xref: /linux/arch/x86/kernel/process.c (revision c9895ed5a84dc3cbc86a9d6d5656d8c187f53380)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/cpu.h>
18 #include <asm/system.h>
19 #include <asm/apic.h>
20 #include <asm/syscalls.h>
21 #include <asm/idle.h>
22 #include <asm/uaccess.h>
23 #include <asm/i387.h>
24 #include <asm/debugreg.h>
25 
26 struct kmem_cache *task_xstate_cachep;
27 EXPORT_SYMBOL_GPL(task_xstate_cachep);
28 
29 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
30 {
31 	int ret;
32 
33 	*dst = *src;
34 	if (fpu_allocated(&src->thread.fpu)) {
35 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
36 		ret = fpu_alloc(&dst->thread.fpu);
37 		if (ret)
38 			return ret;
39 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
40 	}
41 	return 0;
42 }
43 
44 void free_thread_xstate(struct task_struct *tsk)
45 {
46 	fpu_free(&tsk->thread.fpu);
47 }
48 
49 void free_thread_info(struct thread_info *ti)
50 {
51 	free_thread_xstate(ti->task);
52 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
53 }
54 
55 void arch_task_cache_init(void)
56 {
57         task_xstate_cachep =
58         	kmem_cache_create("task_xstate", xstate_size,
59 				  __alignof__(union thread_xstate),
60 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
61 }
62 
63 /*
64  * Free current thread data structures etc..
65  */
66 void exit_thread(void)
67 {
68 	struct task_struct *me = current;
69 	struct thread_struct *t = &me->thread;
70 	unsigned long *bp = t->io_bitmap_ptr;
71 
72 	if (bp) {
73 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
74 
75 		t->io_bitmap_ptr = NULL;
76 		clear_thread_flag(TIF_IO_BITMAP);
77 		/*
78 		 * Careful, clear this in the TSS too:
79 		 */
80 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
81 		t->io_bitmap_max = 0;
82 		put_cpu();
83 		kfree(bp);
84 	}
85 }
86 
87 void show_regs(struct pt_regs *regs)
88 {
89 	show_registers(regs);
90 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs));
91 }
92 
93 void show_regs_common(void)
94 {
95 	const char *board, *product;
96 
97 	board = dmi_get_system_info(DMI_BOARD_NAME);
98 	if (!board)
99 		board = "";
100 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
101 	if (!product)
102 		product = "";
103 
104 	printk(KERN_CONT "\n");
105 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
106 		current->pid, current->comm, print_tainted(),
107 		init_utsname()->release,
108 		(int)strcspn(init_utsname()->version, " "),
109 		init_utsname()->version, board, product);
110 }
111 
112 void flush_thread(void)
113 {
114 	struct task_struct *tsk = current;
115 
116 	flush_ptrace_hw_breakpoint(tsk);
117 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
118 	/*
119 	 * Forget coprocessor state..
120 	 */
121 	tsk->fpu_counter = 0;
122 	clear_fpu(tsk);
123 	clear_used_math();
124 }
125 
126 static void hard_disable_TSC(void)
127 {
128 	write_cr4(read_cr4() | X86_CR4_TSD);
129 }
130 
131 void disable_TSC(void)
132 {
133 	preempt_disable();
134 	if (!test_and_set_thread_flag(TIF_NOTSC))
135 		/*
136 		 * Must flip the CPU state synchronously with
137 		 * TIF_NOTSC in the current running context.
138 		 */
139 		hard_disable_TSC();
140 	preempt_enable();
141 }
142 
143 static void hard_enable_TSC(void)
144 {
145 	write_cr4(read_cr4() & ~X86_CR4_TSD);
146 }
147 
148 static void enable_TSC(void)
149 {
150 	preempt_disable();
151 	if (test_and_clear_thread_flag(TIF_NOTSC))
152 		/*
153 		 * Must flip the CPU state synchronously with
154 		 * TIF_NOTSC in the current running context.
