xref: /linux/arch/x86/kernel/process.c (revision bab2c80e5a6c855657482eac9e97f5f3eedb509a)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41 #include <asm/spec-ctrl.h>
42 
43 /*
44  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
45  * no more per-task TSS's. The TSS size is kept cacheline-aligned
46  * so they are allowed to end up in the .data..cacheline_aligned
47  * section. Since TSS's are completely CPU-local, we want them
48  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
49  */
50 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
51 	.x86_tss = {
52 		/*
53 		 * .sp0 is only used when entering ring 0 from a lower
54 		 * privilege level.  Since the init task never runs anything
55 		 * but ring 0 code, there is no need for a valid value here.
56 		 * Poison it.
57 		 */
58 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59 
60 #ifdef CONFIG_X86_64
61 		/*
62 		 * .sp1 is cpu_current_top_of_stack.  The init task never
63 		 * runs user code, but cpu_current_top_of_stack should still
64 		 * be well defined before the first context switch.
65 		 */
66 		.sp1 = TOP_OF_INIT_STACK,
67 #endif
68 
69 #ifdef CONFIG_X86_32
70 		.ss0 = __KERNEL_DS,
71 		.ss1 = __KERNEL_CS,
72 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
73 #endif
74 	 },
75 #ifdef CONFIG_X86_32
76 	 /*
77 	  * Note that the .io_bitmap member must be extra-big. This is because
78 	  * the CPU will access an additional byte beyond the end of the IO
79 	  * permission bitmap. The extra byte must be all 1 bits, and must
80 	  * be within the limit.
81 	  */
82 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
83 #endif
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86 
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89 
90 /*
91  * this gets called so that we can store lazy state into memory and copy the
92  * current task into the new thread.
93  */
94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 	memcpy(dst, src, arch_task_struct_size);
97 #ifdef CONFIG_VM86
98 	dst->thread.vm86 = NULL;
99 #endif
100 
101 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102 }
103 
104 /*
105  * Free current thread data structures etc..
106  */
107 void exit_thread(struct task_struct *tsk)
108 {
109 	struct thread_struct *t = &tsk->thread;
110 	unsigned long *bp = t->io_bitmap_ptr;
111 	struct fpu *fpu = &t->fpu;
112 
113 	if (bp) {
114 		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115 
116 		t->io_bitmap_ptr = NULL;
117 		clear_thread_flag(TIF_IO_BITMAP);
118 		/*
119 		 * Careful, clear this in the TSS too:
120 		 */
121 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122 		t->io_bitmap_max = 0;
123 		put_cpu();
124 		kfree(bp);
125 	}
126 
127 	free_vm86(t);
128 
129 	fpu__drop(fpu);
130 }
131 
132 void flush_thread(void)
133 {
134 	struct task_struct *tsk = current;
135 
136 	flush_ptrace_hw_breakpoint(tsk);
137 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138 
139 	fpu__clear(&tsk->thread.fpu);
140 }
141 
142 void disable_TSC(void)
143 {
144 	preempt_disable();
145 	if (!test_and_set_thread_flag(TIF_NOTSC))
146 		/*
147 		 * Must flip the CPU state synchronously with
148 		 * TIF_NOTSC in the current running context.
149 		 */
150 		cr4_set_bits(X86_CR4_TSD);
151 	preempt_enable();
152 }
153 
154 static void enable_TSC(void)
155 {
156 	preempt_disable();
157 	if (test_and_clear_thread_flag(TIF_NOTSC))
158 		/*
159 		 * Must flip the CPU state synchronously with
160 		 * TIF_NOTSC in the current running context.
