xref: /linux/arch/x86/kernel/process.c (revision dc3e0896003ee9b3bcc34c53965dc4bbc8671c44)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41 #include <asm/spec-ctrl.h>
42 
43 #include "process.h"
44 
45 /*
46  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
47  * no more per-task TSS's. The TSS size is kept cacheline-aligned
48  * so they are allowed to end up in the .data..cacheline_aligned
49  * section. Since TSS's are completely CPU-local, we want them
50  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
51  */
52 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
53 	.x86_tss = {
54 		/*
55 		 * .sp0 is only used when entering ring 0 from a lower
56 		 * privilege level.  Since the init task never runs anything
57 		 * but ring 0 code, there is no need for a valid value here.
58 		 * Poison it.
59 		 */
60 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
61 
62 		/*
63 		 * .sp1 is cpu_current_top_of_stack.  The init task never
64 		 * runs user code, but cpu_current_top_of_stack should still
65 		 * be well defined before the first context switch.
66 		 */
67 		.sp1 = TOP_OF_INIT_STACK,
68 
69 #ifdef CONFIG_X86_32
70 		.ss0 = __KERNEL_DS,
71 		.ss1 = __KERNEL_CS,
72 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
73 #endif
74 	 },
75 #ifdef CONFIG_X86_32
76 	 /*
77 	  * Note that the .io_bitmap member must be extra-big. This is because
78 	  * the CPU will access an additional byte beyond the end of the IO
79 	  * permission bitmap. The extra byte must be all 1 bits, and must
80 	  * be within the limit.
81 	  */
82 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
83 #endif
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86 
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89 
90 /*
91  * this gets called so that we can store lazy state into memory and copy the
92  * current task into the new thread.
93  */
94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 	memcpy(dst, src, arch_task_struct_size);
97 #ifdef CONFIG_VM86
98 	dst->thread.vm86 = NULL;
99 #endif
100 
101 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102 }
103 
104 /*
105  * Free current thread data structures etc..
106  */
107 void exit_thread(struct task_struct *tsk)
108 {
109 	struct thread_struct *t = &tsk->thread;
110 	unsigned long *bp = t->io_bitmap_ptr;
111 	struct fpu *fpu = &t->fpu;
112 
113 	if (bp) {
114 		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115 
116 		t->io_bitmap_ptr = NULL;
117 		clear_thread_flag(TIF_IO_BITMAP);
118 		/*
119 		 * Careful, clear this in the TSS too:
120 		 */
121 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122 		t->io_bitmap_max = 0;
123 		put_cpu();
124 		kfree(bp);
125 	}
126 
127 	free_vm86(t);
128 
129 	fpu__drop(fpu);
130 }
131 
132 void flush_thread(void)
133 {
134 	struct task_struct *tsk = current;
135 
136 	flush_ptrace_hw_breakpoint(tsk);
137 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138 
139 	fpu__clear(&tsk->thread.fpu);
140 }
141 
142 void disable_TSC(void)
143 {
144 	preempt_disable();
145 	if (!test_and_set_thread_flag(TIF_NOTSC))
146 		/*
147 		 * Must flip the CPU state synchronously with
148 		 * TIF_NOTSC in the current running context.
149 		 */
150 		cr4_set_bits(X86_CR4_TSD);
151 	preempt_enable();
152 }
153 
154 static void enable_TSC(void)
155 {
156 	preempt_disable();
157 	if (test_and_clear_thread_flag(TIF_NOTSC))
158 		/*
159 		 * Must flip the CPU state synchronously with
160 		 * TIF_NOTSC in the current running context.
161 		 */
162 		cr4_clear_bits(X86_CR4_TSD);
163 	preempt_enable();
164 }
165 
166 int get_tsc_mode(unsigned long adr)
167 {
168 	unsigned int val;
169 
170 	if (test_thread_flag(TIF_NOTSC))
171 		val = PR_TSC_SIGSEGV;
172 	else
173 		val = PR_TSC_ENABLE;
174 
175 	return put_user(val, (unsigned int __user *)adr);
176 }
177 
178 int set_tsc_mode(unsigned int val)
179 {
180 	if (val == PR_TSC_SIGSEGV)
181 		disable_TSC();
182 	else if (val == PR_TSC_ENABLE)
183 		enable_TSC();
184 	else
185 		return -EINVAL;
186 
187 	return 0;
188 }
189 
190 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191 
192 static void set_cpuid_faulting(bool on)
193 {
194 	u64 msrval;
195 
196 	msrval = this_cpu_read(msr_misc_features_shadow);
197 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199 	this_cpu_write(msr_misc_features_shadow, msrval);
200 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201 }
202 
203 static void disable_cpuid(void)
204 {
205 	preempt_disable();
206 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207 		/*
208 		 * Must flip the CPU state synchronously with
209 		 * TIF_NOCPUID in the current running context.
