1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/cpu.h> 18 #include <asm/system.h> 19 #include <asm/apic.h> 20 #include <asm/syscalls.h> 21 #include <asm/idle.h> 22 #include <asm/uaccess.h> 23 #include <asm/i387.h> 24 #include <asm/debugreg.h> 25 26 struct kmem_cache *task_xstate_cachep; 27 EXPORT_SYMBOL_GPL(task_xstate_cachep); 28 29 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 30 { 31 int ret; 32 33 *dst = *src; 34 if (fpu_allocated(&src->thread.fpu)) { 35 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); 36 ret = fpu_alloc(&dst->thread.fpu); 37 if (ret) 38 return ret; 39 fpu_copy(&dst->thread.fpu, &src->thread.fpu); 40 } 41 return 0; 42 } 43 44 void free_thread_xstate(struct task_struct *tsk) 45 { 46 fpu_free(&tsk->thread.fpu); 47 } 48 49 void free_thread_info(struct thread_info *ti) 50 { 51 free_thread_xstate(ti->task); 52 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 53 } 54 55 void arch_task_cache_init(void) 56 { 57 task_xstate_cachep = 58 kmem_cache_create("task_xstate", xstate_size, 59 __alignof__(union thread_xstate), 60 SLAB_PANIC | SLAB_NOTRACK, NULL); 61 } 62 63 /* 64 * Free current thread data structures etc.. 65 */ 66 void exit_thread(void) 67 { 68 struct task_struct *me = current; 69 struct thread_struct *t = &me->thread; 70 unsigned long *bp = t->io_bitmap_ptr; 71 72 if (bp) { 73 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 74 75 t->io_bitmap_ptr = NULL; 76 clear_thread_flag(TIF_IO_BITMAP); 77 /* 78 * Careful, clear this in the TSS too: 79 */ 80 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 81 t->io_bitmap_max = 0; 82 put_cpu(); 83 kfree(bp); 84 } 85 } 86 87 void show_regs(struct pt_regs *regs) 88 { 89 show_registers(regs); 90 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs)); 91 } 92 93 void show_regs_common(void) 94 { 95 const char *board, *product; 96 97 board = dmi_get_system_info(DMI_BOARD_NAME); 98 if (!board) 99 board = ""; 100 product = dmi_get_system_info(DMI_PRODUCT_NAME); 101 if (!product) 102 product = ""; 103 104 printk(KERN_CONT "\n"); 105 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", 106 current->pid, current->comm, print_tainted(), 107 init_utsname()->release, 108 (int)strcspn(init_utsname()->version, " "), 109 init_utsname()->version, board, product); 110 } 111 112 void flush_thread(void) 113 { 114 struct task_struct *tsk = current; 115 116 flush_ptrace_hw_breakpoint(tsk); 117 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 118 /* 119 * Forget coprocessor state.. 120 */ 121 tsk->fpu_counter = 0; 122 clear_fpu(tsk); 123 clear_used_math(); 124 } 125 126 static void hard_disable_TSC(void) 127 { 128 write_cr4(read_cr4() | X86_CR4_TSD); 129 } 130 131 void disable_TSC(void) 132 { 133 preempt_disable(); 134 if (!test_and_set_thread_flag(TIF_NOTSC)) 135 /* 136 * Must flip the CPU state synchronously with 137 * TIF_NOTSC in the current running context. 138 */ 139 hard_disable_TSC(); 140 preempt_enable(); 141 } 142 143 static void hard_enable_TSC(void) 144 { 145 write_cr4(read_cr4() & ~X86_CR4_TSD); 146 } 147 148 static void enable_TSC(void) 149 { 150 preempt_disable(); 151 if (test_and_clear_thread_flag(TIF_NOTSC)) 152 /* 153 * Must flip the CPU state synchronously with 154 * TIF_NOTSC in the current running context. 155 */ 156 hard_enable_TSC(); 157 preempt_enable(); 158 } 159 160 int get_tsc_mode(unsigned long adr) 161 { 162 unsigned int val; 163 164 if (test_thread_flag(TIF_NOTSC)) 165 val = PR_TSC_SIGSEGV; 166 else 167 val = PR_TSC_ENABLE; 168 169 return put_user(val, (unsigned int __user *)adr); 170 } 171 172 int set_tsc_mode(unsigned int val) 173 { 174 if (val == PR_TSC_SIGSEGV) 175 disable_TSC(); 176 else if (val == PR_TSC_ENABLE) 177 enable_TSC(); 178 else 179 return -EINVAL; 180 181 return 0; 182 } 183 184 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 185 struct tss_struct *tss) 186 { 187 struct thread_struct *prev, *next; 188 189 prev = &prev_p->thread; 190 next = &next_p->thread; 191 192 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 193 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 194 unsigned long debugctl = get_debugctlmsr(); 195 196 debugctl &= ~DEBUGCTLMSR_BTF; 197 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 198 debugctl |= DEBUGCTLMSR_BTF; 199 200 update_debugctlmsr(debugctl); 201 } 202 203 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 204 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 205 /* prev and next are different */ 206 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 207 hard_disable_TSC(); 208 else 209 hard_enable_TSC(); 210 } 211 212 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 213 /* 214 * Copy the relevant range of the IO bitmap. 