1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/errno.h> 4 #include <linux/kernel.h> 5 #include <linux/mm.h> 6 #include <linux/smp.h> 7 #include <linux/prctl.h> 8 #include <linux/slab.h> 9 #include <linux/sched.h> 10 #include <linux/module.h> 11 #include <linux/pm.h> 12 #include <linux/tick.h> 13 #include <linux/random.h> 14 #include <linux/user-return-notifier.h> 15 #include <linux/dmi.h> 16 #include <linux/utsname.h> 17 #include <linux/stackprotector.h> 18 #include <linux/tick.h> 19 #include <linux/cpuidle.h> 20 #include <trace/events/power.h> 21 #include <linux/hw_breakpoint.h> 22 #include <asm/cpu.h> 23 #include <asm/apic.h> 24 #include <asm/syscalls.h> 25 #include <asm/idle.h> 26 #include <asm/uaccess.h> 27 #include <asm/mwait.h> 28 #include <asm/fpu/internal.h> 29 #include <asm/debugreg.h> 30 #include <asm/nmi.h> 31 #include <asm/tlbflush.h> 32 #include <asm/mce.h> 33 34 /* 35 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 36 * no more per-task TSS's. The TSS size is kept cacheline-aligned 37 * so they are allowed to end up in the .data..cacheline_aligned 38 * section. Since TSS's are completely CPU-local, we want them 39 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 40 */ 41 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = { 42 .x86_tss = { 43 .sp0 = TOP_OF_INIT_STACK, 44 #ifdef CONFIG_X86_32 45 .ss0 = __KERNEL_DS, 46 .ss1 = __KERNEL_CS, 47 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 48 #endif 49 }, 50 #ifdef CONFIG_X86_32 51 /* 52 * Note that the .io_bitmap member must be extra-big. This is because 53 * the CPU will access an additional byte beyond the end of the IO 54 * permission bitmap. The extra byte must be all 1 bits, and must 55 * be within the limit. 56 */ 57 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 58 #endif 59 }; 60 EXPORT_PER_CPU_SYMBOL(cpu_tss); 61 62 #ifdef CONFIG_X86_64 63 static DEFINE_PER_CPU(unsigned char, is_idle); 64 static ATOMIC_NOTIFIER_HEAD(idle_notifier); 65 66 void idle_notifier_register(struct notifier_block *n) 67 { 68 atomic_notifier_chain_register(&idle_notifier, n); 69 } 70 EXPORT_SYMBOL_GPL(idle_notifier_register); 71 72 void idle_notifier_unregister(struct notifier_block *n) 73 { 74 atomic_notifier_chain_unregister(&idle_notifier, n); 75 } 76 EXPORT_SYMBOL_GPL(idle_notifier_unregister); 77 #endif 78 79 /* 80 * this gets called so that we can store lazy state into memory and copy the 81 * current task into the new thread. 82 */ 83 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 84 { 85 memcpy(dst, src, arch_task_struct_size); 86 87 return fpu__copy(&dst->thread.fpu, &src->thread.fpu); 88 } 89 90 /* 91 * Free current thread data structures etc.. 92 */ 93 void exit_thread(void) 94 { 95 struct task_struct *me = current; 96 struct thread_struct *t = &me->thread; 97 unsigned long *bp = t->io_bitmap_ptr; 98 struct fpu *fpu = &t->fpu; 99 100 if (bp) { 101 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu()); 102 103 t->io_bitmap_ptr = NULL; 104 clear_thread_flag(TIF_IO_BITMAP); 105 /* 106 * Careful, clear this in the TSS too: 107 */ 108 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 109 t->io_bitmap_max = 0; 110 put_cpu(); 111 kfree(bp); 112 } 113 114 fpu__drop(fpu); 115 } 116 117 void flush_thread(void) 118 { 119 struct task_struct *tsk = current; 120 121 flush_ptrace_hw_breakpoint(tsk); 122 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 123 124 fpu__clear(&tsk->thread.fpu); 125 } 126 127 static void hard_disable_TSC(void) 128 { 129 cr4_set_bits(X86_CR4_TSD); 130 } 131 132 void disable_TSC(void) 133 { 134 preempt_disable(); 135 if (!test_and_set_thread_flag(TIF_NOTSC)) 136 /* 137 * Must flip the CPU state synchronously with 138 * TIF_NOTSC in the current running context. 139 */ 140 hard_disable_TSC(); 141 preempt_enable(); 142 } 143 144 static void hard_enable_TSC(void) 145 { 146 cr4_clear_bits(X86_CR4_TSD); 147 } 148 149 static void enable_TSC(void) 150 { 151 preempt_disable(); 152 if (test_and_clear_thread_flag(TIF_NOTSC)) 153 /* 154 * Must flip the CPU state synchronously with 155 * TIF_NOTSC in the current running context. 