1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <trace/events/power.h> 26 #include <linux/hw_breakpoint.h> 27 #include <asm/cpu.h> 28 #include <asm/apic.h> 29 #include <asm/syscalls.h> 30 #include <linux/uaccess.h> 31 #include <asm/mwait.h> 32 #include <asm/fpu/internal.h> 33 #include <asm/debugreg.h> 34 #include <asm/nmi.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mce.h> 37 #include <asm/vm86.h> 38 #include <asm/switch_to.h> 39 #include <asm/desc.h> 40 #include <asm/prctl.h> 41 #include <asm/spec-ctrl.h> 42 43 /* 44 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 45 * no more per-task TSS's. The TSS size is kept cacheline-aligned 46 * so they are allowed to end up in the .data..cacheline_aligned 47 * section. Since TSS's are completely CPU-local, we want them 48 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 49 */ 50 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 51 .x86_tss = { 52 /* 53 * .sp0 is only used when entering ring 0 from a lower 54 * privilege level. Since the init task never runs anything 55 * but ring 0 code, there is no need for a valid value here. 56 * Poison it. 57 */ 58 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 59 60 #ifdef CONFIG_X86_64 61 /* 62 * .sp1 is cpu_current_top_of_stack. The init task never 63 * runs user code, but cpu_current_top_of_stack should still 64 * be well defined before the first context switch. 65 */ 66 .sp1 = TOP_OF_INIT_STACK, 67 #endif 68 69 #ifdef CONFIG_X86_32 70 .ss0 = __KERNEL_DS, 71 .ss1 = __KERNEL_CS, 72 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 73 #endif 74 }, 75 #ifdef CONFIG_X86_32 76 /* 77 * Note that the .io_bitmap member must be extra-big. This is because 78 * the CPU will access an additional byte beyond the end of the IO 79 * permission bitmap. The extra byte must be all 1 bits, and must 80 * be within the limit. 81 */ 82 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 83 #endif 84 }; 85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 86 87 DEFINE_PER_CPU(bool, __tss_limit_invalid); 88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 89 90 /* 91 * this gets called so that we can store lazy state into memory and copy the 92 * current task into the new thread. 93 */ 94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 95 { 96 memcpy(dst, src, arch_task_struct_size); 97 #ifdef CONFIG_VM86 98 dst->thread.vm86 = NULL; 99 #endif 100 101 return fpu__copy(&dst->thread.fpu, &src->thread.fpu); 102 } 103 104 /* 105 * Free current thread data structures etc.. 106 */ 107 void exit_thread(struct task_struct *tsk) 108 { 109 struct thread_struct *t = &tsk->thread; 110 unsigned long *bp = t->io_bitmap_ptr; 111 struct fpu *fpu = &t->fpu; 112 113 if (bp) { 114 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu()); 115 116 t->io_bitmap_ptr = NULL; 117 clear_thread_flag(TIF_IO_BITMAP); 118 /* 119 * Careful, clear this in the TSS too: 120 */ 121 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 122 t->io_bitmap_max = 0; 123 put_cpu(); 124 kfree(bp); 125 } 126 127 free_vm86(t); 128 129 fpu__drop(fpu); 130 } 131 132 void flush_thread(void) 133 { 134 struct task_struct *tsk = current; 135 136 flush_ptrace_hw_breakpoint(tsk); 137 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 138 139 fpu__clear(&tsk->thread.fpu); 140 } 141 142 void disable_TSC(void) 143 { 144 preempt_disable(); 145 if (!test_and_set_thread_flag(TIF_NOTSC)) 146 /* 147 * Must flip the CPU state synchronously with 148 * TIF_NOTSC in the current running context. 149 */ 150 cr4_set_bits(X86_CR4_TSD); 151 preempt_enable(); 152 } 153 154 static void enable_TSC(void) 155 { 156 preempt_disable(); 157 if (test_and_clear_thread_flag(TIF_NOTSC)) 158 /* 159 * Must flip the CPU state synchronously with 160 * TIF_NOTSC in the current running context. 161 */ 162 cr4_clear_bits(X86_CR4_TSD); 163 preempt_enable(); 164 } 165 166 int get_tsc_mode(unsigned long adr) 167 { 168 unsigned int val; 169 170 if (test_thread_flag(TIF_NOTSC)) 171 val = PR_TSC_SIGSEGV; 172 else 173 val = PR_TSC_ENABLE; 174 175 return put_user(val, (unsigned int __user *)adr); 176 } 177 178 int set_tsc_mode(unsigned int val) 179 { 180 if (val == PR_TSC_SIGSEGV) 181 disable_TSC(); 182 else if (val == PR_TSC_ENABLE) 183 enable_TSC(); 184 else 185 return -EINVAL; 186 187 return 0; 188 } 189 190 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 191 192 static void set_cpuid_faulting(bool on) 193 { 194 u64 msrval; 195 196 msrval = this_cpu_read(msr_misc_features_shadow); 197 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 198 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 199 this_cpu_write(msr_misc_features_shadow, msrval); 200 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 201 } 202 203 static void disable_cpuid(void) 204 { 205 preempt_disable(); 206 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 207 /* 208 * Must flip the CPU state synchronously with 209 * TIF_NOCPUID in the current running context. 