210 		 */
211 		set_cpuid_faulting(true);
212 	}
213 	preempt_enable();
214 }
215 
216 static void enable_cpuid(void)
217 {
218 	preempt_disable();
219 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220 		/*
221 		 * Must flip the CPU state synchronously with
222 		 * TIF_NOCPUID in the current running context.
223 		 */
224 		set_cpuid_faulting(false);
225 	}
226 	preempt_enable();
227 }
228 
229 static int get_cpuid_mode(void)
230 {
231 	return !test_thread_flag(TIF_NOCPUID);
232 }
233 
234 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235 {
236 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237 		return -ENODEV;
238 
239 	if (cpuid_enabled)
240 		enable_cpuid();
241 	else
242 		disable_cpuid();
243 
244 	return 0;
245 }
246 
247 /*
248  * Called immediately after a successful exec.
249  */
250 void arch_setup_new_exec(void)
251 {
252 	/* If cpuid was previously disabled for this task, re-enable it. */
253 	if (test_thread_flag(TIF_NOCPUID))
254 		enable_cpuid();
255 }
256 
257 static inline void switch_to_bitmap(struct thread_struct *prev,
258 				    struct thread_struct *next,
259 				    unsigned long tifp, unsigned long tifn)
260 {
261 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
262 
263 	if (tifn & _TIF_IO_BITMAP) {
264 		/*
265 		 * Copy the relevant range of the IO bitmap.
266 		 * Normally this is 128 bytes or less:
267 		 */
268 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
269 		       max(prev->io_bitmap_max, next->io_bitmap_max));
270 		/*
271 		 * Make sure that the TSS limit is correct for the CPU
272 		 * to notice the IO bitmap.
273 		 */
274 		refresh_tss_limit();
275 	} else if (tifp & _TIF_IO_BITMAP) {
276 		/*
277 		 * Clear any possible leftover bits:
278 		 */
279 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
280 	}
281 }
282 
283 #ifdef CONFIG_SMP
284 
285 struct ssb_state {
286 	struct ssb_state	*shared_state;
287 	raw_spinlock_t		lock;
288 	unsigned int		disable_state;
289 	unsigned long		local_state;
290 };
291 
292 #define LSTATE_SSB	0
293 
294 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
295 
296 void speculative_store_bypass_ht_init(void)
297 {
298 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
299 	unsigned int this_cpu = smp_processor_id();
300 	unsigned int cpu;
301 
302 	st->local_state = 0;
303 
304 	/*
305 	 * Shared state setup happens once on the first bringup
306 	 * of the CPU. It's not destroyed on CPU hotunplug.
307 	 */
308 	if (st->shared_state)
309 		return;
310 
311 	raw_spin_lock_init(&st->lock);
312 
313 	/*
314 	 * Go over HT siblings and check whether one of them has set up the
315 	 * shared state pointer already.
316 	 */
317 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
318 		if (cpu == this_cpu)
319 			continue;
320 
321 		if (!per_cpu(ssb_state, cpu).shared_state)
322 			continue;
323 
324 		/* Link it to the state of the sibling: */
325 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
326 		return;
327 	}
328 
329 	/*
330 	 * First HT sibling to come up on the core.  Link shared state of
331 	 * the first HT sibling to itself. The siblings on the same core
332 	 * which come up later will see the shared state pointer and link
333 	 * themself to the state of this CPU.
334 	 */
335 	st->shared_state = st;
336 }
337 
338 /*
339  * Logic is: First HT sibling enables SSBD for both siblings in the core
340  * and last sibling to disable it, disables it for the whole core. This how
341  * MSR_SPEC_CTRL works in "hardware":
342  *
343  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
344  */
345 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
346 {
347 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
348 	u64 msr = x86_amd_ls_cfg_base;
349 
350 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
351 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
352 		wrmsrl(MSR_AMD64_LS_CFG, msr);
353 		return;
354 	}
355 
356 	if (tifn & _TIF_SSBD) {
357 		/*
358 		 * Since this can race with prctl(), block reentry on the
359 		 * same CPU.