215 * Normally this is 128 bytes or less: 216 */ 217 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 218 max(prev->io_bitmap_max, next->io_bitmap_max)); 219 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 220 /* 221 * Clear any possible leftover bits: 222 */ 223 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 224 } 225 propagate_user_return_notify(prev_p, next_p); 226 } 227 228 int sys_fork(struct pt_regs *regs) 229 { 230 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 231 } 232 233 /* 234 * This is trivial, and on the face of it looks like it 235 * could equally well be done in user mode. 236 * 237 * Not so, for quite unobvious reasons - register pressure. 238 * In user mode vfork() cannot have a stack frame, and if 239 * done by calling the "clone()" system call directly, you 240 * do not have enough call-clobbered registers to hold all 241 * the information you need. 242 */ 243 int sys_vfork(struct pt_regs *regs) 244 { 245 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 246 NULL, NULL); 247 } 248 249 long 250 sys_clone(unsigned long clone_flags, unsigned long newsp, 251 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 252 { 253 if (!newsp) 254 newsp = regs->sp; 255 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 256 } 257 258 /* 259 * This gets run with %si containing the 260 * function to call, and %di containing 261 * the "args". 262 */ 263 extern void kernel_thread_helper(void); 264 265 /* 266 * Create a kernel thread 267 */ 268 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 269 { 270 struct pt_regs regs; 271 272 memset(®s, 0, sizeof(regs)); 273 274 regs.si = (unsigned long) fn; 275 regs.di = (unsigned long) arg; 276 277 #ifdef CONFIG_X86_32 278 regs.ds = __USER_DS; 279 regs.es = __USER_DS; 280 regs.fs = __KERNEL_PERCPU; 281 regs.gs = __KERNEL_STACK_CANARY; 282 #else 283 regs.ss = __KERNEL_DS; 284 #endif 285 286 regs.orig_ax = -1; 287 regs.ip = (unsigned long) kernel_thread_helper; 288 regs.cs = __KERNEL_CS | get_kernel_rpl(); 289 regs.flags = X86_EFLAGS_IF | 0x2; 290 291 /* Ok, create the new process.. */ 292 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 293 } 294 EXPORT_SYMBOL(kernel_thread); 295 296 /* 297 * sys_execve() executes a new program. 298 */ 299 long sys_execve(const char __user *name, 300 const char __user *const __user *argv, 301 const char __user *const __user *envp, struct pt_regs *regs) 302 { 303 long error; 304 char *filename; 305 306 filename = getname(name); 307 error = PTR_ERR(filename); 308 if (IS_ERR(filename)) 309 return error; 310 error = do_execve(filename, argv, envp, regs); 311 312 #ifdef CONFIG_X86_32 313 if (error == 0) { 314 /* Make sure we don't return using sysenter.. */ 315 set_thread_flag(TIF_IRET); 316 } 317 #endif 318 319 putname(filename); 320 return error; 321 } 322 323 /* 324 * Idle related variables and functions 325 */ 326 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 327 EXPORT_SYMBOL(boot_option_idle_override); 328 329 /* 330 * Powermanagement idle function, if any.. 331 */ 332 void (*pm_idle)(void); 333 EXPORT_SYMBOL(pm_idle); 334 335 #ifdef CONFIG_X86_32 336 /* 337 * This halt magic was a workaround for ancient floppy DMA 338 * wreckage. It should be safe to remove. 339 */ 340 static int hlt_counter; 341 void disable_hlt(void) 342 { 343 hlt_counter++; 344 } 345 EXPORT_SYMBOL(disable_hlt); 346 347 void enable_hlt(void) 348 { 349 hlt_counter--; 350 } 351 EXPORT_SYMBOL(enable_hlt); 352 353 static inline int hlt_use_halt(void) 354 { 355 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 356 } 357 #else 358 static inline int hlt_use_halt(void) 359 { 360 return 1; 361 } 362 #endif 363 364 /* 365 * We use this if we don't have any better 366 * idle routine.. 