xref: /linux/arch/x86/kernel/process.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34 
35 /*
36  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
37  * no more per-task TSS's. The TSS size is kept cacheline-aligned
38  * so they are allowed to end up in the .data..cacheline_aligned
39  * section. Since TSS's are completely CPU-local, we want them
40  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
41  */
42 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
43 	.x86_tss = {
44 		.sp0 = TOP_OF_INIT_STACK,
45 #ifdef CONFIG_X86_32
46 		.ss0 = __KERNEL_DS,
47 		.ss1 = __KERNEL_CS,
48 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
49 #endif
50 	 },
51 #ifdef CONFIG_X86_32
52 	 /*
53 	  * Note that the .io_bitmap member must be extra-big. This is because
54 	  * the CPU will access an additional byte beyond the end of the IO
55 	  * permission bitmap. The extra byte must be all 1 bits, and must
56 	  * be within the limit.
57 	  */
58 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
59 #endif
60 };
61 EXPORT_PER_CPU_SYMBOL(cpu_tss);
62 
63 #ifdef CONFIG_X86_64
64 static DEFINE_PER_CPU(unsigned char, is_idle);
65 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
66 
67 void idle_notifier_register(struct notifier_block *n)
68 {
69 	atomic_notifier_chain_register(&idle_notifier, n);
70 }
71 EXPORT_SYMBOL_GPL(idle_notifier_register);
72 
73 void idle_notifier_unregister(struct notifier_block *n)
74 {
75 	atomic_notifier_chain_unregister(&idle_notifier, n);
76 }
77 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
78 #endif
79 
80 /*
81  * this gets called so that we can store lazy state into memory and copy the
82  * current task into the new thread.
83  */
84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
85 {
86 	memcpy(dst, src, arch_task_struct_size);
87 #ifdef CONFIG_VM86
88 	dst->thread.vm86 = NULL;
89 #endif
90 
91 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
92 }
93 
94 /*
95  * Free current thread data structures etc..
96  */
97 void exit_thread(void)
98 {
99 	struct task_struct *me = current;
100 	struct thread_struct *t = &me->thread;
101 	unsigned long *bp = t->io_bitmap_ptr;
102 	struct fpu *fpu = &t->fpu;
103 
104 	if (bp) {
105 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
106 
107 		t->io_bitmap_ptr = NULL;
108 		clear_thread_flag(TIF_IO_BITMAP);
109 		/*
110 		 * Careful, clear this in the TSS too:
111 		 */
112 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
113 		t->io_bitmap_max = 0;
114 		put_cpu();
115 		kfree(bp);
116 	}
117 
118 	free_vm86(t);
119 
120 	fpu__drop(fpu);
121 }
122 
123 void flush_thread(void)
124 {
125 	struct task_struct *tsk = current;
126 
127 	flush_ptrace_hw_breakpoint(tsk);
128 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
129 
130 	fpu__clear(&tsk->thread.fpu);
131 }
132 
133 static void hard_disable_TSC(void)
134 {
135 	cr4_set_bits(X86_CR4_TSD);
136 }
137 
138 void disable_TSC(void)
139 {
140 	preempt_disable();
141 	if (!test_and_set_thread_flag(TIF_NOTSC))
142 		/*
143 		 * Must flip the CPU state synchronously with
144 		 * TIF_NOTSC in the current running context.
145 		 */
146 		hard_disable_TSC();
147 	preempt_enable();
148 }
149 
150 static void hard_enable_TSC(void)
151 {
152 	cr4_clear_bits(X86_CR4_TSD);
153 }
154 
155 static void enable_TSC(void)
156 {
157 	preempt_disable();
158 	if (test_and_clear_thread_flag(TIF_NOTSC))
159 		/*
160 		 * Must flip the CPU state synchronously with
161 		 * TIF_NOTSC in the current running context.
162 		 */
163 		hard_enable_TSC();
164 	preempt_enable();
165 }
166 
167 int get_tsc_mode(unsigned long adr)
168 {
169 	unsigned int val;
170 
171 	if (test_thread_flag(TIF_NOTSC))
172 		val = PR_TSC_SIGSEGV;
173 	else
174 		val = PR_TSC_ENABLE;
175 
176 	return put_user(val, (unsigned int __user *)adr);
177 }
178 
179 int set_tsc_mode(unsigned int val)
180 {
181 	if (val == PR_TSC_SIGSEGV)
182 		disable_TSC();
183 	else if (val == PR_TSC_ENABLE)
184 		enable_TSC();
185 	else
186 		return -EINVAL;
187 
188 	return 0;
189 }
190 
191 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192 		      struct tss_struct *tss)
193 {
194 	struct thread_struct *prev, *next;
195 
196 	prev = &prev_p->thread;
197 	next = &next_p->thread;
198 
199 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201 		unsigned long debugctl = get_debugctlmsr();
202 
203 		debugctl &= ~DEBUGCTLMSR_BTF;
204 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205 			debugctl |= DEBUGCTLMSR_BTF;
206 
207 		update_debugctlmsr(debugctl);
208 	}
209 
210 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212 		/* prev and next are different */
213 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214 			hard_disable_TSC();
215 		else
216 			hard_enable_TSC();
217 	}
218 
219 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
220 		/*
221 		 * Copy the relevant range of the IO bitmap.