360 		 */
361 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
362 			return;
363 
364 		msr |= x86_amd_ls_cfg_ssbd_mask;
365 
366 		raw_spin_lock(&st->shared_state->lock);
367 		/* First sibling enables SSBD: */
368 		if (!st->shared_state->disable_state)
369 			wrmsrl(MSR_AMD64_LS_CFG, msr);
370 		st->shared_state->disable_state++;
371 		raw_spin_unlock(&st->shared_state->lock);
372 	} else {
373 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
374 			return;
375 
376 		raw_spin_lock(&st->shared_state->lock);
377 		st->shared_state->disable_state--;
378 		if (!st->shared_state->disable_state)
379 			wrmsrl(MSR_AMD64_LS_CFG, msr);
380 		raw_spin_unlock(&st->shared_state->lock);
381 	}
382 }
383 #else
384 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
385 {
386 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
387 
388 	wrmsrl(MSR_AMD64_LS_CFG, msr);
389 }
390 #endif
391 
392 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
393 {
394 	/*
395 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
396 	 * so ssbd_tif_to_spec_ctrl() just works.
397 	 */
398 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
399 }
400 
401 /*
402  * Update the MSRs managing speculation control, during context switch.
403  *
404  * tifp: Previous task's thread flags
405  * tifn: Next task's thread flags
406  */
407 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
408 						      unsigned long tifn)
409 {
410 	unsigned long tif_diff = tifp ^ tifn;
411 	u64 msr = x86_spec_ctrl_base;
412 	bool updmsr = false;
413 
414 	/*
415 	 * If TIF_SSBD is different, select the proper mitigation
416 	 * method. Note that if SSBD mitigation is disabled or permanentely
417 	 * enabled this branch can't be taken because nothing can set
418 	 * TIF_SSBD.
419 	 */
420 	if (tif_diff & _TIF_SSBD) {
421 		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
422 			amd_set_ssb_virt_state(tifn);
423 		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
424 			amd_set_core_ssb_state(tifn);
425 		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
426 			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
427 			msr |= ssbd_tif_to_spec_ctrl(tifn);
428 			updmsr  = true;
429 		}
430 	}
431 
432 	/*
433 	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
434 	 * otherwise avoid the MSR write.
435 	 */
436 	if (IS_ENABLED(CONFIG_SMP) &&
437 	    static_branch_unlikely(&switch_to_cond_stibp)) {
438 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
439 		msr |= stibp_tif_to_spec_ctrl(tifn);
440 	}
441 
442 	if (updmsr)
443 		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
444 }
445 
446 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
447 {
448 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
449 		if (task_spec_ssb_disable(tsk))
450 			set_tsk_thread_flag(tsk, TIF_SSBD);
451 		else
452 			clear_tsk_thread_flag(tsk, TIF_SSBD);
453 
454 		if (task_spec_ib_disable(tsk))
455 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
456 		else
457 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
458 	}
459 	/* Return the updated threadinfo flags*/
460 	return task_thread_info(tsk)->flags;
461 }
462 
463 void speculation_ctrl_update(unsigned long tif)
464 {
465 	/* Forced update. Make sure all relevant TIF flags are different */
466 	preempt_disable();
467 	__speculation_ctrl_update(~tif, tif);
468 	preempt_enable();
469 }
470 
471 /* Called from seccomp/prctl update */
472 void speculation_ctrl_update_current(void)
473 {
474 	preempt_disable();
475 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
476 	preempt_enable();
477 }
478 
479 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
480 {
481 	struct thread_struct *prev, *next;
482 	unsigned long tifp, tifn;
483 
484 	prev = &prev_p->thread;
485 	next = &next_p->thread;
486 
487 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
488 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
489 	switch_to_bitmap(prev, next, tifp, tifn);
490 
491 	propagate_user_return_notify(prev_p, next_p);
492 
493 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
494 	    arch_has_block_step()) {
495 		unsigned long debugctl, msk;
496 
497 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
498 		debugctl &= ~DEBUGCTLMSR_BTF;
499 		msk = tifn & _TIF_BLOCKSTEP;
500 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
501 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
502 	}
503 
504 	if ((tifp ^ tifn) & _TIF_NOTSC)
505 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
506 
507 	if ((tifp ^ tifn) & _TIF_NOCPUID)
508 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
509 
510 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
511 		__speculation_ctrl_update(tifp, tifn);
512 	} else {
513 		speculation_ctrl_update_tif(prev_p);
514 		tifn = speculation_ctrl_update_tif(next_p);
515 
516 		/* Enforce MSR update to ensure consistent state */
517 		__speculation_ctrl_update(~tifn, tifn);
518 	}
519 }
520 
521 /*
522  * Idle related variables and functions
523  */
524 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
525 EXPORT_SYMBOL(boot_option_idle_override);
526 
527 static void (*x86_idle)(void);
528 
529 #ifndef CONFIG_SMP
530 static inline void play_dead(void)
531 {
532 	BUG();
533 }
534 #endif
535 
536 void arch_cpu_idle_enter(void)
537 {
538 	tsc_verify_tsc_adjust(false);
539 	local_touch_nmi();
540 }
541 
542 void arch_cpu_idle_dead(void)
543 {
544 	play_dead();
545 }
546 
547 /*
548  * Called from the generic idle code.
