1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/system.h> 18 #include <asm/apic.h> 19 #include <asm/syscalls.h> 20 #include <asm/idle.h> 21 #include <asm/uaccess.h> 22 #include <asm/i387.h> 23 #include <asm/debugreg.h> 24 25 unsigned long idle_halt; 26 EXPORT_SYMBOL(idle_halt); 27 unsigned long idle_nomwait; 28 EXPORT_SYMBOL(idle_nomwait); 29 30 struct kmem_cache *task_xstate_cachep; 31 EXPORT_SYMBOL_GPL(task_xstate_cachep); 32 33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 34 { 35 int ret; 36 37 *dst = *src; 38 if (fpu_allocated(&src->thread.fpu)) { 39 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); 40 ret = fpu_alloc(&dst->thread.fpu); 41 if (ret) 42 return ret; 43 fpu_copy(&dst->thread.fpu, &src->thread.fpu); 44 } 45 return 0; 46 } 47 48 void free_thread_xstate(struct task_struct *tsk) 49 { 50 fpu_free(&tsk->thread.fpu); 51 } 52 53 void free_thread_info(struct thread_info *ti) 54 { 55 free_thread_xstate(ti->task); 56 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 57 } 58 59 void arch_task_cache_init(void) 60 { 61 task_xstate_cachep = 62 kmem_cache_create("task_xstate", xstate_size, 63 __alignof__(union thread_xstate), 64 SLAB_PANIC | SLAB_NOTRACK, NULL); 65 } 66 67 /* 68 * Free current thread data structures etc.. 69 */ 70 void exit_thread(void) 71 { 72 struct task_struct *me = current; 73 struct thread_struct *t = &me->thread; 74 unsigned long *bp = t->io_bitmap_ptr; 75 76 if (bp) { 77 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 78 79 t->io_bitmap_ptr = NULL; 80 clear_thread_flag(TIF_IO_BITMAP); 81 /* 82 * Careful, clear this in the TSS too: 83 */ 84 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 85 t->io_bitmap_max = 0; 86 put_cpu(); 87 kfree(bp); 88 } 89 } 90 91 void show_regs(struct pt_regs *regs) 92 { 93 show_registers(regs); 94 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 95 regs->bp); 96 } 97 98 void show_regs_common(void) 99 { 100 const char *board, *product; 101 102 board = dmi_get_system_info(DMI_BOARD_NAME); 103 if (!board) 104 board = ""; 105 product = dmi_get_system_info(DMI_PRODUCT_NAME); 106 if (!product) 107 product = ""; 108 109 printk(KERN_CONT "\n"); 110 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", 111 current->pid, current->comm, print_tainted(), 112 init_utsname()->release, 113 (int)strcspn(init_utsname()->version, " "), 114 init_utsname()->version, board, product); 115 } 116 117 void flush_thread(void) 118 { 119 struct task_struct *tsk = current; 120 121 flush_ptrace_hw_breakpoint(tsk); 122 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 123 /* 124 * Forget coprocessor state.. 125 */ 126 tsk->fpu_counter = 0; 127 clear_fpu(tsk); 128 clear_used_math(); 129 } 130 131 static void hard_disable_TSC(void) 132 { 133 write_cr4(read_cr4() | X86_CR4_TSD); 134 } 135 136 void disable_TSC(void) 137 { 138 preempt_disable(); 139 if (!test_and_set_thread_flag(TIF_NOTSC)) 140 /* 141 * Must flip the CPU state synchronously with 142 * TIF_NOTSC in the current running context. 143 */ 144 hard_disable_TSC(); 145 preempt_enable(); 146 } 147 148 static void hard_enable_TSC(void) 149 { 150 write_cr4(read_cr4() & ~X86_CR4_TSD); 151 } 152 153 static void enable_TSC(void) 154 { 155 preempt_disable(); 156 if (test_and_clear_thread_flag(TIF_NOTSC)) 157 /* 158 * Must flip the CPU state synchronously with 159 * TIF_NOTSC in the current running context. 160 */ 161 hard_enable_TSC(); 162 preempt_enable(); 163 } 164 165 int get_tsc_mode(unsigned long adr) 166 { 167 unsigned int val; 168 169 if (test_thread_flag(TIF_NOTSC)) 170 val = PR_TSC_SIGSEGV; 171 else 172 val = PR_TSC_ENABLE; 173 174 return put_user(val, (unsigned int __user *)adr); 175 } 176 177 int set_tsc_mode(unsigned int val) 178 { 179 if (val == PR_TSC_SIGSEGV) 180 disable_TSC(); 181 else if (val == PR_TSC_ENABLE) 182 enable_TSC(); 183 else 184 return -EINVAL; 185 186 return 0; 187 } 188 189 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 190 struct tss_struct *tss) 191 { 192 struct thread_struct *prev, *next; 193 194 prev = &prev_p->thread; 195 next = &next_p->thread; 196 197 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 198 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 199 unsigned long debugctl = get_debugctlmsr(); 200 201 debugctl &= ~DEBUGCTLMSR_BTF; 202 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 203 debugctl |= DEBUGCTLMSR_BTF; 204 205 update_debugctlmsr(debugctl); 206 } 207 208 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 209 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 210 /* prev and next are different */ 211 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 212 hard_disable_TSC(); 213 else 214 hard_enable_TSC(); 215 } 216 217 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 218 /* 219 * Copy the relevant range of the IO bitmap. 