xref: /linux/arch/x86/kernel/process.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/system.h>
18 #include <asm/apic.h>
19 #include <asm/syscalls.h>
20 #include <asm/idle.h>
21 #include <asm/uaccess.h>
22 #include <asm/i387.h>
23 #include <asm/debugreg.h>
24 
25 unsigned long idle_halt;
26 EXPORT_SYMBOL(idle_halt);
27 unsigned long idle_nomwait;
28 EXPORT_SYMBOL(idle_nomwait);
29 
30 struct kmem_cache *task_xstate_cachep;
31 EXPORT_SYMBOL_GPL(task_xstate_cachep);
32 
33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34 {
35 	int ret;
36 
37 	*dst = *src;
38 	if (fpu_allocated(&src->thread.fpu)) {
39 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
40 		ret = fpu_alloc(&dst->thread.fpu);
41 		if (ret)
42 			return ret;
43 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
44 	}
45 	return 0;
46 }
47 
48 void free_thread_xstate(struct task_struct *tsk)
49 {
50 	fpu_free(&tsk->thread.fpu);
51 }
52 
53 void free_thread_info(struct thread_info *ti)
54 {
55 	free_thread_xstate(ti->task);
56 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
57 }
58 
59 void arch_task_cache_init(void)
60 {
61         task_xstate_cachep =
62         	kmem_cache_create("task_xstate", xstate_size,
63 				  __alignof__(union thread_xstate),
64 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
65 }
66 
67 /*
68  * Free current thread data structures etc..
69  */
70 void exit_thread(void)
71 {
72 	struct task_struct *me = current;
73 	struct thread_struct *t = &me->thread;
74 	unsigned long *bp = t->io_bitmap_ptr;
75 
76 	if (bp) {
77 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
78 
79 		t->io_bitmap_ptr = NULL;
80 		clear_thread_flag(TIF_IO_BITMAP);
81 		/*
82 		 * Careful, clear this in the TSS too:
83 		 */
84 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
85 		t->io_bitmap_max = 0;
86 		put_cpu();
87 		kfree(bp);
88 	}
89 }
90 
91 void show_regs(struct pt_regs *regs)
92 {
93 	show_registers(regs);
94 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs),
95 		   regs->bp);
96 }
97 
98 void show_regs_common(void)
99 {
100 	const char *board, *product;
101 
102 	board = dmi_get_system_info(DMI_BOARD_NAME);
103 	if (!board)
104 		board = "";
105 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
106 	if (!product)
107 		product = "";
108 
109 	printk(KERN_CONT "\n");
110 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
111 		current->pid, current->comm, print_tainted(),
112 		init_utsname()->release,
113 		(int)strcspn(init_utsname()->version, " "),
114 		init_utsname()->version, board, product);
115 }
116 
117 void flush_thread(void)
118 {
119 	struct task_struct *tsk = current;
120 
121 	flush_ptrace_hw_breakpoint(tsk);
122 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
123 	/*
124 	 * Forget coprocessor state..
125 	 */
126 	tsk->fpu_counter = 0;
127 	clear_fpu(tsk);
128 	clear_used_math();
129 }
130 
131 static void hard_disable_TSC(void)
132 {
133 	write_cr4(read_cr4() | X86_CR4_TSD);
134 }
135 
136 void disable_TSC(void)
137 {
138 	preempt_disable();
139 	if (!test_and_set_thread_flag(TIF_NOTSC))
140 		/*
141 		 * Must flip the CPU state synchronously with
142 		 * TIF_NOTSC in the current running context.
143 		 */
144 		hard_disable_TSC();
145 	preempt_enable();
146 }
147 
148 static void hard_enable_TSC(void)
149 {
150 	write_cr4(read_cr4() & ~X86_CR4_TSD);
151 }
152 
153 static void enable_TSC(void)
154 {
155 	preempt_disable();
156 	if (test_and_clear_thread_flag(TIF_NOTSC))
157 		/*
158 		 * Must flip the CPU state synchronously with
159 		 * TIF_NOTSC in the current running context.
