1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/system.h> 18 #include <asm/apic.h> 19 #include <asm/syscalls.h> 20 #include <asm/idle.h> 21 #include <asm/uaccess.h> 22 #include <asm/i387.h> 23 #include <asm/ds.h> 24 #include <asm/debugreg.h> 25 26 unsigned long idle_halt; 27 EXPORT_SYMBOL(idle_halt); 28 unsigned long idle_nomwait; 29 EXPORT_SYMBOL(idle_nomwait); 30 31 struct kmem_cache *task_xstate_cachep; 32 33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 34 { 35 *dst = *src; 36 if (src->thread.xstate) { 37 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep, 38 GFP_KERNEL); 39 if (!dst->thread.xstate) 40 return -ENOMEM; 41 WARN_ON((unsigned long)dst->thread.xstate & 15); 42 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size); 43 } 44 return 0; 45 } 46 47 void free_thread_xstate(struct task_struct *tsk) 48 { 49 if (tsk->thread.xstate) { 50 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate); 51 tsk->thread.xstate = NULL; 52 } 53 54 WARN(tsk->thread.ds_ctx, "leaking DS context\n"); 55 } 56 57 void free_thread_info(struct thread_info *ti) 58 { 59 free_thread_xstate(ti->task); 60 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 61 } 62 63 void arch_task_cache_init(void) 64 { 65 task_xstate_cachep = 66 kmem_cache_create("task_xstate", xstate_size, 67 __alignof__(union thread_xstate), 68 SLAB_PANIC | SLAB_NOTRACK, NULL); 69 } 70 71 /* 72 * Free current thread data structures etc.. 73 */ 74 void exit_thread(void) 75 { 76 struct task_struct *me = current; 77 struct thread_struct *t = &me->thread; 78 unsigned long *bp = t->io_bitmap_ptr; 79 80 if (bp) { 81 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 82 83 t->io_bitmap_ptr = NULL; 84 clear_thread_flag(TIF_IO_BITMAP); 85 /* 86 * Careful, clear this in the TSS too: 87 */ 88 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 89 t->io_bitmap_max = 0; 90 put_cpu(); 91 kfree(bp); 92 } 93 } 94 95 void show_regs_common(void) 96 { 97 const char *board, *product; 98 99 board = dmi_get_system_info(DMI_BOARD_NAME); 100 if (!board) 101 board = ""; 102 product = dmi_get_system_info(DMI_PRODUCT_NAME); 103 if (!product) 104 product = ""; 105 106 printk(KERN_CONT "\n"); 107 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", 108 current->pid, current->comm, print_tainted(), 109 init_utsname()->release, 110 (int)strcspn(init_utsname()->version, " "), 111 init_utsname()->version, board, product); 112 } 113 114 void flush_thread(void) 115 { 116 struct task_struct *tsk = current; 117 118 flush_ptrace_hw_breakpoint(tsk); 119 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 120 /* 121 * Forget coprocessor state.. 122 */ 123 tsk->fpu_counter = 0; 124 clear_fpu(tsk); 125 clear_used_math(); 126 } 127 128 static void hard_disable_TSC(void) 129 { 130 write_cr4(read_cr4() | X86_CR4_TSD); 131 } 132 133 void disable_TSC(void) 134 { 135 preempt_disable(); 136 if (!test_and_set_thread_flag(TIF_NOTSC)) 137 /* 138 * Must flip the CPU state synchronously with 139 * TIF_NOTSC in the current running context. 140 */ 141 hard_disable_TSC(); 142 preempt_enable(); 143 } 144 145 static void hard_enable_TSC(void) 146 { 147 write_cr4(read_cr4() & ~X86_CR4_TSD); 148 } 149 150 static void enable_TSC(void) 151 { 152 preempt_disable(); 153 if (test_and_clear_thread_flag(TIF_NOTSC)) 154 /* 155 * Must flip the CPU state synchronously with 156 * TIF_NOTSC in the current running context. 157 */ 158 hard_enable_TSC(); 159 preempt_enable(); 160 } 161 162 int get_tsc_mode(unsigned long adr) 163 { 164 unsigned int val; 165 166 if (test_thread_flag(TIF_NOTSC)) 167 val = PR_TSC_SIGSEGV; 168 else 169 val = PR_TSC_ENABLE; 170 171 return put_user(val, (unsigned int __user *)adr); 172 } 173 174 int set_tsc_mode(unsigned int val) 175 { 176 if (val == PR_TSC_SIGSEGV) 177 disable_TSC(); 178 else if (val == PR_TSC_ENABLE) 179 enable_TSC(); 180 else 181 return -EINVAL; 182 183 return 0; 184 } 185 186 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 187 struct tss_struct *tss) 188 { 189 struct thread_struct *prev, *next; 190 191 prev = &prev_p->thread; 192 next = &next_p->thread; 193 194 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || 195 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) 196 ds_switch_to(prev_p, next_p); 197 else if (next->debugctlmsr != prev->debugctlmsr) 198 update_debugctlmsr(next->debugctlmsr); 199 200 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 201 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 202 /* prev and next are different */ 203 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 204 hard_disable_TSC(); 205 else 206 hard_enable_TSC(); 207 } 208 209 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 210 /* 211 * Copy the relevant range of the IO bitmap. 