220 * Normally this is 128 bytes or less: 221 */ 222 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 223 max(prev->io_bitmap_max, next->io_bitmap_max)); 224 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 225 /* 226 * Clear any possible leftover bits: 227 */ 228 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 229 } 230 propagate_user_return_notify(prev_p, next_p); 231 } 232 233 int sys_fork(struct pt_regs *regs) 234 { 235 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 236 } 237 238 /* 239 * This is trivial, and on the face of it looks like it 240 * could equally well be done in user mode. 241 * 242 * Not so, for quite unobvious reasons - register pressure. 243 * In user mode vfork() cannot have a stack frame, and if 244 * done by calling the "clone()" system call directly, you 245 * do not have enough call-clobbered registers to hold all 246 * the information you need. 247 */ 248 int sys_vfork(struct pt_regs *regs) 249 { 250 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 251 NULL, NULL); 252 } 253 254 long 255 sys_clone(unsigned long clone_flags, unsigned long newsp, 256 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 257 { 258 if (!newsp) 259 newsp = regs->sp; 260 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 261 } 262 263 /* 264 * This gets run with %si containing the 265 * function to call, and %di containing 266 * the "args". 267 */ 268 extern void kernel_thread_helper(void); 269 270 /* 271 * Create a kernel thread 272 */ 273 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 274 { 275 struct pt_regs regs; 276 277 memset(®s, 0, sizeof(regs)); 278 279 regs.si = (unsigned long) fn; 280 regs.di = (unsigned long) arg; 281 282 #ifdef CONFIG_X86_32 283 regs.ds = __USER_DS; 284 regs.es = __USER_DS; 285 regs.fs = __KERNEL_PERCPU; 286 regs.gs = __KERNEL_STACK_CANARY; 287 #else 288 regs.ss = __KERNEL_DS; 289 #endif 290 291 regs.orig_ax = -1; 292 regs.ip = (unsigned long) kernel_thread_helper; 293 regs.cs = __KERNEL_CS | get_kernel_rpl(); 294 regs.flags = X86_EFLAGS_IF | 0x2; 295 296 /* Ok, create the new process.. */ 297 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 298 } 299 EXPORT_SYMBOL(kernel_thread); 300 301 /* 302 * sys_execve() executes a new program. 303 */ 304 long sys_execve(const char __user *name, 305 const char __user *const __user *argv, 306 const char __user *const __user *envp, struct pt_regs *regs) 307 { 308 long error; 309 char *filename; 310 311 filename = getname(name); 312 error = PTR_ERR(filename); 313 if (IS_ERR(filename)) 314 return error; 315 error = do_execve(filename, argv, envp, regs); 316 317 #ifdef CONFIG_X86_32 318 if (error == 0) { 319 /* Make sure we don't return using sysenter.. */ 320 set_thread_flag(TIF_IRET); 321 } 322 #endif 323 324 putname(filename); 325 return error; 326 } 327 328 /* 329 * Idle related variables and functions 330 */ 331 unsigned long boot_option_idle_override = 0; 332 EXPORT_SYMBOL(boot_option_idle_override); 333 334 /* 335 * Powermanagement idle function, if any.. 336 */ 337 void (*pm_idle)(void); 338 EXPORT_SYMBOL(pm_idle); 339 340 #ifdef CONFIG_X86_32 341 /* 342 * This halt magic was a workaround for ancient floppy DMA 343 * wreckage. It should be safe to remove. 344 */ 345 static int hlt_counter; 346 void disable_hlt(void) 347 { 348 hlt_counter++; 349 } 350 EXPORT_SYMBOL(disable_hlt); 351 352 void enable_hlt(void) 353 { 354 hlt_counter--; 355 } 356 EXPORT_SYMBOL(enable_hlt); 357 358 static inline int hlt_use_halt(void) 359 { 360 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 361 } 362 #else 363 static inline int hlt_use_halt(void) 364 { 365 return 1; 366 } 367 #endif 368 369 /* 370 * We use this if we don't have any better 371 * idle routine.. 