161 		 */
162 		cr4_clear_bits(X86_CR4_TSD);
163 	preempt_enable();
164 }
165 
166 int get_tsc_mode(unsigned long adr)
167 {
168 	unsigned int val;
169 
170 	if (test_thread_flag(TIF_NOTSC))
171 		val = PR_TSC_SIGSEGV;
172 	else
173 		val = PR_TSC_ENABLE;
174 
175 	return put_user(val, (unsigned int __user *)adr);
176 }
177 
178 int set_tsc_mode(unsigned int val)
179 {
180 	if (val == PR_TSC_SIGSEGV)
181 		disable_TSC();
182 	else if (val == PR_TSC_ENABLE)
183 		enable_TSC();
184 	else
185 		return -EINVAL;
186 
187 	return 0;
188 }
189 
190 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191 
192 static void set_cpuid_faulting(bool on)
193 {
194 	u64 msrval;
195 
196 	msrval = this_cpu_read(msr_misc_features_shadow);
197 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199 	this_cpu_write(msr_misc_features_shadow, msrval);
200 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201 }
202 
203 static void disable_cpuid(void)
204 {
205 	preempt_disable();
206 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207 		/*
208 		 * Must flip the CPU state synchronously with
209 		 * TIF_NOCPUID in the current running context.
210 		 */
211 		set_cpuid_faulting(true);
212 	}
213 	preempt_enable();
214 }
215 
216 static void enable_cpuid(void)
217 {
218 	preempt_disable();
219 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220 		/*
221 		 * Must flip the CPU state synchronously with
222 		 * TIF_NOCPUID in the current running context.
223 		 */
224 		set_cpuid_faulting(false);
225 	}
226 	preempt_enable();
227 }
228 
229 static int get_cpuid_mode(void)
230 {
231 	return !test_thread_flag(TIF_NOCPUID);
232 }
233 
234 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235 {
236 	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237 		return -ENODEV;
238 
239 	if (cpuid_enabled)
240 		enable_cpuid();
241 	else
242 		disable_cpuid();
243 
244 	return 0;
245 }
246 
247 /*
248  * Called immediately after a successful exec.
249  */
250 void arch_setup_new_exec(void)
251 {
252 	/* If cpuid was previously disabled for this task, re-enable it. */
253 	if (test_thread_flag(TIF_NOCPUID))
254 		enable_cpuid();
255 }
256 
257 static inline void switch_to_bitmap(struct tss_struct *tss,
258 				    struct thread_struct *prev,
259 				    struct thread_struct *next,
260 				    unsigned long tifp, unsigned long tifn)
261 {
262 	if (tifn & _TIF_IO_BITMAP) {
263 		/*
264 		 * Copy the relevant range of the IO bitmap.
265 		 * Normally this is 128 bytes or less:
266 		 */
267 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
268 		       max(prev->io_bitmap_max, next->io_bitmap_max));
269 		/*
270 		 * Make sure that the TSS limit is correct for the CPU
271 		 * to notice the IO bitmap.
272 		 */
273 		refresh_tss_limit();
274 	} else if (tifp & _TIF_IO_BITMAP) {
275 		/*
276 		 * Clear any possible leftover bits:
277 		 */
278 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
279 	}
280 }
281 
282 #ifdef CONFIG_SMP
283 
284 struct ssb_state {
285 	struct ssb_state	*shared_state;
286 	raw_spinlock_t		lock;
287 	unsigned int		disable_state;
288 	unsigned long		local_state;
289 };
290 
291 #define LSTATE_SSB	0
292 
293 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
294 
295 void speculative_store_bypass_ht_init(void)
296 {
297 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
298 	unsigned int this_cpu = smp_processor_id();
299 	unsigned int cpu;
300 
301 	st->local_state = 0;
302 
303 	/*
304 	 * Shared state setup happens once on the first bringup
305 	 * of the CPU. It's not destroyed on CPU hotunplug.
306 	 */
307 	if (st->shared_state)
308 		return;
309 
310 	raw_spin_lock_init(&st->lock);
311 
312 	/*
313 	 * Go over HT siblings and check whether one of them has set up the
314 	 * shared state pointer already.
315 	 */
316 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
317 		if (cpu == this_cpu)
318 			continue;
319 
320 		if (!per_cpu(ssb_state, cpu).shared_state)
321 			continue;
322 
323 		/* Link it to the state of the sibling: */
324 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
325 		return;
326 	}
327 
328 	/*
329 	 * First HT sibling to come up on the core.  Link shared state of
330 	 * the first HT sibling to itself. The siblings on the same core
331 	 * which come up later will see the shared state pointer and link
332 	 * themself to the state of this CPU.