210 */ 211 set_cpuid_faulting(true); 212 } 213 preempt_enable(); 214 } 215 216 static void enable_cpuid(void) 217 { 218 preempt_disable(); 219 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 220 /* 221 * Must flip the CPU state synchronously with 222 * TIF_NOCPUID in the current running context. 223 */ 224 set_cpuid_faulting(false); 225 } 226 preempt_enable(); 227 } 228 229 static int get_cpuid_mode(void) 230 { 231 return !test_thread_flag(TIF_NOCPUID); 232 } 233 234 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 235 { 236 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT)) 237 return -ENODEV; 238 239 if (cpuid_enabled) 240 enable_cpuid(); 241 else 242 disable_cpuid(); 243 244 return 0; 245 } 246 247 /* 248 * Called immediately after a successful exec. 249 */ 250 void arch_setup_new_exec(void) 251 { 252 /* If cpuid was previously disabled for this task, re-enable it. */ 253 if (test_thread_flag(TIF_NOCPUID)) 254 enable_cpuid(); 255 } 256 257 static inline void switch_to_bitmap(struct tss_struct *tss, 258 struct thread_struct *prev, 259 struct thread_struct *next, 260 unsigned long tifp, unsigned long tifn) 261 { 262 if (tifn & _TIF_IO_BITMAP) { 263 /* 264 * Copy the relevant range of the IO bitmap. 265 * Normally this is 128 bytes or less: 266 */ 267 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 268 max(prev->io_bitmap_max, next->io_bitmap_max)); 269 /* 270 * Make sure that the TSS limit is correct for the CPU 271 * to notice the IO bitmap. 272 */ 273 refresh_tss_limit(); 274 } else if (tifp & _TIF_IO_BITMAP) { 275 /* 276 * Clear any possible leftover bits: 277 */ 278 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 279 } 280 } 281 282 #ifdef CONFIG_SMP 283 284 struct ssb_state { 285 struct ssb_state *shared_state; 286 raw_spinlock_t lock; 287 unsigned int disable_state; 288 unsigned long local_state; 289 }; 290 291 #define LSTATE_SSB 0 292 293 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 294 295 void speculative_store_bypass_ht_init(void) 296 { 297 struct ssb_state *st = this_cpu_ptr(&ssb_state); 298 unsigned int this_cpu = smp_processor_id(); 299 unsigned int cpu; 300 301 st->local_state = 0; 302 303 /* 304 * Shared state setup happens once on the first bringup 305 * of the CPU. It's not destroyed on CPU hotunplug. 306 */ 307 if (st->shared_state) 308 return; 309 310 raw_spin_lock_init(&st->lock); 311 312 /* 313 * Go over HT siblings and check whether one of them has set up the 314 * shared state pointer already. 315 */ 316 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 317 if (cpu == this_cpu) 318 continue; 319 320 if (!per_cpu(ssb_state, cpu).shared_state) 321 continue; 322 323 /* Link it to the state of the sibling: */ 324 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 325 return; 326 } 327 328 /* 329 * First HT sibling to come up on the core. Link shared state of 330 * the first HT sibling to itself. The siblings on the same core 331 * which come up later will see the shared state pointer and link 332 * themself to the state of this CPU. 333 */ 334 st->shared_state = st; 335 } 336 337 /* 338 * Logic is: First HT sibling enables SSBD for both siblings in the core 339 * and last sibling to disable it, disables it for the whole core. This how 340 * MSR_SPEC_CTRL works in "hardware": 341 * 342 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 343 */ 344 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 345 { 346 struct ssb_state *st = this_cpu_ptr(&ssb_state); 347 u64 msr = x86_amd_ls_cfg_base; 348 349 if (!static_cpu_has(X86_FEATURE_ZEN)) { 350 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 351 wrmsrl(MSR_AMD64_LS_CFG, msr); 352 return; 353 } 354 355 if (tifn & _TIF_SSBD) { 356 /* 357 * Since this can race with prctl(), block reentry on the 358 * same CPU. 359 */ 360 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 361 return; 362 363 msr |= x86_amd_ls_cfg_ssbd_mask; 364 365 raw_spin_lock(&st->shared_state->lock); 366 /* First sibling enables SSBD: */ 367 if (!st->shared_state->disable_state) 368 wrmsrl(MSR_AMD64_LS_CFG, msr); 369 st->shared_state->disable_state++; 370 raw_spin_unlock(&st->shared_state->lock); 371 } else { 372 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 373 return; 374 375 raw_spin_lock(&st->shared_state->lock); 376 st->shared_state->disable_state--; 377 if (!st->shared_state->disable_state) 378 wrmsrl(MSR_AMD64_LS_CFG, msr); 379 raw_spin_unlock(&st->shared_state->lock); 380 } 381 } 382 #else 383 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 384 { 385 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 386 387 wrmsrl(MSR_AMD64_LS_CFG, msr); 388 } 389 #endif 390 391 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 392 { 393 /* 394 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 395 * so ssbd_tif_to_spec_ctrl() just works. 