156 */ 157 hard_enable_TSC(); 158 preempt_enable(); 159 } 160 161 int get_tsc_mode(unsigned long adr) 162 { 163 unsigned int val; 164 165 if (test_thread_flag(TIF_NOTSC)) 166 val = PR_TSC_SIGSEGV; 167 else 168 val = PR_TSC_ENABLE; 169 170 return put_user(val, (unsigned int __user *)adr); 171 } 172 173 int set_tsc_mode(unsigned int val) 174 { 175 if (val == PR_TSC_SIGSEGV) 176 disable_TSC(); 177 else if (val == PR_TSC_ENABLE) 178 enable_TSC(); 179 else 180 return -EINVAL; 181 182 return 0; 183 } 184 185 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 186 struct tss_struct *tss) 187 { 188 struct thread_struct *prev, *next; 189 190 prev = &prev_p->thread; 191 next = &next_p->thread; 192 193 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 194 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 195 unsigned long debugctl = get_debugctlmsr(); 196 197 debugctl &= ~DEBUGCTLMSR_BTF; 198 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 199 debugctl |= DEBUGCTLMSR_BTF; 200 201 update_debugctlmsr(debugctl); 202 } 203 204 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 205 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 206 /* prev and next are different */ 207 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 208 hard_disable_TSC(); 209 else 210 hard_enable_TSC(); 211 } 212 213 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 214 /* 215 * Copy the relevant range of the IO bitmap. 216 * Normally this is 128 bytes or less: 217 */ 218 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 219 max(prev->io_bitmap_max, next->io_bitmap_max)); 220 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 221 /* 222 * Clear any possible leftover bits: 223 */ 224 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 225 } 226 propagate_user_return_notify(prev_p, next_p); 227 } 228 229 /* 230 * Idle related variables and functions 231 */ 232 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 233 EXPORT_SYMBOL(boot_option_idle_override); 234 235 static void (*x86_idle)(void); 236 237 #ifndef CONFIG_SMP 238 static inline void play_dead(void) 239 { 240 BUG(); 241 } 242 #endif 243 244 #ifdef CONFIG_X86_64 245 void enter_idle(void) 246 { 247 this_cpu_write(is_idle, 1); 248 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); 249 } 250 251 static void __exit_idle(void) 252 { 253 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) 254 return; 255 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); 256 } 257 258 /* Called from interrupts to signify idle end */ 259 void exit_idle(void) 260 { 261 /* idle loop has pid 0 */ 262 if (current->pid) 263 return; 264 __exit_idle(); 265 } 266 #endif 267 268 void arch_cpu_idle_enter(void) 269 { 270 local_touch_nmi(); 271 enter_idle(); 272 } 273 274 void arch_cpu_idle_exit(void) 275 { 276 __exit_idle(); 277 } 278 279 void arch_cpu_idle_dead(void) 280 { 281 play_dead(); 282 } 283 284 /* 285 * Called from the generic idle code. 286 */ 287 void arch_cpu_idle(void) 288 { 289 x86_idle(); 290 } 291 292 /* 293 * We use this if we don't have any better idle routine.. 294 */ 295 void default_idle(void) 296 { 297 trace_cpu_idle_rcuidle(1, smp_processor_id()); 298 safe_halt(); 299 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 300 } 301 #ifdef CONFIG_APM_MODULE 302 EXPORT_SYMBOL(default_idle); 303 #endif 304 305 #ifdef CONFIG_XEN 306 bool xen_set_default_idle(void) 307 { 308 bool ret = !!x86_idle; 309 310 x86_idle = default_idle; 311 312 return ret; 313 } 314 #endif 315 void stop_this_cpu(void *dummy) 316 { 317 local_irq_disable(); 318 /* 319 * Remove this CPU: 320 */ 321 set_cpu_online(smp_processor_id(), false); 322 disable_local_APIC(); 323 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 324 325 for (;;) 326 halt(); 327 } 328 329 bool amd_e400_c1e_detected; 330 EXPORT_SYMBOL(amd_e400_c1e_detected); 331 332 static cpumask_var_t amd_e400_c1e_mask; 333 334 void amd_e400_remove_cpu(int cpu) 335 { 336 if (amd_e400_c1e_mask != NULL) 337 cpumask_clear_cpu(cpu, amd_e400_c1e_mask); 338 } 339 340 /* 341 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt 342 * pending message MSR. If we detect C1E, then we handle it the same 343 * way as C3 power states (local apic timer and TSC stop) 344 */ 345 static void amd_e400_idle(void) 346 { 347 if (!amd_e400_c1e_detected) { 348 u32 lo, hi; 349 350 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 351 352 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 353 amd_e400_c1e_detected = true; 354 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 355 mark_tsc_unstable("TSC halt in AMD C1E"); 356 pr_info("System has AMD C1E enabled\n"); 357 } 358 } 359 360 if (amd_e400_c1e_detected) { 361 int cpu = smp_processor_id(); 362 363 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { 364 cpumask_set_cpu(cpu, amd_e400_c1e_mask); 365 /* Force broadcast so ACPI can not interfere. */ 366 tick_broadcast_force(); 367 pr_info("Switch to broadcast mode on CPU%d\n", cpu); 368 } 369 tick_broadcast_enter(); 370 371 default_idle(); 372 373 /* 374 * The switch back from broadcast mode needs to be 375 * called with interrupts disabled. 