155 		 */
156 		hard_enable_TSC();
157 	preempt_enable();
158 }
159 
160 int get_tsc_mode(unsigned long adr)
161 {
162 	unsigned int val;
163 
164 	if (test_thread_flag(TIF_NOTSC))
165 		val = PR_TSC_SIGSEGV;
166 	else
167 		val = PR_TSC_ENABLE;
168 
169 	return put_user(val, (unsigned int __user *)adr);
170 }
171 
172 int set_tsc_mode(unsigned int val)
173 {
174 	if (val == PR_TSC_SIGSEGV)
175 		disable_TSC();
176 	else if (val == PR_TSC_ENABLE)
177 		enable_TSC();
178 	else
179 		return -EINVAL;
180 
181 	return 0;
182 }
183 
184 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
185 		      struct tss_struct *tss)
186 {
187 	struct thread_struct *prev, *next;
188 
189 	prev = &prev_p->thread;
190 	next = &next_p->thread;
191 
192 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
193 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
194 		unsigned long debugctl = get_debugctlmsr();
195 
196 		debugctl &= ~DEBUGCTLMSR_BTF;
197 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
198 			debugctl |= DEBUGCTLMSR_BTF;
199 
200 		update_debugctlmsr(debugctl);
201 	}
202 
203 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
204 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
205 		/* prev and next are different */
206 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
207 			hard_disable_TSC();
208 		else
209 			hard_enable_TSC();
210 	}
211 
212 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
213 		/*
214 		 * Copy the relevant range of the IO bitmap.
215 		 * Normally this is 128 bytes or less:
216 		 */
217 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
218 		       max(prev->io_bitmap_max, next->io_bitmap_max));
219 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
220 		/*
221 		 * Clear any possible leftover bits:
222 		 */
223 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
224 	}
225 	propagate_user_return_notify(prev_p, next_p);
226 }
227 
228 int sys_fork(struct pt_regs *regs)
229 {
230 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
231 }
232 
233 /*
234  * This is trivial, and on the face of it looks like it
235  * could equally well be done in user mode.
236  *
237  * Not so, for quite unobvious reasons - register pressure.
238  * In user mode vfork() cannot have a stack frame, and if
239  * done by calling the "clone()" system call directly, you
240  * do not have enough call-clobbered registers to hold all
241  * the information you need.
242  */
243 int sys_vfork(struct pt_regs *regs)
244 {
245 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
246 		       NULL, NULL);
247 }
248 
249 long
250 sys_clone(unsigned long clone_flags, unsigned long newsp,
251 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
252 {
253 	if (!newsp)
254 		newsp = regs->sp;
255 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
256 }
257 
258 /*
259  * This gets run with %si containing the
260  * function to call, and %di containing
261  * the "args".
262  */
263 extern void kernel_thread_helper(void);
264 
265 /*
266  * Create a kernel thread
267  */
268 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
269 {
270 	struct pt_regs regs;
271 
272 	memset(&regs, 0, sizeof(regs));
273 
274 	regs.si = (unsigned long) fn;
275 	regs.di = (unsigned long) arg;
276 
277 #ifdef CONFIG_X86_32
278 	regs.ds = __USER_DS;
279 	regs.es = __USER_DS;
280 	regs.fs = __KERNEL_PERCPU;
281 	regs.gs = __KERNEL_STACK_CANARY;
282 #else
283 	regs.ss = __KERNEL_DS;
284 #endif
285 
286 	regs.orig_ax = -1;
287 	regs.ip = (unsigned long) kernel_thread_helper;
288 	regs.cs = __KERNEL_CS | get_kernel_rpl();
289 	regs.flags = X86_EFLAGS_IF | 0x2;
290 
291 	/* Ok, create the new process.. */
292 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
293 }
294 EXPORT_SYMBOL(kernel_thread);
295 
296 /*
297  * sys_execve() executes a new program.
298  */
299 long sys_execve(const char __user *name,
300 		const char __user *const __user *argv,
301 		const char __user *const __user *envp, struct pt_regs *regs)
302 {
303 	long error;
304 	char *filename;
305 
306 	filename = getname(name);
307 	error = PTR_ERR(filename);
308 	if (IS_ERR(filename))
309 		return error;
310 	error = do_execve(filename, argv, envp, regs);
311 
312 #ifdef CONFIG_X86_32
313 	if (error == 0) {
314 		/* Make sure we don't return using sysenter.. */
315                 set_thread_flag(TIF_IRET);
316         }
317 #endif
318 
319 	putname(filename);
320 	return error;
321 }
322 
323 /*
324  * Idle related variables and functions
325  */
326 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
327 EXPORT_SYMBOL(boot_option_idle_override);
328 
329 /*
330  * Powermanagement idle function, if any..
331  */
332 void (*pm_idle)(void);
333 EXPORT_SYMBOL(pm_idle);
334 
335 #ifdef CONFIG_X86_32
336 /*
337  * This halt magic was a workaround for ancient floppy DMA
338  * wreckage. It should be safe to remove.