549  */
550 void arch_cpu_idle(void)
551 {
552 	x86_idle();
553 }
554 
555 /*
556  * We use this if we don't have any better idle routine..
557  */
558 void __cpuidle default_idle(void)
559 {
560 	trace_cpu_idle_rcuidle(1, smp_processor_id());
561 	safe_halt();
562 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
563 }
564 #ifdef CONFIG_APM_MODULE
565 EXPORT_SYMBOL(default_idle);
566 #endif
567 
568 #ifdef CONFIG_XEN
569 bool xen_set_default_idle(void)
570 {
571 	bool ret = !!x86_idle;
572 
573 	x86_idle = default_idle;
574 
575 	return ret;
576 }
577 #endif
578 
579 void stop_this_cpu(void *dummy)
580 {
581 	local_irq_disable();
582 	/*
583 	 * Remove this CPU:
584 	 */
585 	set_cpu_online(smp_processor_id(), false);
586 	disable_local_APIC();
587 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
588 
589 	/*
590 	 * Use wbinvd on processors that support SME. This provides support
591 	 * for performing a successful kexec when going from SME inactive
592 	 * to SME active (or vice-versa). The cache must be cleared so that
593 	 * if there are entries with the same physical address, both with and
594 	 * without the encryption bit, they don't race each other when flushed
595 	 * and potentially end up with the wrong entry being committed to
596 	 * memory.
597 	 */
598 	if (boot_cpu_has(X86_FEATURE_SME))
599 		native_wbinvd();
600 	for (;;) {
601 		/*
602 		 * Use native_halt() so that memory contents don't change
603 		 * (stack usage and variables) after possibly issuing the
604 		 * native_wbinvd() above.
605 		 */
606 		native_halt();
607 	}
608 }
609 
610 /*
611  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
612  * states (local apic timer and TSC stop).
613  */
614 static void amd_e400_idle(void)
615 {
616 	/*
617 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
618 	 * gets set after static_cpu_has() places have been converted via
619 	 * alternatives.
620 	 */
621 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
622 		default_idle();
623 		return;
624 	}
625 
626 	tick_broadcast_enter();
627 
628 	default_idle();
629 
630 	/*
631 	 * The switch back from broadcast mode needs to be called with
632 	 * interrupts disabled.
633 	 */
634 	local_irq_disable();
635 	tick_broadcast_exit();
636 	local_irq_enable();
637 }
638 
639 /*
640  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
641  * We can't rely on cpuidle installing MWAIT, because it will not load
642  * on systems that support only C1 -- so the boot default must be MWAIT.
643  *
644  * Some AMD machines are the opposite, they depend on using HALT.
645  *
646  * So for default C1, which is used during boot until cpuidle loads,
647  * use MWAIT-C1 on Intel HW that has it, else use HALT.
648  */
649 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
650 {
651 	if (c->x86_vendor != X86_VENDOR_INTEL)
652 		return 0;
653 
654 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
655 		return 0;
656 
657 	return 1;
658 }
659 
660 /*
661  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
662  * with interrupts enabled and no flags, which is backwards compatible with the
663  * original MWAIT implementation.
664  */
665 static __cpuidle void mwait_idle(void)
666 {
667 	if (!current_set_polling_and_test()) {
668 		trace_cpu_idle_rcuidle(1, smp_processor_id());
669 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
670 			mb(); /* quirk */
671 			clflush((void *)&current_thread_info()->flags);
672 			mb(); /* quirk */
673 		}
674 
675 		__monitor((void *)&current_thread_info()->flags, 0, 0);
676 		if (!need_resched())
677 			__sti_mwait(0, 0);
678 		else
679 			local_irq_enable();
680 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
681 	} else {
682 		local_irq_enable();
683 	}
684 	__current_clr_polling();
685 }
686 
687 void select_idle_routine(const struct cpuinfo_x86 *c)
688 {
689 #ifdef CONFIG_SMP
690 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
691 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
692 #endif
693 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
694 		return;
695 
696 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
697 		pr_info("using AMD E400 aware idle routine\n");
698 		x86_idle = amd_e400_idle;
699 	} else if (prefer_mwait_c1_over_halt(c)) {
700 		pr_info("using mwait in idle threads\n");
701 		x86_idle = mwait_idle;
702 	} else
703 		x86_idle = default_idle;
704 }
705 
706 void amd_e400_c1e_apic_setup(void)
707 {
708 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
709 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
710 		local_irq_disable();
711 		tick_broadcast_force();
712 		local_irq_enable();
713 	}
714 }
715 
716 void __init arch_post_acpi_subsys_init(void)
717 {
718 	u32 lo, hi;
719 
720 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
721 		return;
722 
723 	/*
724 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
725 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
726 	 * MSR_K8_INT_PENDING_MSG.