222 		 * Normally this is 128 bytes or less:
223 		 */
224 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225 		       max(prev->io_bitmap_max, next->io_bitmap_max));
226 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
227 		/*
228 		 * Clear any possible leftover bits:
229 		 */
230 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231 	}
232 	propagate_user_return_notify(prev_p, next_p);
233 }
234 
235 /*
236  * Idle related variables and functions
237  */
238 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
239 EXPORT_SYMBOL(boot_option_idle_override);
240 
241 static void (*x86_idle)(void);
242 
243 #ifndef CONFIG_SMP
244 static inline void play_dead(void)
245 {
246 	BUG();
247 }
248 #endif
249 
250 #ifdef CONFIG_X86_64
251 void enter_idle(void)
252 {
253 	this_cpu_write(is_idle, 1);
254 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
255 }
256 
257 static void __exit_idle(void)
258 {
259 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
260 		return;
261 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
262 }
263 
264 /* Called from interrupts to signify idle end */
265 void exit_idle(void)
266 {
267 	/* idle loop has pid 0 */
268 	if (current->pid)
269 		return;
270 	__exit_idle();
271 }
272 #endif
273 
274 void arch_cpu_idle_enter(void)
275 {
276 	local_touch_nmi();
277 	enter_idle();
278 }
279 
280 void arch_cpu_idle_exit(void)
281 {
282 	__exit_idle();
283 }
284 
285 void arch_cpu_idle_dead(void)
286 {
287 	play_dead();
288 }
289 
290 /*
291  * Called from the generic idle code.
292  */
293 void arch_cpu_idle(void)
294 {
295 	x86_idle();
296 }
297 
298 /*
299  * We use this if we don't have any better idle routine..
300  */
301 void default_idle(void)
302 {
303 	trace_cpu_idle_rcuidle(1, smp_processor_id());
304 	safe_halt();
305 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
306 }
307 #ifdef CONFIG_APM_MODULE
308 EXPORT_SYMBOL(default_idle);
309 #endif
310 
311 #ifdef CONFIG_XEN
312 bool xen_set_default_idle(void)
313 {
314 	bool ret = !!x86_idle;
315 
316 	x86_idle = default_idle;
317 
318 	return ret;
319 }
320 #endif
321 void stop_this_cpu(void *dummy)
322 {
323 	local_irq_disable();
324 	/*
325 	 * Remove this CPU:
326 	 */
327 	set_cpu_online(smp_processor_id(), false);
328 	disable_local_APIC();
329 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
330 
331 	for (;;)
332 		halt();
333 }
334 
335 bool amd_e400_c1e_detected;
336 EXPORT_SYMBOL(amd_e400_c1e_detected);
337 
338 static cpumask_var_t amd_e400_c1e_mask;
339 
340 void amd_e400_remove_cpu(int cpu)
341 {
342 	if (amd_e400_c1e_mask != NULL)
343 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
344 }
345 
346 /*
347  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
348  * pending message MSR. If we detect C1E, then we handle it the same
349  * way as C3 power states (local apic timer and TSC stop)
350  */
351 static void amd_e400_idle(void)
352 {
353 	if (!amd_e400_c1e_detected) {
354 		u32 lo, hi;
355 
356 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
357 
358 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
359 			amd_e400_c1e_detected = true;
360 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
361 				mark_tsc_unstable("TSC halt in AMD C1E");
362 			pr_info("System has AMD C1E enabled\n");
363 		}
364 	}
365 
366 	if (amd_e400_c1e_detected) {
367 		int cpu = smp_processor_id();
368 
369 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
370 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
371 			/* Force broadcast so ACPI can not interfere. */
372 			tick_broadcast_force();
373 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
374 		}
375 		tick_broadcast_enter();
376 
377 		default_idle();
378 
379 		/*
380 		 * The switch back from broadcast mode needs to be
381 		 * called with interrupts disabled.
382 		 */
383 		local_irq_disable();
384 		tick_broadcast_exit();
385 		local_irq_enable();
386 	} else
387 		default_idle();
388 }
389 
390 /*
391  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
392  * We can't rely on cpuidle installing MWAIT, because it will not load
393  * on systems that support only C1 -- so the boot default must be MWAIT.
394  *
395  * Some AMD machines are the opposite, they depend on using HALT.
396  *
397  * So for default C1, which is used during boot until cpuidle loads,
398  * use MWAIT-C1 on Intel HW that has it, else use HALT.