160 		 */
161 		hard_enable_TSC();
162 	preempt_enable();
163 }
164 
165 int get_tsc_mode(unsigned long adr)
166 {
167 	unsigned int val;
168 
169 	if (test_thread_flag(TIF_NOTSC))
170 		val = PR_TSC_SIGSEGV;
171 	else
172 		val = PR_TSC_ENABLE;
173 
174 	return put_user(val, (unsigned int __user *)adr);
175 }
176 
177 int set_tsc_mode(unsigned int val)
178 {
179 	if (val == PR_TSC_SIGSEGV)
180 		disable_TSC();
181 	else if (val == PR_TSC_ENABLE)
182 		enable_TSC();
183 	else
184 		return -EINVAL;
185 
186 	return 0;
187 }
188 
189 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
190 		      struct tss_struct *tss)
191 {
192 	struct thread_struct *prev, *next;
193 
194 	prev = &prev_p->thread;
195 	next = &next_p->thread;
196 
197 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
198 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
199 		unsigned long debugctl = get_debugctlmsr();
200 
201 		debugctl &= ~DEBUGCTLMSR_BTF;
202 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
203 			debugctl |= DEBUGCTLMSR_BTF;
204 
205 		update_debugctlmsr(debugctl);
206 	}
207 
208 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
209 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
210 		/* prev and next are different */
211 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
212 			hard_disable_TSC();
213 		else
214 			hard_enable_TSC();
215 	}
216 
217 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
218 		/*
219 		 * Copy the relevant range of the IO bitmap.
220 		 * Normally this is 128 bytes or less:
221 		 */
222 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
223 		       max(prev->io_bitmap_max, next->io_bitmap_max));
224 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
225 		/*
226 		 * Clear any possible leftover bits:
227 		 */
228 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
229 	}
230 	propagate_user_return_notify(prev_p, next_p);
231 }
232 
233 int sys_fork(struct pt_regs *regs)
234 {
235 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
236 }
237 
238 /*
239  * This is trivial, and on the face of it looks like it
240  * could equally well be done in user mode.
241  *
242  * Not so, for quite unobvious reasons - register pressure.
243  * In user mode vfork() cannot have a stack frame, and if
244  * done by calling the "clone()" system call directly, you
245  * do not have enough call-clobbered registers to hold all
246  * the information you need.
247  */
248 int sys_vfork(struct pt_regs *regs)
249 {
250 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
251 		       NULL, NULL);
252 }
253 
254 long
255 sys_clone(unsigned long clone_flags, unsigned long newsp,
256 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
257 {
258 	if (!newsp)
259 		newsp = regs->sp;
260 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
261 }
262 
263 /*
264  * This gets run with %si containing the
265  * function to call, and %di containing
266  * the "args".
267  */
268 extern void kernel_thread_helper(void);
269 
270 /*
271  * Create a kernel thread
272  */
273 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
274 {
275 	struct pt_regs regs;
276 
277 	memset(&regs, 0, sizeof(regs));
278 
279 	regs.si = (unsigned long) fn;
280 	regs.di = (unsigned long) arg;
281 
282 #ifdef CONFIG_X86_32
283 	regs.ds = __USER_DS;
284 	regs.es = __USER_DS;
285 	regs.fs = __KERNEL_PERCPU;
286 	regs.gs = __KERNEL_STACK_CANARY;
287 #else
288 	regs.ss = __KERNEL_DS;
289 #endif
290 
291 	regs.orig_ax = -1;
292 	regs.ip = (unsigned long) kernel_thread_helper;
293 	regs.cs = __KERNEL_CS | get_kernel_rpl();
294 	regs.flags = X86_EFLAGS_IF | 0x2;
295 
296 	/* Ok, create the new process.. */
297 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
298 }
299 EXPORT_SYMBOL(kernel_thread);
300 
301 /*
302  * sys_execve() executes a new program.
303  */
304 long sys_execve(const char __user *name,
305 		const char __user *const __user *argv,
306 		const char __user *const __user *envp, struct pt_regs *regs)
307 {
308 	long error;
309 	char *filename;
310 
311 	filename = getname(name);
312 	error = PTR_ERR(filename);
313 	if (IS_ERR(filename))
314 		return error;
315 	error = do_execve(filename, argv, envp, regs);
316 
317 #ifdef CONFIG_X86_32
318 	if (error == 0) {
319 		/* Make sure we don't return using sysenter.. */
320                 set_thread_flag(TIF_IRET);
321         }
322 #endif
323 
324 	putname(filename);
325 	return error;
326 }
327 
328 /*
329  * Idle related variables and functions
330  */
331 unsigned long boot_option_idle_override = 0;
332 EXPORT_SYMBOL(boot_option_idle_override);
333 
334 /*
335  * Powermanagement idle function, if any..
336  */
337 void (*pm_idle)(void);
338 EXPORT_SYMBOL(pm_idle);
339 
340 #ifdef CONFIG_X86_32
341 /*
342  * This halt magic was a workaround for ancient floppy DMA
343  * wreckage. It should be safe to remove.