367 */ 368 void default_idle(void) 369 { 370 if (hlt_use_halt()) { 371 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 372 trace_cpu_idle(1, smp_processor_id()); 373 current_thread_info()->status &= ~TS_POLLING; 374 /* 375 * TS_POLLING-cleared state must be visible before we 376 * test NEED_RESCHED: 377 */ 378 smp_mb(); 379 380 if (!need_resched()) 381 safe_halt(); /* enables interrupts racelessly */ 382 else 383 local_irq_enable(); 384 current_thread_info()->status |= TS_POLLING; 385 trace_power_end(smp_processor_id()); 386 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 387 } else { 388 local_irq_enable(); 389 /* loop is done by the caller */ 390 cpu_relax(); 391 } 392 } 393 #ifdef CONFIG_APM_MODULE 394 EXPORT_SYMBOL(default_idle); 395 #endif 396 397 void stop_this_cpu(void *dummy) 398 { 399 local_irq_disable(); 400 /* 401 * Remove this CPU: 402 */ 403 set_cpu_online(smp_processor_id(), false); 404 disable_local_APIC(); 405 406 for (;;) { 407 if (hlt_works(smp_processor_id())) 408 halt(); 409 } 410 } 411 412 static void do_nothing(void *unused) 413 { 414 } 415 416 /* 417 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 418 * pm_idle and update to new pm_idle value. Required while changing pm_idle 419 * handler on SMP systems. 420 * 421 * Caller must have changed pm_idle to the new value before the call. Old 422 * pm_idle value will not be used by any CPU after the return of this function. 423 */ 424 void cpu_idle_wait(void) 425 { 426 smp_mb(); 427 /* kick all the CPUs so that they exit out of pm_idle */ 428 smp_call_function(do_nothing, NULL, 1); 429 } 430 EXPORT_SYMBOL_GPL(cpu_idle_wait); 431 432 /* 433 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 434 * which can obviate IPI to trigger checking of need_resched. 435 * We execute MONITOR against need_resched and enter optimized wait state 436 * through MWAIT. Whenever someone changes need_resched, we would be woken 437 * up from MWAIT (without an IPI). 438 * 439 * New with Core Duo processors, MWAIT can take some hints based on CPU 440 * capability. 441 */ 442 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 443 { 444 if (!need_resched()) { 445 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR)) 446 clflush((void *)¤t_thread_info()->flags); 447 448 __monitor((void *)¤t_thread_info()->flags, 0, 0); 449 smp_mb(); 450 if (!need_resched()) 451 __mwait(ax, cx); 452 } 453 } 454 455 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 456 static void mwait_idle(void) 457 { 458 if (!need_resched()) { 459 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 460 trace_cpu_idle(1, smp_processor_id()); 461 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR)) 462 clflush((void *)¤t_thread_info()->flags); 463 464 __monitor((void *)¤t_thread_info()->flags, 0, 0); 465 smp_mb(); 466 if (!need_resched()) 467 __sti_mwait(0, 0); 468 else 469 local_irq_enable(); 470 trace_power_end(smp_processor_id()); 471 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 472 } else 473 local_irq_enable(); 474 } 475 476 /* 477 * On SMP it's slightly faster (but much more power-consuming!) 478 * to poll the ->work.need_resched flag instead of waiting for the 479 * cross-CPU IPI to arrive. Use this option with caution. 480 */ 481 static void poll_idle(void) 482 { 483 trace_power_start(POWER_CSTATE, 0, smp_processor_id()); 484 trace_cpu_idle(0, smp_processor_id()); 485 local_irq_enable(); 486 while (!need_resched()) 487 cpu_relax(); 488 trace_power_end(smp_processor_id()); 489 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 490 } 491 492 /* 493 * mwait selection logic: 494 * 495 * It depends on the CPU. For AMD CPUs that support MWAIT this is 496 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 497 * then depend on a clock divisor and current Pstate of the core. If 498 * all cores of a processor are in halt state (C1) the processor can 499 * enter the C1E (C1 enhanced) state. If mwait is used this will never 500 * happen. 501 * 502 * idle=mwait overrides this decision and forces the usage of mwait. 