212 * Normally this is 128 bytes or less: 213 */ 214 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 215 max(prev->io_bitmap_max, next->io_bitmap_max)); 216 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 217 /* 218 * Clear any possible leftover bits: 219 */ 220 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 221 } 222 propagate_user_return_notify(prev_p, next_p); 223 } 224 225 int sys_fork(struct pt_regs *regs) 226 { 227 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 228 } 229 230 /* 231 * This is trivial, and on the face of it looks like it 232 * could equally well be done in user mode. 233 * 234 * Not so, for quite unobvious reasons - register pressure. 235 * In user mode vfork() cannot have a stack frame, and if 236 * done by calling the "clone()" system call directly, you 237 * do not have enough call-clobbered registers to hold all 238 * the information you need. 239 */ 240 int sys_vfork(struct pt_regs *regs) 241 { 242 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 243 NULL, NULL); 244 } 245 246 long 247 sys_clone(unsigned long clone_flags, unsigned long newsp, 248 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 249 { 250 if (!newsp) 251 newsp = regs->sp; 252 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 253 } 254 255 /* 256 * This gets run with %si containing the 257 * function to call, and %di containing 258 * the "args". 259 */ 260 extern void kernel_thread_helper(void); 261 262 /* 263 * Create a kernel thread 264 */ 265 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 266 { 267 struct pt_regs regs; 268 269 memset(®s, 0, sizeof(regs)); 270 271 regs.si = (unsigned long) fn; 272 regs.di = (unsigned long) arg; 273 274 #ifdef CONFIG_X86_32 275 regs.ds = __USER_DS; 276 regs.es = __USER_DS; 277 regs.fs = __KERNEL_PERCPU; 278 regs.gs = __KERNEL_STACK_CANARY; 279 #else 280 regs.ss = __KERNEL_DS; 281 #endif 282 283 regs.orig_ax = -1; 284 regs.ip = (unsigned long) kernel_thread_helper; 285 regs.cs = __KERNEL_CS | get_kernel_rpl(); 286 regs.flags = X86_EFLAGS_IF | 0x2; 287 288 /* Ok, create the new process.. */ 289 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 290 } 291 EXPORT_SYMBOL(kernel_thread); 292 293 /* 294 * sys_execve() executes a new program. 295 */ 296 long sys_execve(char __user *name, char __user * __user *argv, 297 char __user * __user *envp, struct pt_regs *regs) 298 { 299 long error; 300 char *filename; 301 302 filename = getname(name); 303 error = PTR_ERR(filename); 304 if (IS_ERR(filename)) 305 return error; 306 error = do_execve(filename, argv, envp, regs); 307 308 #ifdef CONFIG_X86_32 309 if (error == 0) { 310 /* Make sure we don't return using sysenter.. */ 311 set_thread_flag(TIF_IRET); 312 } 313 #endif 314 315 putname(filename); 316 return error; 317 } 318 319 /* 320 * Idle related variables and functions 321 */ 322 unsigned long boot_option_idle_override = 0; 323 EXPORT_SYMBOL(boot_option_idle_override); 324 325 /* 326 * Powermanagement idle function, if any.. 327 */ 328 void (*pm_idle)(void); 329 EXPORT_SYMBOL(pm_idle); 330 331 #ifdef CONFIG_X86_32 332 /* 333 * This halt magic was a workaround for ancient floppy DMA 334 * wreckage. It should be safe to remove. 335 */ 336 static int hlt_counter; 337 void disable_hlt(void) 338 { 339 hlt_counter++; 340 } 341 EXPORT_SYMBOL(disable_hlt); 342 343 void enable_hlt(void) 344 { 345 hlt_counter--; 346 } 347 EXPORT_SYMBOL(enable_hlt); 348 349 static inline int hlt_use_halt(void) 350 { 351 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 352 } 353 #else 354 static inline int hlt_use_halt(void) 355 { 356 return 1; 357 } 358 #endif 359 360 /* 361 * We use this if we don't have any better 362 * idle routine.. 