344  */
345 static int hlt_counter;
346 void disable_hlt(void)
347 {
348 	hlt_counter++;
349 }
350 EXPORT_SYMBOL(disable_hlt);
351 
352 void enable_hlt(void)
353 {
354 	hlt_counter--;
355 }
356 EXPORT_SYMBOL(enable_hlt);
357 
358 static inline int hlt_use_halt(void)
359 {
360 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
361 }
362 #else
363 static inline int hlt_use_halt(void)
364 {
365 	return 1;
366 }
367 #endif
368 
369 /*
370  * We use this if we don't have any better
371  * idle routine..
372  */
373 void default_idle(void)
374 {
375 	if (hlt_use_halt()) {
376 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
377 		current_thread_info()->status &= ~TS_POLLING;
378 		/*
379 		 * TS_POLLING-cleared state must be visible before we
380 		 * test NEED_RESCHED:
381 		 */
382 		smp_mb();
383 
384 		if (!need_resched())
385 			safe_halt();	/* enables interrupts racelessly */
386 		else
387 			local_irq_enable();
388 		current_thread_info()->status |= TS_POLLING;
389 	} else {
390 		local_irq_enable();
391 		/* loop is done by the caller */
392 		cpu_relax();
393 	}
394 }
395 #ifdef CONFIG_APM_MODULE
396 EXPORT_SYMBOL(default_idle);
397 #endif
398 
399 void stop_this_cpu(void *dummy)
400 {
401 	local_irq_disable();
402 	/*
403 	 * Remove this CPU:
404 	 */
405 	set_cpu_online(smp_processor_id(), false);
406 	disable_local_APIC();
407 
408 	for (;;) {
409 		if (hlt_works(smp_processor_id()))
410 			halt();
411 	}
412 }
413 
414 static void do_nothing(void *unused)
415 {
416 }
417 
418 /*
419  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
420  * pm_idle and update to new pm_idle value. Required while changing pm_idle
421  * handler on SMP systems.
422  *
423  * Caller must have changed pm_idle to the new value before the call. Old
424  * pm_idle value will not be used by any CPU after the return of this function.
425  */
426 void cpu_idle_wait(void)
427 {
428 	smp_mb();
429 	/* kick all the CPUs so that they exit out of pm_idle */
430 	smp_call_function(do_nothing, NULL, 1);
431 }
432 EXPORT_SYMBOL_GPL(cpu_idle_wait);
433 
434 /*
435  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
436  * which can obviate IPI to trigger checking of need_resched.
437  * We execute MONITOR against need_resched and enter optimized wait state
438  * through MWAIT. Whenever someone changes need_resched, we would be woken
439  * up from MWAIT (without an IPI).
440  *
441  * New with Core Duo processors, MWAIT can take some hints based on CPU
442  * capability.
443  */
444 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
445 {
446 	trace_power_start(POWER_CSTATE, (ax>>4)+1, smp_processor_id());
447 	if (!need_resched()) {
448 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
449 			clflush((void *)&current_thread_info()->flags);
450 
451 		__monitor((void *)&current_thread_info()->flags, 0, 0);
452 		smp_mb();
453 		if (!need_resched())
454 			__mwait(ax, cx);
455 	}
456 }
457 
458 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
459 static void mwait_idle(void)
460 {
461 	if (!need_resched()) {
462 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
463 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
464 			clflush((void *)&current_thread_info()->flags);
465 
466 		__monitor((void *)&current_thread_info()->flags, 0, 0);
467 		smp_mb();
468 		if (!need_resched())
469 			__sti_mwait(0, 0);
470 		else
471 			local_irq_enable();
472 	} else
473 		local_irq_enable();
474 }
475 
476 /*
477  * On SMP it's slightly faster (but much more power-consuming!)
478  * to poll the ->work.need_resched flag instead of waiting for the
479  * cross-CPU IPI to arrive. Use this option with caution.
480  */
481 static void poll_idle(void)
482 {
483 	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
484 	local_irq_enable();
485 	while (!need_resched())
486 		cpu_relax();
487 	trace_power_end(0);
488 }
489 
490 /*
491  * mwait selection logic:
492  *
493  * It depends on the CPU. For AMD CPUs that support MWAIT this is
494  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
495  * then depend on a clock divisor and current Pstate of the core. If
496  * all cores of a processor are in halt state (C1) the processor can
497  * enter the C1E (C1 enhanced) state. If mwait is used this will never
498  * happen.
499  *
500  * idle=mwait overrides this decision and forces the usage of mwait.