503 */ 504 505 #define MWAIT_INFO 0x05 506 #define MWAIT_ECX_EXTENDED_INFO 0x01 507 #define MWAIT_EDX_C1 0xf0 508 509 int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 510 { 511 u32 eax, ebx, ecx, edx; 512 513 if (boot_option_idle_override == IDLE_FORCE_MWAIT) 514 return 1; 515 516 if (c->cpuid_level < MWAIT_INFO) 517 return 0; 518 519 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 520 /* Check, whether EDX has extended info about MWAIT */ 521 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 522 return 1; 523 524 /* 525 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 526 * C1 supports MWAIT 527 */ 528 return (edx & MWAIT_EDX_C1); 529 } 530 531 bool c1e_detected; 532 EXPORT_SYMBOL(c1e_detected); 533 534 static cpumask_var_t c1e_mask; 535 536 void c1e_remove_cpu(int cpu) 537 { 538 if (c1e_mask != NULL) 539 cpumask_clear_cpu(cpu, c1e_mask); 540 } 541 542 /* 543 * C1E aware idle routine. We check for C1E active in the interrupt 544 * pending message MSR. If we detect C1E, then we handle it the same 545 * way as C3 power states (local apic timer and TSC stop) 546 */ 547 static void c1e_idle(void) 548 { 549 if (need_resched()) 550 return; 551 552 if (!c1e_detected) { 553 u32 lo, hi; 554 555 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 556 557 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 558 c1e_detected = true; 559 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 560 mark_tsc_unstable("TSC halt in AMD C1E"); 561 printk(KERN_INFO "System has AMD C1E enabled\n"); 562 } 563 } 564 565 if (c1e_detected) { 566 int cpu = smp_processor_id(); 567 568 if (!cpumask_test_cpu(cpu, c1e_mask)) { 569 cpumask_set_cpu(cpu, c1e_mask); 570 /* 571 * Force broadcast so ACPI can not interfere. 572 */ 573 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 574 &cpu); 575 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 576 cpu); 577 } 578 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 579 580 default_idle(); 581 582 /* 583 * The switch back from broadcast mode needs to be 584 * called with interrupts disabled. 585 */ 586 local_irq_disable(); 587 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 588 local_irq_enable(); 589 } else 590 default_idle(); 591 } 592 593 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 594 { 595 #ifdef CONFIG_SMP 596 if (pm_idle == poll_idle && smp_num_siblings > 1) { 597 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," 598 " performance may degrade.\n"); 599 } 600 #endif 601 if (pm_idle) 602 return; 603 604 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 605 /* 606 * One CPU supports mwait => All CPUs supports mwait 607 */ 608 printk(KERN_INFO "using mwait in idle threads.\n"); 609 pm_idle = mwait_idle; 610 } else if (cpu_has_amd_erratum(amd_erratum_400)) { 611 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 612 printk(KERN_INFO "using C1E aware idle routine\n"); 613 pm_idle = c1e_idle; 614 } else 615 pm_idle = default_idle; 616 } 617 618 void __init init_c1e_mask(void) 619 { 620 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 621 if (pm_idle == c1e_idle) 622 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 623 } 624 625 static int __init idle_setup(char *str) 626 { 627 if (!str) 628 return -EINVAL; 629 630 if (!strcmp(str, "poll")) { 631 printk("using polling idle threads.\n"); 632 pm_idle = poll_idle; 633 boot_option_idle_override = IDLE_POLL; 634 } else if (!strcmp(str, "mwait")) { 635 boot_option_idle_override = IDLE_FORCE_MWAIT; 636 } else if (!strcmp(str, "halt")) { 637 /* 638 * When the boot option of idle=halt is added, halt is 639 * forced to be used for CPU idle. In such case CPU C2/C3 640 * won't be used again. 641 * To continue to load the CPU idle driver, don't touch 642 * the boot_option_idle_override. 643 */ 644 pm_idle = default_idle; 645 boot_option_idle_override = IDLE_HALT; 646 } else if (!strcmp(str, "nomwait")) { 647 /* 648 * If the boot option of "idle=nomwait" is added, 649 * it means that mwait will be disabled for CPU C2/C3 650 * states. In such case it won't touch the variable 651 * of boot_option_idle_override. 652 */ 653 boot_option_idle_override = IDLE_NOMWAIT; 654 } else 655 return -1; 656 657 return 0; 658 } 659 early_param("idle", idle_setup); 660 661 unsigned long arch_align_stack(unsigned long sp) 662 { 663 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 664 sp -= get_random_int() % 8192; 665 return sp & ~0xf; 666 } 667 668 unsigned long arch_randomize_brk(struct mm_struct *mm) 669 { 670 unsigned long range_end = mm->brk + 0x02000000; 671 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 672 } 673 674