396 */ 397 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 398 } 399 400 static __always_inline void intel_set_ssb_state(unsigned long tifn) 401 { 402 u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn); 403 404 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 405 } 406 407 static __always_inline void __speculative_store_bypass_update(unsigned long tifn) 408 { 409 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) 410 amd_set_ssb_virt_state(tifn); 411 else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) 412 amd_set_core_ssb_state(tifn); 413 else 414 intel_set_ssb_state(tifn); 415 } 416 417 void speculative_store_bypass_update(unsigned long tif) 418 { 419 preempt_disable(); 420 __speculative_store_bypass_update(tif); 421 preempt_enable(); 422 } 423 424 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 425 struct tss_struct *tss) 426 { 427 struct thread_struct *prev, *next; 428 unsigned long tifp, tifn; 429 430 prev = &prev_p->thread; 431 next = &next_p->thread; 432 433 tifn = READ_ONCE(task_thread_info(next_p)->flags); 434 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 435 switch_to_bitmap(tss, prev, next, tifp, tifn); 436 437 propagate_user_return_notify(prev_p, next_p); 438 439 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 440 arch_has_block_step()) { 441 unsigned long debugctl, msk; 442 443 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 444 debugctl &= ~DEBUGCTLMSR_BTF; 445 msk = tifn & _TIF_BLOCKSTEP; 446 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 447 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 448 } 449 450 if ((tifp ^ tifn) & _TIF_NOTSC) 451 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 452 453 if ((tifp ^ tifn) & _TIF_NOCPUID) 454 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 455 456 if ((tifp ^ tifn) & _TIF_SSBD) 457 __speculative_store_bypass_update(tifn); 458 } 459 460 /* 461 * Idle related variables and functions 462 */ 463 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 464 EXPORT_SYMBOL(boot_option_idle_override); 465 466 static void (*x86_idle)(void); 467 468 #ifndef CONFIG_SMP 469 static inline void play_dead(void) 470 { 471 BUG(); 472 } 473 #endif 474 475 void arch_cpu_idle_enter(void) 476 { 477 tsc_verify_tsc_adjust(false); 478 local_touch_nmi(); 479 } 480 481 void arch_cpu_idle_dead(void) 482 { 483 play_dead(); 484 } 485 486 /* 487 * Called from the generic idle code. 488 */ 489 void arch_cpu_idle(void) 490 { 491 x86_idle(); 492 } 493 494 /* 495 * We use this if we don't have any better idle routine.. 496 */ 497 void __cpuidle default_idle(void) 498 { 499 trace_cpu_idle_rcuidle(1, smp_processor_id()); 500 safe_halt(); 501 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 502 } 503 #ifdef CONFIG_APM_MODULE 504 EXPORT_SYMBOL(default_idle); 505 #endif 506 507 #ifdef CONFIG_XEN 508 bool xen_set_default_idle(void) 509 { 510 bool ret = !!x86_idle; 511 512 x86_idle = default_idle; 513 514 return ret; 515 } 516 #endif 517 518 void stop_this_cpu(void *dummy) 519 { 520 local_irq_disable(); 521 /* 522 * Remove this CPU: 523 */ 524 set_cpu_online(smp_processor_id(), false); 525 disable_local_APIC(); 526 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 527 528 /* 529 * Use wbinvd on processors that support SME. This provides support 530 * for performing a successful kexec when going from SME inactive 531 * to SME active (or vice-versa). The cache must be cleared so that 532 * if there are entries with the same physical address, both with and 533 * without the encryption bit, they don't race each other when flushed 534 * and potentially end up with the wrong entry being committed to 535 * memory. 536 */ 537 if (boot_cpu_has(X86_FEATURE_SME)) 538 native_wbinvd(); 539 for (;;) { 540 /* 541 * Use native_halt() so that memory contents don't change 542 * (stack usage and variables) after possibly issuing the 543 * native_wbinvd() above. 544 */ 545 native_halt(); 546 } 547 } 548 549 /* 550 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 551 * states (local apic timer and TSC stop). 