372 */ 373 void default_idle(void) 374 { 375 if (hlt_use_halt()) { 376 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 377 current_thread_info()->status &= ~TS_POLLING; 378 /* 379 * TS_POLLING-cleared state must be visible before we 380 * test NEED_RESCHED: 381 */ 382 smp_mb(); 383 384 if (!need_resched()) 385 safe_halt(); /* enables interrupts racelessly */ 386 else 387 local_irq_enable(); 388 current_thread_info()->status |= TS_POLLING; 389 } else { 390 local_irq_enable(); 391 /* loop is done by the caller */ 392 cpu_relax(); 393 } 394 } 395 #ifdef CONFIG_APM_MODULE 396 EXPORT_SYMBOL(default_idle); 397 #endif 398 399 void stop_this_cpu(void *dummy) 400 { 401 local_irq_disable(); 402 /* 403 * Remove this CPU: 404 */ 405 set_cpu_online(smp_processor_id(), false); 406 disable_local_APIC(); 407 408 for (;;) { 409 if (hlt_works(smp_processor_id())) 410 halt(); 411 } 412 } 413 414 static void do_nothing(void *unused) 415 { 416 } 417 418 /* 419 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 420 * pm_idle and update to new pm_idle value. Required while changing pm_idle 421 * handler on SMP systems. 422 * 423 * Caller must have changed pm_idle to the new value before the call. Old 424 * pm_idle value will not be used by any CPU after the return of this function. 425 */ 426 void cpu_idle_wait(void) 427 { 428 smp_mb(); 429 /* kick all the CPUs so that they exit out of pm_idle */ 430 smp_call_function(do_nothing, NULL, 1); 431 } 432 EXPORT_SYMBOL_GPL(cpu_idle_wait); 433 434 /* 435 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 436 * which can obviate IPI to trigger checking of need_resched. 437 * We execute MONITOR against need_resched and enter optimized wait state 438 * through MWAIT. Whenever someone changes need_resched, we would be woken 439 * up from MWAIT (without an IPI). 440 * 441 * New with Core Duo processors, MWAIT can take some hints based on CPU 442 * capability. 443 */ 444 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 445 { 446 trace_power_start(POWER_CSTATE, (ax>>4)+1, smp_processor_id()); 447 if (!need_resched()) { 448 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 449 clflush((void *)¤t_thread_info()->flags); 450 451 __monitor((void *)¤t_thread_info()->flags, 0, 0); 452 smp_mb(); 453 if (!need_resched()) 454 __mwait(ax, cx); 455 } 456 } 457 458 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 459 static void mwait_idle(void) 460 { 461 if (!need_resched()) { 462 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 463 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 464 clflush((void *)¤t_thread_info()->flags); 465 466 __monitor((void *)¤t_thread_info()->flags, 0, 0); 467 smp_mb(); 468 if (!need_resched()) 469 __sti_mwait(0, 0); 470 else 471 local_irq_enable(); 472 } else 473 local_irq_enable(); 474 } 475 476 /* 477 * On SMP it's slightly faster (but much more power-consuming!) 478 * to poll the ->work.need_resched flag instead of waiting for the 479 * cross-CPU IPI to arrive. Use this option with caution. 480 */ 481 static void poll_idle(void) 482 { 483 trace_power_start(POWER_CSTATE, 0, smp_processor_id()); 484 local_irq_enable(); 485 while (!need_resched()) 486 cpu_relax(); 487 trace_power_end(0); 488 } 489 490 /* 491 * mwait selection logic: 492 * 493 * It depends on the CPU. For AMD CPUs that support MWAIT this is 494 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 495 * then depend on a clock divisor and current Pstate of the core. If 496 * all cores of a processor are in halt state (C1) the processor can 497 * enter the C1E (C1 enhanced) state. If mwait is used this will never 498 * happen. 499 * 500 * idle=mwait overrides this decision and forces the usage of mwait. 