399  */
400 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
401 {
402 	if (c->x86_vendor != X86_VENDOR_INTEL)
403 		return 0;
404 
405 	if (!cpu_has(c, X86_FEATURE_MWAIT))
406 		return 0;
407 
408 	return 1;
409 }
410 
411 /*
412  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
413  * with interrupts enabled and no flags, which is backwards compatible with the
414  * original MWAIT implementation.
415  */
416 static void mwait_idle(void)
417 {
418 	if (!current_set_polling_and_test()) {
419 		trace_cpu_idle_rcuidle(1, smp_processor_id());
420 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
421 			smp_mb(); /* quirk */
422 			clflush((void *)&current_thread_info()->flags);
423 			smp_mb(); /* quirk */
424 		}
425 
426 		__monitor((void *)&current_thread_info()->flags, 0, 0);
427 		if (!need_resched())
428 			__sti_mwait(0, 0);
429 		else
430 			local_irq_enable();
431 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
432 	} else {
433 		local_irq_enable();
434 	}
435 	__current_clr_polling();
436 }
437 
438 void select_idle_routine(const struct cpuinfo_x86 *c)
439 {
440 #ifdef CONFIG_SMP
441 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
442 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
443 #endif
444 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
445 		return;
446 
447 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
448 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
449 		pr_info("using AMD E400 aware idle routine\n");
450 		x86_idle = amd_e400_idle;
451 	} else if (prefer_mwait_c1_over_halt(c)) {
452 		pr_info("using mwait in idle threads\n");
453 		x86_idle = mwait_idle;
454 	} else
455 		x86_idle = default_idle;
456 }
457 
458 void __init init_amd_e400_c1e_mask(void)
459 {
460 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
461 	if (x86_idle == amd_e400_idle)
462 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
463 }
464 
465 static int __init idle_setup(char *str)
466 {
467 	if (!str)
468 		return -EINVAL;
469 
470 	if (!strcmp(str, "poll")) {
471 		pr_info("using polling idle threads\n");
472 		boot_option_idle_override = IDLE_POLL;
473 		cpu_idle_poll_ctrl(true);
474 	} else if (!strcmp(str, "halt")) {
475 		/*
476 		 * When the boot option of idle=halt is added, halt is
477 		 * forced to be used for CPU idle. In such case CPU C2/C3
478 		 * won't be used again.
479 		 * To continue to load the CPU idle driver, don't touch
480 		 * the boot_option_idle_override.
481 		 */
482 		x86_idle = default_idle;
483 		boot_option_idle_override = IDLE_HALT;
484 	} else if (!strcmp(str, "nomwait")) {
485 		/*
486 		 * If the boot option of "idle=nomwait" is added,
487 		 * it means that mwait will be disabled for CPU C2/C3
488 		 * states. In such case it won't touch the variable
489 		 * of boot_option_idle_override.
490 		 */
491 		boot_option_idle_override = IDLE_NOMWAIT;
492 	} else
493 		return -1;
494 
495 	return 0;
496 }
497 early_param("idle", idle_setup);
498 
499 unsigned long arch_align_stack(unsigned long sp)
500 {
501 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
502 		sp -= get_random_int() % 8192;
503 	return sp & ~0xf;
504 }
505 
506 unsigned long arch_randomize_brk(struct mm_struct *mm)
507 {
508 	unsigned long range_end = mm->brk + 0x02000000;
509 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
510 }
511 
512 /*
513  * Called from fs/proc with a reference on @p to find the function
514  * which called into schedule(). This needs to be done carefully
515  * because the task might wake up and we might look at a stack
516  * changing under us.
517  */
518 unsigned long get_wchan(struct task_struct *p)
519 {
520 	unsigned long start, bottom, top, sp, fp, ip;
521 	int count = 0;
522 
523 	if (!p || p == current || p->state == TASK_RUNNING)
524 		return 0;
525 
526 	start = (unsigned long)task_stack_page(p);
527 	if (!start)
528 		return 0;
529 
530 	/*
531 	 * Layout of the stack page:
532 	 *
533 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
534 	 * PADDING
535 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
536 	 * stack
537 	 * ----------- bottom = start + sizeof(thread_info)
538 	 * thread_info
539 	 * ----------- start
540 	 *
541 	 * The tasks stack pointer points at the location where the
542 	 * framepointer is stored. The data on the stack is:
543 	 * ... IP FP ... IP FP
544 	 *
545 	 * We need to read FP and IP, so we need to adjust the upper
546 	 * bound by another unsigned long.
547 	 */
548 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
549 	top -= 2 * sizeof(unsigned long);
550 	bottom = start + sizeof(struct thread_info);
551 
552 	sp = READ_ONCE(p->thread.sp);
553 	if (sp < bottom || sp > top)
554 		return 0;
555 
556 	fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
557 	do {
558 		if (fp < bottom || fp > top)
559 			return 0;
560 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
561 		if (!in_sched_functions(ip))
562 			return ip;
563 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
564 	} while (count++ < 16 && p->state != TASK_RUNNING);
565 	return 0;
566 }
567