376 */ 377 local_irq_disable(); 378 tick_broadcast_exit(); 379 local_irq_enable(); 380 } else 381 default_idle(); 382 } 383 384 /* 385 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 386 * We can't rely on cpuidle installing MWAIT, because it will not load 387 * on systems that support only C1 -- so the boot default must be MWAIT. 388 * 389 * Some AMD machines are the opposite, they depend on using HALT. 390 * 391 * So for default C1, which is used during boot until cpuidle loads, 392 * use MWAIT-C1 on Intel HW that has it, else use HALT. 393 */ 394 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 395 { 396 if (c->x86_vendor != X86_VENDOR_INTEL) 397 return 0; 398 399 if (!cpu_has(c, X86_FEATURE_MWAIT)) 400 return 0; 401 402 return 1; 403 } 404 405 /* 406 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 407 * with interrupts enabled and no flags, which is backwards compatible with the 408 * original MWAIT implementation. 409 */ 410 static void mwait_idle(void) 411 { 412 if (!current_set_polling_and_test()) { 413 trace_cpu_idle_rcuidle(1, smp_processor_id()); 414 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 415 smp_mb(); /* quirk */ 416 clflush((void *)¤t_thread_info()->flags); 417 smp_mb(); /* quirk */ 418 } 419 420 __monitor((void *)¤t_thread_info()->flags, 0, 0); 421 if (!need_resched()) 422 __sti_mwait(0, 0); 423 else 424 local_irq_enable(); 425 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 426 } else { 427 local_irq_enable(); 428 } 429 __current_clr_polling(); 430 } 431 432 void select_idle_routine(const struct cpuinfo_x86 *c) 433 { 434 #ifdef CONFIG_SMP 435 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 436 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 437 #endif 438 if (x86_idle || boot_option_idle_override == IDLE_POLL) 439 return; 440 441 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) { 442 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 443 pr_info("using AMD E400 aware idle routine\n"); 444 x86_idle = amd_e400_idle; 445 } else if (prefer_mwait_c1_over_halt(c)) { 446 pr_info("using mwait in idle threads\n"); 447 x86_idle = mwait_idle; 448 } else 449 x86_idle = default_idle; 450 } 451 452 void __init init_amd_e400_c1e_mask(void) 453 { 454 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ 455 if (x86_idle == amd_e400_idle) 456 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); 457 } 458 459 static int __init idle_setup(char *str) 460 { 461 if (!str) 462 return -EINVAL; 463 464 if (!strcmp(str, "poll")) { 465 pr_info("using polling idle threads\n"); 466 boot_option_idle_override = IDLE_POLL; 467 cpu_idle_poll_ctrl(true); 468 } else if (!strcmp(str, "halt")) { 469 /* 470 * When the boot option of idle=halt is added, halt is 471 * forced to be used for CPU idle. In such case CPU C2/C3 472 * won't be used again. 473 * To continue to load the CPU idle driver, don't touch 474 * the boot_option_idle_override. 475 */ 476 x86_idle = default_idle; 477 boot_option_idle_override = IDLE_HALT; 478 } else if (!strcmp(str, "nomwait")) { 479 /* 480 * If the boot option of "idle=nomwait" is added, 481 * it means that mwait will be disabled for CPU C2/C3 482 * states. In such case it won't touch the variable 483 * of boot_option_idle_override. 484 */ 485 boot_option_idle_override = IDLE_NOMWAIT; 486 } else 487 return -1; 488 489 return 0; 490 } 491 early_param("idle", idle_setup); 492 493 unsigned long arch_align_stack(unsigned long sp) 494 { 495 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 496 sp -= get_random_int() % 8192; 497 return sp & ~0xf; 498 } 499 500 unsigned long arch_randomize_brk(struct mm_struct *mm) 501 { 502 unsigned long range_end = mm->brk + 0x02000000; 503 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 504 } 505 506