501 */ 502 static int __cpuinitdata force_mwait; 503 504 #define MWAIT_INFO 0x05 505 #define MWAIT_ECX_EXTENDED_INFO 0x01 506 #define MWAIT_EDX_C1 0xf0 507 508 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 509 { 510 u32 eax, ebx, ecx, edx; 511 512 if (force_mwait) 513 return 1; 514 515 if (c->cpuid_level < MWAIT_INFO) 516 return 0; 517 518 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 519 /* Check, whether EDX has extended info about MWAIT */ 520 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 521 return 1; 522 523 /* 524 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 525 * C1 supports MWAIT 526 */ 527 return (edx & MWAIT_EDX_C1); 528 } 529 530 bool c1e_detected; 531 EXPORT_SYMBOL(c1e_detected); 532 533 static cpumask_var_t c1e_mask; 534 535 void c1e_remove_cpu(int cpu) 536 { 537 if (c1e_mask != NULL) 538 cpumask_clear_cpu(cpu, c1e_mask); 539 } 540 541 /* 542 * C1E aware idle routine. We check for C1E active in the interrupt 543 * pending message MSR. If we detect C1E, then we handle it the same 544 * way as C3 power states (local apic timer and TSC stop) 545 */ 546 static void c1e_idle(void) 547 { 548 if (need_resched()) 549 return; 550 551 if (!c1e_detected) { 552 u32 lo, hi; 553 554 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 555 556 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 557 c1e_detected = true; 558 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 559 mark_tsc_unstable("TSC halt in AMD C1E"); 560 printk(KERN_INFO "System has AMD C1E enabled\n"); 561 } 562 } 563 564 if (c1e_detected) { 565 int cpu = smp_processor_id(); 566 567 if (!cpumask_test_cpu(cpu, c1e_mask)) { 568 cpumask_set_cpu(cpu, c1e_mask); 569 /* 570 * Force broadcast so ACPI can not interfere. 571 */ 572 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 573 &cpu); 574 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 575 cpu); 576 } 577 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 578 579 default_idle(); 580 581 /* 582 * The switch back from broadcast mode needs to be 583 * called with interrupts disabled. 584 */ 585 local_irq_disable(); 586 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 587 local_irq_enable(); 588 } else 589 default_idle(); 590 } 591 592 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 593 { 594 #ifdef CONFIG_SMP 595 if (pm_idle == poll_idle && smp_num_siblings > 1) { 596 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," 597 " performance may degrade.\n"); 598 } 599 #endif 600 if (pm_idle) 601 return; 602 603 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 604 /* 605 * One CPU supports mwait => All CPUs supports mwait 606 */ 607 printk(KERN_INFO "using mwait in idle threads.\n"); 608 pm_idle = mwait_idle; 609 } else if (cpu_has_amd_erratum(amd_erratum_400)) { 610 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 611 printk(KERN_INFO "using C1E aware idle routine\n"); 612 pm_idle = c1e_idle; 613 } else 614 pm_idle = default_idle; 615 } 616 617 void __init init_c1e_mask(void) 618 { 619 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 620 if (pm_idle == c1e_idle) 621 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 622 } 623 624 static int __init idle_setup(char *str) 625 { 626 if (!str) 627 return -EINVAL; 628 629 if (!strcmp(str, "poll")) { 630 printk("using polling idle threads.\n"); 631 pm_idle = poll_idle; 632 } else if (!strcmp(str, "mwait")) 633 force_mwait = 1; 634 else if (!strcmp(str, "halt")) { 635 /* 636 * When the boot option of idle=halt is added, halt is 637 * forced to be used for CPU idle. In such case CPU C2/C3 638 * won't be used again. 639 * To continue to load the CPU idle driver, don't touch 640 * the boot_option_idle_override. 641 */ 642 pm_idle = default_idle; 643 idle_halt = 1; 644 return 0; 645 } else if (!strcmp(str, "nomwait")) { 646 /* 647 * If the boot option of "idle=nomwait" is added, 648 * it means that mwait will be disabled for CPU C2/C3 649 * states. In such case it won't touch the variable 650 * of boot_option_idle_override. 651 */ 652 idle_nomwait = 1; 653 return 0; 654 } else 655 return -1; 656 657 boot_option_idle_override = 1; 658 return 0; 659 } 660 early_param("idle", idle_setup); 661 662 unsigned long arch_align_stack(unsigned long sp) 663 { 664 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 665 sp -= get_random_int() % 8192; 666 return sp & ~0xf; 667 } 668 669 unsigned long arch_randomize_brk(struct mm_struct *mm) 670 { 671 unsigned long range_end = mm->brk + 0x02000000; 672 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 673 } 674 675