xref: /linux/arch/x86/kernel/process.c (revision c41b20e721ea4f6f20f66a66e7f0c3c97a2ca9c2)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/system.h>
18 #include <asm/apic.h>
19 #include <asm/syscalls.h>
20 #include <asm/idle.h>
21 #include <asm/uaccess.h>
22 #include <asm/i387.h>
23 #include <asm/ds.h>
24 #include <asm/debugreg.h>
25 
26 unsigned long idle_halt;
27 EXPORT_SYMBOL(idle_halt);
28 unsigned long idle_nomwait;
29 EXPORT_SYMBOL(idle_nomwait);
30 
31 struct kmem_cache *task_xstate_cachep;
32 
33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34 {
35 	*dst = *src;
36 	if (src->thread.xstate) {
37 		dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
38 						      GFP_KERNEL);
39 		if (!dst->thread.xstate)
40 			return -ENOMEM;
41 		WARN_ON((unsigned long)dst->thread.xstate & 15);
42 		memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
43 	}
44 	return 0;
45 }
46 
47 void free_thread_xstate(struct task_struct *tsk)
48 {
49 	if (tsk->thread.xstate) {
50 		kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
51 		tsk->thread.xstate = NULL;
52 	}
53 
54 	WARN(tsk->thread.ds_ctx, "leaking DS context\n");
55 }
56 
57 void free_thread_info(struct thread_info *ti)
58 {
59 	free_thread_xstate(ti->task);
60 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
61 }
62 
63 void arch_task_cache_init(void)
64 {
65         task_xstate_cachep =
66         	kmem_cache_create("task_xstate", xstate_size,
67 				  __alignof__(union thread_xstate),
68 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
69 }
70 
71 /*
72  * Free current thread data structures etc..
73  */
74 void exit_thread(void)
75 {
76 	struct task_struct *me = current;
77 	struct thread_struct *t = &me->thread;
78 	unsigned long *bp = t->io_bitmap_ptr;
79 
80 	if (bp) {
81 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
82 
83 		t->io_bitmap_ptr = NULL;
84 		clear_thread_flag(TIF_IO_BITMAP);
85 		/*
86 		 * Careful, clear this in the TSS too:
87 		 */
88 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
89 		t->io_bitmap_max = 0;
90 		put_cpu();
91 		kfree(bp);
92 	}
93 }
94 
95 void show_regs_common(void)
96 {
97 	const char *board, *product;
98 
99 	board = dmi_get_system_info(DMI_BOARD_NAME);
100 	if (!board)
101 		board = "";
102 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
103 	if (!product)
104 		product = "";
105 
106 	printk(KERN_CONT "\n");
107 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
108 		current->pid, current->comm, print_tainted(),
109 		init_utsname()->release,
110 		(int)strcspn(init_utsname()->version, " "),
111 		init_utsname()->version, board, product);
112 }
113 
114 void flush_thread(void)
115 {
116 	struct task_struct *tsk = current;
117 
118 	flush_ptrace_hw_breakpoint(tsk);
119 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
120 	/*
121 	 * Forget coprocessor state..
122 	 */
123 	tsk->fpu_counter = 0;
124 	clear_fpu(tsk);
125 	clear_used_math();
126 }
127 
128 static void hard_disable_TSC(void)
129 {
130 	write_cr4(read_cr4() | X86_CR4_TSD);
131 }
132 
133 void disable_TSC(void)
134 {
135 	preempt_disable();
136 	if (!test_and_set_thread_flag(TIF_NOTSC))
137 		/*
138 		 * Must flip the CPU state synchronously with
139 		 * TIF_NOTSC in the current running context.
140 		 */
141 		hard_disable_TSC();
142 	preempt_enable();
143 }
144 
145 static void hard_enable_TSC(void)
146 {
147 	write_cr4(read_cr4() & ~X86_CR4_TSD);
148 }
149 
150 static void enable_TSC(void)
151 {
152 	preempt_disable();
153 	if (test_and_clear_thread_flag(TIF_NOTSC))
154 		/*
155 		 * Must flip the CPU state synchronously with
156 		 * TIF_NOTSC in the current running context.