339  */
340 static int hlt_counter;
341 void disable_hlt(void)
342 {
343 	hlt_counter++;
344 }
345 EXPORT_SYMBOL(disable_hlt);
346 
347 void enable_hlt(void)
348 {
349 	hlt_counter--;
350 }
351 EXPORT_SYMBOL(enable_hlt);
352 
353 static inline int hlt_use_halt(void)
354 {
355 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
356 }
357 #else
358 static inline int hlt_use_halt(void)
359 {
360 	return 1;
361 }
362 #endif
363 
364 /*
365  * We use this if we don't have any better
366  * idle routine..
367  */
368 void default_idle(void)
369 {
370 	if (hlt_use_halt()) {
371 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
372 		trace_cpu_idle(1, smp_processor_id());
373 		current_thread_info()->status &= ~TS_POLLING;
374 		/*
375 		 * TS_POLLING-cleared state must be visible before we
376 		 * test NEED_RESCHED:
377 		 */
378 		smp_mb();
379 
380 		if (!need_resched())
381 			safe_halt();	/* enables interrupts racelessly */
382 		else
383 			local_irq_enable();
384 		current_thread_info()->status |= TS_POLLING;
385 		trace_power_end(smp_processor_id());
386 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
387 	} else {
388 		local_irq_enable();
389 		/* loop is done by the caller */
390 		cpu_relax();
391 	}
392 }
393 #ifdef CONFIG_APM_MODULE
394 EXPORT_SYMBOL(default_idle);
395 #endif
396 
397 void stop_this_cpu(void *dummy)
398 {
399 	local_irq_disable();
400 	/*
401 	 * Remove this CPU:
402 	 */
403 	set_cpu_online(smp_processor_id(), false);
404 	disable_local_APIC();
405 
406 	for (;;) {
407 		if (hlt_works(smp_processor_id()))
408 			halt();
409 	}
410 }
411 
412 static void do_nothing(void *unused)
413 {
414 }
415 
416 /*
417  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
418  * pm_idle and update to new pm_idle value. Required while changing pm_idle
419  * handler on SMP systems.
420  *
421  * Caller must have changed pm_idle to the new value before the call. Old
422  * pm_idle value will not be used by any CPU after the return of this function.
423  */
424 void cpu_idle_wait(void)
425 {
426 	smp_mb();
427 	/* kick all the CPUs so that they exit out of pm_idle */
428 	smp_call_function(do_nothing, NULL, 1);
429 }
430 EXPORT_SYMBOL_GPL(cpu_idle_wait);
431 
432 /*
433  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
434  * which can obviate IPI to trigger checking of need_resched.
435  * We execute MONITOR against need_resched and enter optimized wait state
436  * through MWAIT. Whenever someone changes need_resched, we would be woken
437  * up from MWAIT (without an IPI).
438  *
439  * New with Core Duo processors, MWAIT can take some hints based on CPU
440  * capability.
441  */
442 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
443 {
444 	if (!need_resched()) {
445 		if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
446 			clflush((void *)&current_thread_info()->flags);
447 
448 		__monitor((void *)&current_thread_info()->flags, 0, 0);
449 		smp_mb();
450 		if (!need_resched())
451 			__mwait(ax, cx);
452 	}
453 }
454 
455 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
456 static void mwait_idle(void)
457 {
458 	if (!need_resched()) {
459 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
460 		trace_cpu_idle(1, smp_processor_id());
461 		if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
462 			clflush((void *)&current_thread_info()->flags);
463 
464 		__monitor((void *)&current_thread_info()->flags, 0, 0);
465 		smp_mb();
466 		if (!need_resched())
467 			__sti_mwait(0, 0);
468 		else
469 			local_irq_enable();
470 		trace_power_end(smp_processor_id());
471 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
472 	} else
473 		local_irq_enable();
474 }
475 
476 /*
477  * On SMP it's slightly faster (but much more power-consuming!)
478  * to poll the ->work.need_resched flag instead of waiting for the
479  * cross-CPU IPI to arrive. Use this option with caution.
480  */
481 static void poll_idle(void)
482 {
483 	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
484 	trace_cpu_idle(0, smp_processor_id());
485 	local_irq_enable();
486 	while (!need_resched())
487 		cpu_relax();
488 	trace_power_end(smp_processor_id());
489 	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
490 }
491 
492 /*
493  * mwait selection logic:
494  *
495  * It depends on the CPU. For AMD CPUs that support MWAIT this is
496  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
497  * then depend on a clock divisor and current Pstate of the core. If
498  * all cores of a processor are in halt state (C1) the processor can
499  * enter the C1E (C1 enhanced) state. If mwait is used this will never
500  * happen.
501  *
502  * idle=mwait overrides this decision and forces the usage of mwait.