333 	 */
334 	st->shared_state = st;
335 }
336 
337 /*
338  * Logic is: First HT sibling enables SSBD for both siblings in the core
339  * and last sibling to disable it, disables it for the whole core. This how
340  * MSR_SPEC_CTRL works in "hardware":
341  *
342  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
343  */
344 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
345 {
346 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
347 	u64 msr = x86_amd_ls_cfg_base;
348 
349 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
350 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
351 		wrmsrl(MSR_AMD64_LS_CFG, msr);
352 		return;
353 	}
354 
355 	if (tifn & _TIF_SSBD) {
356 		/*
357 		 * Since this can race with prctl(), block reentry on the
358 		 * same CPU.
359 		 */
360 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
361 			return;
362 
363 		msr |= x86_amd_ls_cfg_ssbd_mask;
364 
365 		raw_spin_lock(&st->shared_state->lock);
366 		/* First sibling enables SSBD: */
367 		if (!st->shared_state->disable_state)
368 			wrmsrl(MSR_AMD64_LS_CFG, msr);
369 		st->shared_state->disable_state++;
370 		raw_spin_unlock(&st->shared_state->lock);
371 	} else {
372 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
373 			return;
374 
375 		raw_spin_lock(&st->shared_state->lock);
376 		st->shared_state->disable_state--;
377 		if (!st->shared_state->disable_state)
378 			wrmsrl(MSR_AMD64_LS_CFG, msr);
379 		raw_spin_unlock(&st->shared_state->lock);
380 	}
381 }
382 #else
383 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
384 {
385 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
386 
387 	wrmsrl(MSR_AMD64_LS_CFG, msr);
388 }
389 #endif
390 
391 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
392 {
393 	/*
394 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
395 	 * so ssbd_tif_to_spec_ctrl() just works.
396 	 */
397 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
398 }
399 
400 static __always_inline void intel_set_ssb_state(unsigned long tifn)
401 {
402 	u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
403 
404 	wrmsrl(MSR_IA32_SPEC_CTRL, msr);
405 }
406 
407 static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
408 {
409 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
410 		amd_set_ssb_virt_state(tifn);
411 	else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
412 		amd_set_core_ssb_state(tifn);
413 	else
414 		intel_set_ssb_state(tifn);
415 }
416 
417 void speculative_store_bypass_update(unsigned long tif)
418 {
419 	preempt_disable();
420 	__speculative_store_bypass_update(tif);
421 	preempt_enable();
422 }
423 
424 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
425 		      struct tss_struct *tss)
426 {
427 	struct thread_struct *prev, *next;
428 	unsigned long tifp, tifn;
429 
430 	prev = &prev_p->thread;
431 	next = &next_p->thread;
432 
433 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
434 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
435 	switch_to_bitmap(tss, prev, next, tifp, tifn);
436 
437 	propagate_user_return_notify(prev_p, next_p);
438 
439 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
440 	    arch_has_block_step()) {
441 		unsigned long debugctl, msk;
442 
443 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
444 		debugctl &= ~DEBUGCTLMSR_BTF;
445 		msk = tifn & _TIF_BLOCKSTEP;
446 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
447 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
448 	}
449 
450 	if ((tifp ^ tifn) & _TIF_NOTSC)
451 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
452 
453 	if ((tifp ^ tifn) & _TIF_NOCPUID)
454 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
455 
456 	if ((tifp ^ tifn) & _TIF_SSBD)
457 		__speculative_store_bypass_update(tifn);
458 }
459 
460 /*
461  * Idle related variables and functions
462  */
463 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
464 EXPORT_SYMBOL(boot_option_idle_override);
465 
466 static void (*x86_idle)(void);
467 
468 #ifndef CONFIG_SMP
469 static inline void play_dead(void)
470 {
471 	BUG();
472 }
473 #endif
474 
475 void arch_cpu_idle_enter(void)
476 {
477 	tsc_verify_tsc_adjust(false);
478 	local_touch_nmi();
479 }
480 
481 void arch_cpu_idle_dead(void)
482 {
483 	play_dead();
484 }
485 
486 /*
487  * Called from the generic idle code.
488  */
489 void arch_cpu_idle(void)
490 {
491 	x86_idle();
492 }
493 
494 /*
495  * We use this if we don't have any better idle routine..