363 */ 364 void default_idle(void) 365 { 366 if (hlt_use_halt()) { 367 trace_power_start(POWER_CSTATE, 1); 368 current_thread_info()->status &= ~TS_POLLING; 369 /* 370 * TS_POLLING-cleared state must be visible before we 371 * test NEED_RESCHED: 372 */ 373 smp_mb(); 374 375 if (!need_resched()) 376 safe_halt(); /* enables interrupts racelessly */ 377 else 378 local_irq_enable(); 379 current_thread_info()->status |= TS_POLLING; 380 } else { 381 local_irq_enable(); 382 /* loop is done by the caller */ 383 cpu_relax(); 384 } 385 } 386 #ifdef CONFIG_APM_MODULE 387 EXPORT_SYMBOL(default_idle); 388 #endif 389 390 void stop_this_cpu(void *dummy) 391 { 392 local_irq_disable(); 393 /* 394 * Remove this CPU: 395 */ 396 set_cpu_online(smp_processor_id(), false); 397 disable_local_APIC(); 398 399 for (;;) { 400 if (hlt_works(smp_processor_id())) 401 halt(); 402 } 403 } 404 405 static void do_nothing(void *unused) 406 { 407 } 408 409 /* 410 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 411 * pm_idle and update to new pm_idle value. Required while changing pm_idle 412 * handler on SMP systems. 413 * 414 * Caller must have changed pm_idle to the new value before the call. Old 415 * pm_idle value will not be used by any CPU after the return of this function. 416 */ 417 void cpu_idle_wait(void) 418 { 419 smp_mb(); 420 /* kick all the CPUs so that they exit out of pm_idle */ 421 smp_call_function(do_nothing, NULL, 1); 422 } 423 EXPORT_SYMBOL_GPL(cpu_idle_wait); 424 425 /* 426 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 427 * which can obviate IPI to trigger checking of need_resched. 428 * We execute MONITOR against need_resched and enter optimized wait state 429 * through MWAIT. Whenever someone changes need_resched, we would be woken 430 * up from MWAIT (without an IPI). 431 * 432 * New with Core Duo processors, MWAIT can take some hints based on CPU 433 * capability. 434 */ 435 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 436 { 437 trace_power_start(POWER_CSTATE, (ax>>4)+1); 438 if (!need_resched()) { 439 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 440 clflush((void *)¤t_thread_info()->flags); 441 442 __monitor((void *)¤t_thread_info()->flags, 0, 0); 443 smp_mb(); 444 if (!need_resched()) 445 __mwait(ax, cx); 446 } 447 } 448 449 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 450 static void mwait_idle(void) 451 { 452 if (!need_resched()) { 453 trace_power_start(POWER_CSTATE, 1); 454 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 455 clflush((void *)¤t_thread_info()->flags); 456 457 __monitor((void *)¤t_thread_info()->flags, 0, 0); 458 smp_mb(); 459 if (!need_resched()) 460 __sti_mwait(0, 0); 461 else 462 local_irq_enable(); 463 } else 464 local_irq_enable(); 465 } 466 467 /* 468 * On SMP it's slightly faster (but much more power-consuming!) 469 * to poll the ->work.need_resched flag instead of waiting for the 470 * cross-CPU IPI to arrive. Use this option with caution. 471 */ 472 static void poll_idle(void) 473 { 474 trace_power_start(POWER_CSTATE, 0); 475 local_irq_enable(); 476 while (!need_resched()) 477 cpu_relax(); 478 trace_power_end(0); 479 } 480 481 /* 482 * mwait selection logic: 483 * 484 * It depends on the CPU. For AMD CPUs that support MWAIT this is 485 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 486 * then depend on a clock divisor and current Pstate of the core. If 487 * all cores of a processor are in halt state (C1) the processor can 488 * enter the C1E (C1 enhanced) state. If mwait is used this will never 489 * happen. 490 * 491 * idle=mwait overrides this decision and forces the usage of mwait. 492 */ 493 static int __cpuinitdata force_mwait; 494 495 #define MWAIT_INFO 0x05 496 #define MWAIT_ECX_EXTENDED_INFO 0x01 497 #define MWAIT_EDX_C1 0xf0 498 499 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 500 { 501 u32 eax, ebx, ecx, edx; 502 503 if (force_mwait) 504 return 1; 505 506 if (c->cpuid_level < MWAIT_INFO) 507 return 0; 508 509 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 510 /* Check, whether EDX has extended info about MWAIT */ 511 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 512 return 1; 513 514 /* 515 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 516 * C1 supports MWAIT 517 */ 518 return (edx & MWAIT_EDX_C1); 519 } 520 521 /* 522 * Check for AMD CPUs, which have potentially C1E support 523 */ 524 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) 525 { 526 if (c->x86_vendor != X86_VENDOR_AMD) 527 return 0; 528 529 if (c->x86 < 0x0F) 530 return 0; 531 532 /* Family 0x0f models < rev F do not have C1E */ 533 if (c->x86 == 0x0f && c->x86_model < 0x40) 534 return 0; 535 536 return 1; 537 } 538 539 static cpumask_var_t c1e_mask; 540 static int c1e_detected; 541 542 void c1e_remove_cpu(int cpu) 543 { 544 if (c1e_mask != NULL) 545 cpumask_clear_cpu(cpu, c1e_mask); 546 } 547 548 /* 549 * C1E aware idle routine. We check for C1E active in the interrupt 550 * pending message MSR. If we detect C1E, then we handle it the same 551 * way as C3 power states (local apic timer and TSC stop) 552 */ 553 static void c1e_idle(void) 554 { 555 if (need_resched()) 556 return; 557 558 if (!c1e_detected) { 559 u32 lo, hi; 560 561 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 562 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 563 c1e_detected = 1; 564 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 565 mark_tsc_unstable("TSC halt in AMD C1E"); 566 printk(KERN_INFO "System has AMD C1E enabled\n"); 567 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); 568 } 569 } 570 571 if (c1e_detected) { 572 int cpu = smp_processor_id(); 573 574 if (!cpumask_test_cpu(cpu, c1e_mask)) { 575 cpumask_set_cpu(cpu, c1e_mask); 576 /* 577 * Force broadcast so ACPI can not interfere. 578 */ 579 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 580 &cpu); 581 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 582 cpu); 583 } 584 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 585 586 default_idle(); 587 588 /* 589 * The switch back from broadcast mode needs to be 590 * called with interrupts disabled. 591 */ 592 local_irq_disable(); 593 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 594 local_irq_enable(); 595 } else 596 default_idle(); 597 } 598 599 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 600 { 601 #ifdef CONFIG_SMP 602 if (pm_idle == poll_idle && smp_num_siblings > 1) { 603 printk(KERN_WARNING "WARNING: polling idle and HT enabled," 604 " performance may degrade.\n"); 605 } 606 #endif 607 if (pm_idle) 608 return; 609 610 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 611 /* 612 * One CPU supports mwait => All CPUs supports mwait 613 */ 614 printk(KERN_INFO "using mwait in idle threads.\n"); 615 pm_idle = mwait_idle; 616 } else if (check_c1e_idle(c)) { 617 printk(KERN_INFO "using C1E aware idle routine\n"); 618 pm_idle = c1e_idle; 619 } else 620 pm_idle = default_idle; 621 } 622 623 void __init init_c1e_mask(void) 624 { 625 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 626 if (pm_idle == c1e_idle) 627 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 628 } 629 630 static int __init idle_setup(char *str) 631 { 632 if (!str) 633 return -EINVAL; 634 635 if (!strcmp(str, "poll")) { 636 printk("using polling idle threads.\n"); 637 pm_idle = poll_idle; 638 } else if (!strcmp(str, "mwait")) 639 force_mwait = 1; 640 else if (!strcmp(str, "halt")) { 641 /* 642 * When the boot option of idle=halt is added, halt is 643 * forced to be used for CPU idle. In such case CPU C2/C3 644 * won't be used again. 645 * To continue to load the CPU idle driver, don't touch 646 * the boot_option_idle_override. 647 */ 648 pm_idle = default_idle; 649 idle_halt = 1; 650 return 0; 651 } else if (!strcmp(str, "nomwait")) { 652 /* 653 * If the boot option of "idle=nomwait" is added, 654 * it means that mwait will be disabled for CPU C2/C3 655 * states. In such case it won't touch the variable 656 * of boot_option_idle_override. 657 */ 658 idle_nomwait = 1; 659 return 0; 660 } else 661 return -1; 662 663 boot_option_idle_override = 1; 664 return 0; 665 } 666 early_param("idle", idle_setup); 667 668 unsigned long arch_align_stack(unsigned long sp) 669 { 670 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 671 sp -= get_random_int() % 8192; 672 return sp & ~0xf; 673 } 674 675 unsigned long arch_randomize_brk(struct mm_struct *mm) 676 { 677 unsigned long range_end = mm->brk + 0x02000000; 678 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 679 } 680 681