501  */
502 static int __cpuinitdata force_mwait;
503 
504 #define MWAIT_INFO			0x05
505 #define MWAIT_ECX_EXTENDED_INFO		0x01
506 #define MWAIT_EDX_C1			0xf0
507 
508 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
509 {
510 	u32 eax, ebx, ecx, edx;
511 
512 	if (force_mwait)
513 		return 1;
514 
515 	if (c->cpuid_level < MWAIT_INFO)
516 		return 0;
517 
518 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
519 	/* Check, whether EDX has extended info about MWAIT */
520 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
521 		return 1;
522 
523 	/*
524 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
525 	 * C1  supports MWAIT
526 	 */
527 	return (edx & MWAIT_EDX_C1);
528 }
529 
530 bool c1e_detected;
531 EXPORT_SYMBOL(c1e_detected);
532 
533 static cpumask_var_t c1e_mask;
534 
535 void c1e_remove_cpu(int cpu)
536 {
537 	if (c1e_mask != NULL)
538 		cpumask_clear_cpu(cpu, c1e_mask);
539 }
540 
541 /*
542  * C1E aware idle routine. We check for C1E active in the interrupt
543  * pending message MSR. If we detect C1E, then we handle it the same
544  * way as C3 power states (local apic timer and TSC stop)
545  */
546 static void c1e_idle(void)
547 {
548 	if (need_resched())
549 		return;
550 
551 	if (!c1e_detected) {
552 		u32 lo, hi;
553 
554 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
555 
556 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
557 			c1e_detected = true;
558 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
559 				mark_tsc_unstable("TSC halt in AMD C1E");
560 			printk(KERN_INFO "System has AMD C1E enabled\n");
561 		}
562 	}
563 
564 	if (c1e_detected) {
565 		int cpu = smp_processor_id();
566 
567 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
568 			cpumask_set_cpu(cpu, c1e_mask);
569 			/*
570 			 * Force broadcast so ACPI can not interfere.
571 			 */
572 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
573 					   &cpu);
574 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
575 			       cpu);
576 		}
577 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
578 
579 		default_idle();
580 
581 		/*
582 		 * The switch back from broadcast mode needs to be
583 		 * called with interrupts disabled.
584 		 */
585 		 local_irq_disable();
586 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
587 		 local_irq_enable();
588 	} else
589 		default_idle();
590 }
591 
592 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
593 {
594 #ifdef CONFIG_SMP
595 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
596 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
597 			" performance may degrade.\n");
598 	}
599 #endif
600 	if (pm_idle)
601 		return;
602 
603 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
604 		/*
605 		 * One CPU supports mwait => All CPUs supports mwait
606 		 */
607 		printk(KERN_INFO "using mwait in idle threads.\n");
608 		pm_idle = mwait_idle;
609 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
610 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
611 		printk(KERN_INFO "using C1E aware idle routine\n");
612 		pm_idle = c1e_idle;
613 	} else
614 		pm_idle = default_idle;
615 }
616 
617 void __init init_c1e_mask(void)
618 {
619 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
620 	if (pm_idle == c1e_idle)
621 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
622 }
623 
624 static int __init idle_setup(char *str)
625 {
626 	if (!str)
627 		return -EINVAL;
628 
629 	if (!strcmp(str, "poll")) {
630 		printk("using polling idle threads.\n");
631 		pm_idle = poll_idle;
632 	} else if (!strcmp(str, "mwait"))
633 		force_mwait = 1;
634 	else if (!strcmp(str, "halt")) {
635 		/*
636 		 * When the boot option of idle=halt is added, halt is
637 		 * forced to be used for CPU idle. In such case CPU C2/C3
638 		 * won't be used again.
639 		 * To continue to load the CPU idle driver, don't touch
640 		 * the boot_option_idle_override.
641 		 */
642 		pm_idle = default_idle;
643 		idle_halt = 1;
644 		return 0;
645 	} else if (!strcmp(str, "nomwait")) {
646 		/*
647 		 * If the boot option of "idle=nomwait" is added,
648 		 * it means that mwait will be disabled for CPU C2/C3
649 		 * states. In such case it won't touch the variable
650 		 * of boot_option_idle_override.
651 		 */
652 		idle_nomwait = 1;
653 		return 0;
654 	} else
655 		return -1;
656 
657 	boot_option_idle_override = 1;
658 	return 0;
659 }
660 early_param("idle", idle_setup);
661 
662 unsigned long arch_align_stack(unsigned long sp)
663 {
664 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
665 		sp -= get_random_int() % 8192;
666 	return sp & ~0xf;
667 }
668 
669 unsigned long arch_randomize_brk(struct mm_struct *mm)
670 {
671 	unsigned long range_end = mm->brk + 0x02000000;
672 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
673 }
674 
675