496  */
497 void __cpuidle default_idle(void)
498 {
499 	trace_cpu_idle_rcuidle(1, smp_processor_id());
500 	safe_halt();
501 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
502 }
503 #ifdef CONFIG_APM_MODULE
504 EXPORT_SYMBOL(default_idle);
505 #endif
506 
507 #ifdef CONFIG_XEN
508 bool xen_set_default_idle(void)
509 {
510 	bool ret = !!x86_idle;
511 
512 	x86_idle = default_idle;
513 
514 	return ret;
515 }
516 #endif
517 
518 void stop_this_cpu(void *dummy)
519 {
520 	local_irq_disable();
521 	/*
522 	 * Remove this CPU:
523 	 */
524 	set_cpu_online(smp_processor_id(), false);
525 	disable_local_APIC();
526 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
527 
528 	/*
529 	 * Use wbinvd on processors that support SME. This provides support
530 	 * for performing a successful kexec when going from SME inactive
531 	 * to SME active (or vice-versa). The cache must be cleared so that
532 	 * if there are entries with the same physical address, both with and
533 	 * without the encryption bit, they don't race each other when flushed
534 	 * and potentially end up with the wrong entry being committed to
535 	 * memory.
536 	 */
537 	if (boot_cpu_has(X86_FEATURE_SME))
538 		native_wbinvd();
539 	for (;;) {
540 		/*
541 		 * Use native_halt() so that memory contents don't change
542 		 * (stack usage and variables) after possibly issuing the
543 		 * native_wbinvd() above.
544 		 */
545 		native_halt();
546 	}
547 }
548 
549 /*
550  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
551  * states (local apic timer and TSC stop).
552  */
553 static void amd_e400_idle(void)
554 {
555 	/*
556 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
557 	 * gets set after static_cpu_has() places have been converted via
558 	 * alternatives.
559 	 */
560 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
561 		default_idle();
562 		return;
563 	}
564 
565 	tick_broadcast_enter();
566 
567 	default_idle();
568 
569 	/*
570 	 * The switch back from broadcast mode needs to be called with
571 	 * interrupts disabled.
572 	 */
573 	local_irq_disable();
574 	tick_broadcast_exit();
575 	local_irq_enable();
576 }
577 
578 /*
579  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
580  * We can't rely on cpuidle installing MWAIT, because it will not load
581  * on systems that support only C1 -- so the boot default must be MWAIT.
582  *
583  * Some AMD machines are the opposite, they depend on using HALT.
584  *
585  * So for default C1, which is used during boot until cpuidle loads,
586  * use MWAIT-C1 on Intel HW that has it, else use HALT.
587  */
588 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
589 {
590 	if (c->x86_vendor != X86_VENDOR_INTEL)
591 		return 0;
592 
593 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
594 		return 0;
595 
596 	return 1;
597 }
598 
599 /*
600  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
601  * with interrupts enabled and no flags, which is backwards compatible with the
602  * original MWAIT implementation.
603  */
604 static __cpuidle void mwait_idle(void)
605 {
606 	if (!current_set_polling_and_test()) {
607 		trace_cpu_idle_rcuidle(1, smp_processor_id());
608 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
609 			mb(); /* quirk */
610 			clflush((void *)&current_thread_info()->flags);
611 			mb(); /* quirk */
612 		}
613 
614 		__monitor((void *)&current_thread_info()->flags, 0, 0);
615 		if (!need_resched())
616 			__sti_mwait(0, 0);
617 		else
618 			local_irq_enable();
619 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
620 	} else {
621 		local_irq_enable();
622 	}
623 	__current_clr_polling();
624 }
625 
626 void select_idle_routine(const struct cpuinfo_x86 *c)
627 {
628 #ifdef CONFIG_SMP
629 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
630 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
631 #endif
632 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
633 		return;
634 
635 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
636 		pr_info("using AMD E400 aware idle routine\n");
637 		x86_idle = amd_e400_idle;
638 	} else if (prefer_mwait_c1_over_halt(c)) {
639 		pr_info("using mwait in idle threads\n");
640 		x86_idle = mwait_idle;
641 	} else
642 		x86_idle = default_idle;
643 }
644 
645 void amd_e400_c1e_apic_setup(void)
646 {
647 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
648 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
649 		local_irq_disable();
650 		tick_broadcast_force();
651 		local_irq_enable();
652 	}
653 }
654 
655 void __init arch_post_acpi_subsys_init(void)
656 {
657 	u32 lo, hi;
658 
659 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
660 		return;
661 
662 	/*
663 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
664 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
665 	 * MSR_K8_INT_PENDING_MSG.