157 		 */
158 		hard_enable_TSC();
159 	preempt_enable();
160 }
161 
162 int get_tsc_mode(unsigned long adr)
163 {
164 	unsigned int val;
165 
166 	if (test_thread_flag(TIF_NOTSC))
167 		val = PR_TSC_SIGSEGV;
168 	else
169 		val = PR_TSC_ENABLE;
170 
171 	return put_user(val, (unsigned int __user *)adr);
172 }
173 
174 int set_tsc_mode(unsigned int val)
175 {
176 	if (val == PR_TSC_SIGSEGV)
177 		disable_TSC();
178 	else if (val == PR_TSC_ENABLE)
179 		enable_TSC();
180 	else
181 		return -EINVAL;
182 
183 	return 0;
184 }
185 
186 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
187 		      struct tss_struct *tss)
188 {
189 	struct thread_struct *prev, *next;
190 
191 	prev = &prev_p->thread;
192 	next = &next_p->thread;
193 
194 	if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
195 	    test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
196 		ds_switch_to(prev_p, next_p);
197 	else if (next->debugctlmsr != prev->debugctlmsr)
198 		update_debugctlmsr(next->debugctlmsr);
199 
200 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
201 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
202 		/* prev and next are different */
203 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
204 			hard_disable_TSC();
205 		else
206 			hard_enable_TSC();
207 	}
208 
209 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
210 		/*
211 		 * Copy the relevant range of the IO bitmap.
212 		 * Normally this is 128 bytes or less:
213 		 */
214 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
215 		       max(prev->io_bitmap_max, next->io_bitmap_max));
216 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
217 		/*
218 		 * Clear any possible leftover bits:
219 		 */
220 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
221 	}
222 	propagate_user_return_notify(prev_p, next_p);
223 }
224 
225 int sys_fork(struct pt_regs *regs)
226 {
227 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
228 }
229 
230 /*
231  * This is trivial, and on the face of it looks like it
232  * could equally well be done in user mode.
233  *
234  * Not so, for quite unobvious reasons - register pressure.
235  * In user mode vfork() cannot have a stack frame, and if
236  * done by calling the "clone()" system call directly, you
237  * do not have enough call-clobbered registers to hold all
238  * the information you need.
239  */
240 int sys_vfork(struct pt_regs *regs)
241 {
242 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
243 		       NULL, NULL);
244 }
245 
246 long
247 sys_clone(unsigned long clone_flags, unsigned long newsp,
248 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
249 {
250 	if (!newsp)
251 		newsp = regs->sp;
252 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
253 }
254 
255 /*
256  * This gets run with %si containing the
257  * function to call, and %di containing
258  * the "args".
259  */
260 extern void kernel_thread_helper(void);
261 
262 /*
263  * Create a kernel thread
264  */
265 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
266 {
267 	struct pt_regs regs;
268 
269 	memset(&regs, 0, sizeof(regs));
270 
271 	regs.si = (unsigned long) fn;
272 	regs.di = (unsigned long) arg;
273 
274 #ifdef CONFIG_X86_32
275 	regs.ds = __USER_DS;
276 	regs.es = __USER_DS;
277 	regs.fs = __KERNEL_PERCPU;
278 	regs.gs = __KERNEL_STACK_CANARY;
279 #else
280 	regs.ss = __KERNEL_DS;
281 #endif
282 
283 	regs.orig_ax = -1;
284 	regs.ip = (unsigned long) kernel_thread_helper;
285 	regs.cs = __KERNEL_CS | get_kernel_rpl();
286 	regs.flags = X86_EFLAGS_IF | 0x2;
287 
288 	/* Ok, create the new process.. */
289 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
290 }
291 EXPORT_SYMBOL(kernel_thread);
292 
293 /*
294  * sys_execve() executes a new program.
295  */
296 long sys_execve(char __user *name, char __user * __user *argv,
297 		char __user * __user *envp, struct pt_regs *regs)
298 {
299 	long error;
300 	char *filename;
301 
302 	filename = getname(name);
303 	error = PTR_ERR(filename);
304 	if (IS_ERR(filename))
305 		return error;
306 	error = do_execve(filename, argv, envp, regs);
307 
308 #ifdef CONFIG_X86_32
309 	if (error == 0) {
310 		/* Make sure we don't return using sysenter.. */
311                 set_thread_flag(TIF_IRET);
312         }
313 #endif
314 
315 	putname(filename);
316 	return error;
317 }
318 
319 /*
320  * Idle related variables and functions
321  */
322 unsigned long boot_option_idle_override = 0;
323 EXPORT_SYMBOL(boot_option_idle_override);
324 
325 /*
326  * Powermanagement idle function, if any..
327  */
328 void (*pm_idle)(void);
329 EXPORT_SYMBOL(pm_idle);
330 
331 #ifdef CONFIG_X86_32
332 /*
333  * This halt magic was a workaround for ancient floppy DMA
334  * wreckage. It should be safe to remove.
335  */
336 static int hlt_counter;
337 void disable_hlt(void)
338 {
339 	hlt_counter++;
340 }
341 EXPORT_SYMBOL(disable_hlt);
342 
343 void enable_hlt(void)
344 {
345 	hlt_counter--;
346 }
347 EXPORT_SYMBOL(enable_hlt);
348 
349 static inline int hlt_use_halt(void)
350 {
351 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
352 }
353 #else
354 static inline int hlt_use_halt(void)
355 {
356 	return 1;
357 }
358 #endif
359 
360 /*
361  * We use this if we don't have any better
362  * idle routine..