503  */
504 
505 #define MWAIT_INFO			0x05
506 #define MWAIT_ECX_EXTENDED_INFO		0x01
507 #define MWAIT_EDX_C1			0xf0
508 
509 int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
510 {
511 	u32 eax, ebx, ecx, edx;
512 
513 	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
514 		return 1;
515 
516 	if (c->cpuid_level < MWAIT_INFO)
517 		return 0;
518 
519 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
520 	/* Check, whether EDX has extended info about MWAIT */
521 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
522 		return 1;
523 
524 	/*
525 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
526 	 * C1  supports MWAIT
527 	 */
528 	return (edx & MWAIT_EDX_C1);
529 }
530 
531 bool c1e_detected;
532 EXPORT_SYMBOL(c1e_detected);
533 
534 static cpumask_var_t c1e_mask;
535 
536 void c1e_remove_cpu(int cpu)
537 {
538 	if (c1e_mask != NULL)
539 		cpumask_clear_cpu(cpu, c1e_mask);
540 }
541 
542 /*
543  * C1E aware idle routine. We check for C1E active in the interrupt
544  * pending message MSR. If we detect C1E, then we handle it the same
545  * way as C3 power states (local apic timer and TSC stop)
546  */
547 static void c1e_idle(void)
548 {
549 	if (need_resched())
550 		return;
551 
552 	if (!c1e_detected) {
553 		u32 lo, hi;
554 
555 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
556 
557 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
558 			c1e_detected = true;
559 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
560 				mark_tsc_unstable("TSC halt in AMD C1E");
561 			printk(KERN_INFO "System has AMD C1E enabled\n");
562 		}
563 	}
564 
565 	if (c1e_detected) {
566 		int cpu = smp_processor_id();
567 
568 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
569 			cpumask_set_cpu(cpu, c1e_mask);
570 			/*
571 			 * Force broadcast so ACPI can not interfere.
572 			 */
573 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
574 					   &cpu);
575 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
576 			       cpu);
577 		}
578 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
579 
580 		default_idle();
581 
582 		/*
583 		 * The switch back from broadcast mode needs to be
584 		 * called with interrupts disabled.
585 		 */
586 		 local_irq_disable();
587 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
588 		 local_irq_enable();
589 	} else
590 		default_idle();
591 }
592 
593 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
594 {
595 #ifdef CONFIG_SMP
596 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
597 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
598 			" performance may degrade.\n");
599 	}
600 #endif
601 	if (pm_idle)
602 		return;
603 
604 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
605 		/*
606 		 * One CPU supports mwait => All CPUs supports mwait
607 		 */
608 		printk(KERN_INFO "using mwait in idle threads.\n");
609 		pm_idle = mwait_idle;
610 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
611 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
612 		printk(KERN_INFO "using C1E aware idle routine\n");
613 		pm_idle = c1e_idle;
614 	} else
615 		pm_idle = default_idle;
616 }
617 
618 void __init init_c1e_mask(void)
619 {
620 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
621 	if (pm_idle == c1e_idle)
622 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
623 }
624 
625 static int __init idle_setup(char *str)
626 {
627 	if (!str)
628 		return -EINVAL;
629 
630 	if (!strcmp(str, "poll")) {
631 		printk("using polling idle threads.\n");
632 		pm_idle = poll_idle;
633 		boot_option_idle_override = IDLE_POLL;
634 	} else if (!strcmp(str, "mwait")) {
635 		boot_option_idle_override = IDLE_FORCE_MWAIT;
636 	} else if (!strcmp(str, "halt")) {
637 		/*
638 		 * When the boot option of idle=halt is added, halt is
639 		 * forced to be used for CPU idle. In such case CPU C2/C3
640 		 * won't be used again.
641 		 * To continue to load the CPU idle driver, don't touch
642 		 * the boot_option_idle_override.
643 		 */
644 		pm_idle = default_idle;
645 		boot_option_idle_override = IDLE_HALT;
646 	} else if (!strcmp(str, "nomwait")) {
647 		/*
648 		 * If the boot option of "idle=nomwait" is added,
649 		 * it means that mwait will be disabled for CPU C2/C3
650 		 * states. In such case it won't touch the variable
651 		 * of boot_option_idle_override.
652 		 */
653 		boot_option_idle_override = IDLE_NOMWAIT;
654 	} else
655 		return -1;
656 
657 	return 0;
658 }
659 early_param("idle", idle_setup);
660 
661 unsigned long arch_align_stack(unsigned long sp)
662 {
663 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
664 		sp -= get_random_int() % 8192;
665 	return sp & ~0xf;
666 }
667 
668 unsigned long arch_randomize_brk(struct mm_struct *mm)
669 {
670 	unsigned long range_end = mm->brk + 0x02000000;
671 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
672 }
673 
674