666 	 */
667 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
668 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
669 		return;
670 
671 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
672 
673 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
674 		mark_tsc_unstable("TSC halt in AMD C1E");
675 	pr_info("System has AMD C1E enabled\n");
676 }
677 
678 static int __init idle_setup(char *str)
679 {
680 	if (!str)
681 		return -EINVAL;
682 
683 	if (!strcmp(str, "poll")) {
684 		pr_info("using polling idle threads\n");
685 		boot_option_idle_override = IDLE_POLL;
686 		cpu_idle_poll_ctrl(true);
687 	} else if (!strcmp(str, "halt")) {
688 		/*
689 		 * When the boot option of idle=halt is added, halt is
690 		 * forced to be used for CPU idle. In such case CPU C2/C3
691 		 * won't be used again.
692 		 * To continue to load the CPU idle driver, don't touch
693 		 * the boot_option_idle_override.
694 		 */
695 		x86_idle = default_idle;
696 		boot_option_idle_override = IDLE_HALT;
697 	} else if (!strcmp(str, "nomwait")) {
698 		/*
699 		 * If the boot option of "idle=nomwait" is added,
700 		 * it means that mwait will be disabled for CPU C2/C3
701 		 * states. In such case it won't touch the variable
702 		 * of boot_option_idle_override.
703 		 */
704 		boot_option_idle_override = IDLE_NOMWAIT;
705 	} else
706 		return -1;
707 
708 	return 0;
709 }
710 early_param("idle", idle_setup);
711 
712 unsigned long arch_align_stack(unsigned long sp)
713 {
714 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
715 		sp -= get_random_int() % 8192;
716 	return sp & ~0xf;
717 }
718 
719 unsigned long arch_randomize_brk(struct mm_struct *mm)
720 {
721 	return randomize_page(mm->brk, 0x02000000);
722 }
723 
724 /*
725  * Called from fs/proc with a reference on @p to find the function
726  * which called into schedule(). This needs to be done carefully
727  * because the task might wake up and we might look at a stack
728  * changing under us.
729  */
730 unsigned long get_wchan(struct task_struct *p)
731 {
732 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
733 	int count = 0;
734 
735 	if (!p || p == current || p->state == TASK_RUNNING)
736 		return 0;
737 
738 	if (!try_get_task_stack(p))
739 		return 0;
740 
741 	start = (unsigned long)task_stack_page(p);
742 	if (!start)
743 		goto out;
744 
745 	/*
746 	 * Layout of the stack page:
747 	 *
748 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
749 	 * PADDING
750 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
751 	 * stack
752 	 * ----------- bottom = start
753 	 *
754 	 * The tasks stack pointer points at the location where the
755 	 * framepointer is stored. The data on the stack is:
756 	 * ... IP FP ... IP FP
757 	 *
758 	 * We need to read FP and IP, so we need to adjust the upper
759 	 * bound by another unsigned long.
760 	 */
761 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
762 	top -= 2 * sizeof(unsigned long);
763 	bottom = start;
764 
765 	sp = READ_ONCE(p->thread.sp);
766 	if (sp < bottom || sp > top)
767 		goto out;
768 
769 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
770 	do {
771 		if (fp < bottom || fp > top)
772 			goto out;
773 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
774 		if (!in_sched_functions(ip)) {
775 			ret = ip;
776 			goto out;
777 		}
778 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
779 	} while (count++ < 16 && p->state != TASK_RUNNING);
780 
781 out:
782 	put_task_stack(p);
783 	return ret;
784 }
785 
786 long do_arch_prctl_common(struct task_struct *task, int option,
787 			  unsigned long cpuid_enabled)
788 {
789 	switch (option) {
790 	case ARCH_GET_CPUID:
791 		return get_cpuid_mode();
792 	case ARCH_SET_CPUID:
793 		return set_cpuid_mode(task, cpuid_enabled);
794 	}
795 
796 	return -EINVAL;
797 }
798