363  */
364 void default_idle(void)
365 {
366 	if (hlt_use_halt()) {
367 		trace_power_start(POWER_CSTATE, 1);
368 		current_thread_info()->status &= ~TS_POLLING;
369 		/*
370 		 * TS_POLLING-cleared state must be visible before we
371 		 * test NEED_RESCHED:
372 		 */
373 		smp_mb();
374 
375 		if (!need_resched())
376 			safe_halt();	/* enables interrupts racelessly */
377 		else
378 			local_irq_enable();
379 		current_thread_info()->status |= TS_POLLING;
380 	} else {
381 		local_irq_enable();
382 		/* loop is done by the caller */
383 		cpu_relax();
384 	}
385 }
386 #ifdef CONFIG_APM_MODULE
387 EXPORT_SYMBOL(default_idle);
388 #endif
389 
390 void stop_this_cpu(void *dummy)
391 {
392 	local_irq_disable();
393 	/*
394 	 * Remove this CPU:
395 	 */
396 	set_cpu_online(smp_processor_id(), false);
397 	disable_local_APIC();
398 
399 	for (;;) {
400 		if (hlt_works(smp_processor_id()))
401 			halt();
402 	}
403 }
404 
405 static void do_nothing(void *unused)
406 {
407 }
408 
409 /*
410  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
411  * pm_idle and update to new pm_idle value. Required while changing pm_idle
412  * handler on SMP systems.
413  *
414  * Caller must have changed pm_idle to the new value before the call. Old
415  * pm_idle value will not be used by any CPU after the return of this function.
416  */
417 void cpu_idle_wait(void)
418 {
419 	smp_mb();
420 	/* kick all the CPUs so that they exit out of pm_idle */
421 	smp_call_function(do_nothing, NULL, 1);
422 }
423 EXPORT_SYMBOL_GPL(cpu_idle_wait);
424 
425 /*
426  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
427  * which can obviate IPI to trigger checking of need_resched.
428  * We execute MONITOR against need_resched and enter optimized wait state
429  * through MWAIT. Whenever someone changes need_resched, we would be woken
430  * up from MWAIT (without an IPI).
431  *
432  * New with Core Duo processors, MWAIT can take some hints based on CPU
433  * capability.
434  */
435 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
436 {
437 	trace_power_start(POWER_CSTATE, (ax>>4)+1);
438 	if (!need_resched()) {
439 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
440 			clflush((void *)&current_thread_info()->flags);
441 
442 		__monitor((void *)&current_thread_info()->flags, 0, 0);
443 		smp_mb();
444 		if (!need_resched())
445 			__mwait(ax, cx);
446 	}
447 }
448 
449 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
450 static void mwait_idle(void)
451 {
452 	if (!need_resched()) {
453 		trace_power_start(POWER_CSTATE, 1);
454 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
455 			clflush((void *)&current_thread_info()->flags);
456 
457 		__monitor((void *)&current_thread_info()->flags, 0, 0);
458 		smp_mb();
459 		if (!need_resched())
460 			__sti_mwait(0, 0);
461 		else
462 			local_irq_enable();
463 	} else
464 		local_irq_enable();
465 }
466 
467 /*
468  * On SMP it's slightly faster (but much more power-consuming!)
469  * to poll the ->work.need_resched flag instead of waiting for the
470  * cross-CPU IPI to arrive. Use this option with caution.
471  */
472 static void poll_idle(void)
473 {
474 	trace_power_start(POWER_CSTATE, 0);
475 	local_irq_enable();
476 	while (!need_resched())
477 		cpu_relax();
478 	trace_power_end(0);
479 }
480 
481 /*
482  * mwait selection logic:
483  *
484  * It depends on the CPU. For AMD CPUs that support MWAIT this is
485  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
486  * then depend on a clock divisor and current Pstate of the core. If
487  * all cores of a processor are in halt state (C1) the processor can
488  * enter the C1E (C1 enhanced) state. If mwait is used this will never
489  * happen.
490  *
491  * idle=mwait overrides this decision and forces the usage of mwait.
