thread_info()->flags); 672 mb(); /* quirk */ 673 } 674 675 __monitor((void *)¤t_thread_info()->flags, 0, 0); 676 if (!need_resched()) 677 __sti_mwait(0, 0); 678 else 679 local_irq_enable(); 680 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 681 } else { 682 local_irq_enable(); 683 } 684 __current_clr_polling(); 685 } 686 687 void select_idle_routine(const struct cpuinfo_x86 *c) 688 { 689 #ifdef CONFIG_SMP 690 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 691 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 692 #endif 693 if (x86_idle || boot_option_idle_override == IDLE_POLL) 694 return; 695 696 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 697 pr_info("using AMD E400 aware idle routine\n"); 698 x86_idle = amd_e400_idle; 699 } else if (prefer_mwait_c1_over_halt(c)) { 700 pr_info("using mwait in idle threads\n"); 701 x86_idle = mwait_idle; 702 } else 703 x86_idle = default_idle; 704 } 705 706 void amd_e400_c1e_apic_setup(void) 707 { 708 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 709 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 710 local_irq_disable(); 711 tick_broadcast_force(); 712 local_irq_enable(); 713 } 714 } 715 716 void __init arch_post_acpi_subsys_init(void) 717 { 718 u32 lo, hi; 719 720 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 721 return; 722 723 /* 724 * AMD E400 detection needs to happen after ACPI has been enabled. If 725 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 726 * MSR_K8_INT_PENDING_MSG. 727 */ 728 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 729 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 730 return; 731 732 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 733 734 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 735 mark_tsc_unstable("TSC halt in AMD C1E"); 736 pr_info("System has AMD C1E enabled\n"); 737 } 738 739 static int __init idle_setup(char *str) 740 { 741 if (!str) 742 return -EINVAL; 743 744 if (!strcmp(str, "poll")) { 745 pr_info("using polling idle threads\n"); 746 boot_option_idle_override = IDLE_POLL; 747 cpu_idle_poll_ctrl(true); 748 } else if (!strcmp(str, "halt")) { 749 /* 750 * When the boot option of idle=halt is added, halt is 751 * forced to be used for CPU idle. In such case CPU C2/C3 752 * won't be used again. 753 * To continue to load the CPU idle driver, don't touch 754 * the boot_option_idle_override. 755 */ 756 x86_idle = default_idle; 757 boot_option_idle_override = IDLE_HALT; 758 } else if (!strcmp(str, "nomwait")) { 759 /* 760 * If the boot option of "idle=nomwait" is added, 761 * it means that mwait will be disabled for CPU C2/C3 762 * states. In such case it won't touch the variable 763 * of boot_option_idle_override. 764 */ 765 boot_option_idle_override = IDLE_NOMWAIT; 766 } else 767 return -1; 768 769 return 0; 770 } 771 early_param("idle", idle_setup); 772 773 unsigned long arch_align_stack(unsigned long sp) 774 { 775 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 776 sp -= get_random_int() % 8192; 777 return sp & ~0xf; 778 } 779 780 unsigned long arch_randomize_brk(struct mm_struct *mm) 781 { 782 return randomize_page(mm->brk, 0x02000000); 783 } 784 785 /* 786 * Called from fs/proc with a reference on @p to find the function 787 * which called into schedule(). This needs to be done carefully 788 * because the task might wake up and we might look at a stack 789 * changing under us. 790 */ 791 unsigned long get_wchan(struct task_struct *p) 792 { 793 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 794 int count = 0; 795 796 if (!p || p == current || p->state == TASK_RUNNING) 797 return 0; 798 799 if (!try_get_task_stack(p)) 800 return 0; 801 802 start = (unsigned long)task_stack_page(p); 803 if (!start) 804 goto out; 805 806 /* 807 * Layout of the stack page: 808 * 809 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 810 * PADDING 811 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 812 * stack 813 * ----------- bottom = start 814 * 815 * The tasks stack pointer points at the location where the 816 * framepointer is stored. The data on the stack is: 817 * ... IP FP ... IP FP 818 * 819 * We need to read FP and IP, so we need to adjust the upper 820 * bound by another unsigned long. 821 */ 822 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 823 top -= 2 * sizeof(unsigned long); 824 bottom = start; 825 826 sp = READ_ONCE(p->thread.sp); 827 if (sp < bottom || sp > top) 828 goto out; 829 830 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 831 do { 832 if (fp < bottom || fp > top) 833 goto out; 834 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 835 if (!in_sched_functions(ip)) { 836 ret = ip; 837 goto out; 838 } 839 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 840 } while (count++ < 16 && p->state != TASK_RUNNING); 841 842 out: 843 put_task_stack(p); 844 return ret; 845 } 846 847 long do_arch_prctl_common(struct task_struct *task, int option, 848 unsigned long cpuid_enabled) 849 { 850 switch (option) { 851 case ARCH_GET_CPUID: 852 return get_cpuid_mode(); 853 case ARCH_SET_CPUID: 854 return set_cpuid_mode(task, cpuid_enabled); 855 } 856 857 return -EINVAL; 858 } 859