727 	 */
728 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
729 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
730 		return;
731 
732 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
733 
734 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
735 		mark_tsc_unstable("TSC halt in AMD C1E");
736 	pr_info("System has AMD C1E enabled\n");
737 }
738 
739 static int __init idle_setup(char *str)
740 {
741 	if (!str)
742 		return -EINVAL;
743 
744 	if (!strcmp(str, "poll")) {
745 		pr_info("using polling idle threads\n");
746 		boot_option_idle_override = IDLE_POLL;
747 		cpu_idle_poll_ctrl(true);
748 	} else if (!strcmp(str, "halt")) {
749 		/*
750 		 * When the boot option of idle=halt is added, halt is
751 		 * forced to be used for CPU idle. In such case CPU C2/C3
752 		 * won't be used again.
753 		 * To continue to load the CPU idle driver, don't touch
754 		 * the boot_option_idle_override.
755 		 */
756 		x86_idle = default_idle;
757 		boot_option_idle_override = IDLE_HALT;
758 	} else if (!strcmp(str, "nomwait")) {
759 		/*
760 		 * If the boot option of "idle=nomwait" is added,
761 		 * it means that mwait will be disabled for CPU C2/C3
762 		 * states. In such case it won't touch the variable
763 		 * of boot_option_idle_override.
764 		 */
765 		boot_option_idle_override = IDLE_NOMWAIT;
766 	} else
767 		return -1;
768 
769 	return 0;
770 }
771 early_param("idle", idle_setup);
772 
773 unsigned long arch_align_stack(unsigned long sp)
774 {
775 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
776 		sp -= get_random_int() % 8192;
777 	return sp & ~0xf;
778 }
779 
780 unsigned long arch_randomize_brk(struct mm_struct *mm)
781 {
782 	return randomize_page(mm->brk, 0x02000000);
783 }
784 
785 /*
786  * Called from fs/proc with a reference on @p to find the function
787  * which called into schedule(). This needs to be done carefully
788  * because the task might wake up and we might look at a stack
789  * changing under us.
790  */
791 unsigned long get_wchan(struct task_struct *p)
792 {
793 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
794 	int count = 0;
795 
796 	if (!p || p == current || p->state == TASK_RUNNING)
797 		return 0;
798 
799 	if (!try_get_task_stack(p))
800 		return 0;
801 
802 	start = (unsigned long)task_stack_page(p);
803 	if (!start)
804 		goto out;
805 
806 	/*
807 	 * Layout of the stack page:
808 	 *
809 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
810 	 * PADDING
811 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
812 	 * stack
813 	 * ----------- bottom = start
814 	 *
815 	 * The tasks stack pointer points at the location where the
816 	 * framepointer is stored. The data on the stack is:
817 	 * ... IP FP ... IP FP
818 	 *
819 	 * We need to read FP and IP, so we need to adjust the upper
820 	 * bound by another unsigned long.
821 	 */
822 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
823 	top -= 2 * sizeof(unsigned long);
824 	bottom = start;
825 
826 	sp = READ_ONCE(p->thread.sp);
827 	if (sp < bottom || sp > top)
828 		goto out;
829 
830 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
831 	do {
832 		if (fp < bottom || fp > top)
833 			goto out;
834 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
835 		if (!in_sched_functions(ip)) {
836 			ret = ip;
837 			goto out;
838 		}
839 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
840 	} while (count++ < 16 && p->state != TASK_RUNNING);
841 
842 out:
843 	put_task_stack(p);
844 	return ret;
845 }
846 
847 long do_arch_prctl_common(struct task_struct *task, int option,
848 			  unsigned long cpuid_enabled)
849 {
850 	switch (option) {
851 	case ARCH_GET_CPUID:
852 		return get_cpuid_mode();
853 	case ARCH_SET_CPUID:
854 		return set_cpuid_mode(task, cpuid_enabled);
855 	}
856 
857 	return -EINVAL;
858 }
859