492  */
493 static int __cpuinitdata force_mwait;
494 
495 #define MWAIT_INFO			0x05
496 #define MWAIT_ECX_EXTENDED_INFO		0x01
497 #define MWAIT_EDX_C1			0xf0
498 
499 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
500 {
501 	u32 eax, ebx, ecx, edx;
502 
503 	if (force_mwait)
504 		return 1;
505 
506 	if (c->cpuid_level < MWAIT_INFO)
507 		return 0;
508 
509 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
510 	/* Check, whether EDX has extended info about MWAIT */
511 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
512 		return 1;
513 
514 	/*
515 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
516 	 * C1  supports MWAIT
517 	 */
518 	return (edx & MWAIT_EDX_C1);
519 }
520 
521 /*
522  * Check for AMD CPUs, which have potentially C1E support
523  */
524 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
525 {
526 	if (c->x86_vendor != X86_VENDOR_AMD)
527 		return 0;
528 
529 	if (c->x86 < 0x0F)
530 		return 0;
531 
532 	/* Family 0x0f models < rev F do not have C1E */
533 	if (c->x86 == 0x0f && c->x86_model < 0x40)
534 		return 0;
535 
536 	return 1;
537 }
538 
539 static cpumask_var_t c1e_mask;
540 static int c1e_detected;
541 
542 void c1e_remove_cpu(int cpu)
543 {
544 	if (c1e_mask != NULL)
545 		cpumask_clear_cpu(cpu, c1e_mask);
546 }
547 
548 /*
549  * C1E aware idle routine. We check for C1E active in the interrupt
550  * pending message MSR. If we detect C1E, then we handle it the same
551  * way as C3 power states (local apic timer and TSC stop)
552  */
553 static void c1e_idle(void)
554 {
555 	if (need_resched())
556 		return;
557 
558 	if (!c1e_detected) {
559 		u32 lo, hi;
560 
561 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
562 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
563 			c1e_detected = 1;
564 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
565 				mark_tsc_unstable("TSC halt in AMD C1E");
566 			printk(KERN_INFO "System has AMD C1E enabled\n");
567 			set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
568 		}
569 	}
570 
571 	if (c1e_detected) {
572 		int cpu = smp_processor_id();
573 
574 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
575 			cpumask_set_cpu(cpu, c1e_mask);
576 			/*
577 			 * Force broadcast so ACPI can not interfere.
578 			 */
579 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
580 					   &cpu);
581 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
582 			       cpu);
583 		}
584 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
585 
586 		default_idle();
587 
588 		/*
589 		 * The switch back from broadcast mode needs to be
590 		 * called with interrupts disabled.
591 		 */
592 		 local_irq_disable();
593 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
594 		 local_irq_enable();
595 	} else
596 		default_idle();
597 }
598 
599 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
600 {
601 #ifdef CONFIG_SMP
602 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
603 		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
604 			" performance may degrade.\n");
605 	}
606 #endif
607 	if (pm_idle)
608 		return;
609 
610 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
611 		/*
612 		 * One CPU supports mwait => All CPUs supports mwait
613 		 */
614 		printk(KERN_INFO "using mwait in idle threads.\n");
615 		pm_idle = mwait_idle;
616 	} else if (check_c1e_idle(c)) {
617 		printk(KERN_INFO "using C1E aware idle routine\n");
618 		pm_idle = c1e_idle;
619 	} else
620 		pm_idle = default_idle;
621 }
622 
623 void __init init_c1e_mask(void)
624 {
625 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
626 	if (pm_idle == c1e_idle)
627 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
628 }
629 
630 static int __init idle_setup(char *str)
631 {
632 	if (!str)
633 		return -EINVAL;
634 
635 	if (!strcmp(str, "poll")) {
636 		printk("using polling idle threads.\n");
637 		pm_idle = poll_idle;
638 	} else if (!strcmp(str, "mwait"))
639 		force_mwait = 1;
640 	else if (!strcmp(str, "halt")) {
641 		/*
642 		 * When the boot option of idle=halt is added, halt is
643 		 * forced to be used for CPU idle. In such case CPU C2/C3
644 		 * won't be used again.
645 		 * To continue to load the CPU idle driver, don't touch
646 		 * the boot_option_idle_override.
647 		 */
648 		pm_idle = default_idle;
649 		idle_halt = 1;
650 		return 0;
651 	} else if (!strcmp(str, "nomwait")) {
652 		/*
653 		 * If the boot option of "idle=nomwait" is added,
654 		 * it means that mwait will be disabled for CPU C2/C3
655 		 * states. In such case it won't touch the variable
656 		 * of boot_option_idle_override.
657 		 */
658 		idle_nomwait = 1;
659 		return 0;
660 	} else
661 		return -1;
662 
663 	boot_option_idle_override = 1;
664 	return 0;
665 }
666 early_param("idle", idle_setup);
667 
668 unsigned long arch_align_stack(unsigned long sp)
669 {
670 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
671 		sp -= get_random_int() % 8192;
672 	return sp & ~0xf;
673 }
674 
675 unsigned long arch_randomize_brk(struct mm_struct *mm)
676 {
677 	unsigned long range_end = mm->brk + 0x02000000;
678 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
679 }
680 
681