552 */ 553 static void amd_e400_idle(void) 554 { 555 /* 556 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 557 * gets set after static_cpu_has() places have been converted via 558 * alternatives. 559 */ 560 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 561 default_idle(); 562 return; 563 } 564 565 tick_broadcast_enter(); 566 567 default_idle(); 568 569 /* 570 * The switch back from broadcast mode needs to be called with 571 * interrupts disabled. 572 */ 573 local_irq_disable(); 574 tick_broadcast_exit(); 575 local_irq_enable(); 576 } 577 578 /* 579 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 580 * We can't rely on cpuidle installing MWAIT, because it will not load 581 * on systems that support only C1 -- so the boot default must be MWAIT. 582 * 583 * Some AMD machines are the opposite, they depend on using HALT. 584 * 585 * So for default C1, which is used during boot until cpuidle loads, 586 * use MWAIT-C1 on Intel HW that has it, else use HALT. 587 */ 588 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 589 { 590 if (c->x86_vendor != X86_VENDOR_INTEL) 591 return 0; 592 593 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) 594 return 0; 595 596 return 1; 597 } 598 599 /* 600 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 601 * with interrupts enabled and no flags, which is backwards compatible with the 602 * original MWAIT implementation. 603 */ 604 static __cpuidle void mwait_idle(void) 605 { 606 if (!current_set_polling_and_test()) { 607 trace_cpu_idle_rcuidle(1, smp_processor_id()); 608 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 609 mb(); /* quirk */ 610 clflush((void *)¤t_thread_info()->flags); 611 mb(); /* quirk */ 612 } 613 614 __monitor((void *)¤t_thread_info()->flags, 0, 0); 615 if (!need_resched()) 616 __sti_mwait(0, 0); 617 else 618 local_irq_enable(); 619 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 620 } else { 621 local_irq_enable(); 622 } 623 __current_clr_polling(); 624 } 625 626 void select_idle_routine(const struct cpuinfo_x86 *c) 627 { 628 #ifdef CONFIG_SMP 629 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 630 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 631 #endif 632 if (x86_idle || boot_option_idle_override == IDLE_POLL) 633 return; 634 635 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 636 pr_info("using AMD E400 aware idle routine\n"); 637 x86_idle = amd_e400_idle; 638 } else if (prefer_mwait_c1_over_halt(c)) { 639 pr_info("using mwait in idle threads\n"); 640 x86_idle = mwait_idle; 641 } else 642 x86_idle = default_idle; 643 } 644 645 void amd_e400_c1e_apic_setup(void) 646 { 647 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 648 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 649 local_irq_disable(); 650 tick_broadcast_force(); 651 local_irq_enable(); 652 } 653 } 654 655 void __init arch_post_acpi_subsys_init(void) 656 { 657 u32 lo, hi; 658 659 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 660 return; 661 662 /* 663 * AMD E400 detection needs to happen after ACPI has been enabled. If 664 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 665 * MSR_K8_INT_PENDING_MSG. 666 */ 667 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 668 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 669 return; 670 671 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 672 673 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 674 mark_tsc_unstable("TSC halt in AMD C1E"); 675 pr_info("System has AMD C1E enabled\n"); 676 } 677 678 static int __init idle_setup(char *str) 679 { 680 if (!str) 681 return -EINVAL; 682 683 if (!strcmp(str, "poll")) { 684 pr_info("using polling idle threads\n"); 685 boot_option_idle_override = IDLE_POLL; 686 cpu_idle_poll_ctrl(true); 687 } else if (!strcmp(str, "halt")) { 688 /* 689 * When the boot option of idle=halt is added, halt is 690 * forced to be used for CPU idle. In such case CPU C2/C3 691 * won't be used again. 692 * To continue to load the CPU idle driver, don't touch 693 * the boot_option_idle_override. 694 */ 695 x86_idle = default_idle; 696 boot_option_idle_override = IDLE_HALT; 697 } else if (!strcmp(str, "nomwait")) { 698 /* 699 * If the boot option of "idle=nomwait" is added, 700 * it means that mwait will be disabled for CPU C2/C3 701 * states. In such case it won't touch the variable 702 * of boot_option_idle_override. 703 */ 704 boot_option_idle_override = IDLE_NOMWAIT; 705 } else 706 return -1; 707 708 return 0; 709 } 710 early_param("idle", idle_setup); 711 712 unsigned long arch_align_stack(unsigned long sp) 713 { 714 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 715 sp -= get_random_int() % 8192; 716 return sp & ~0xf; 717 } 718 719 unsigned long arch_randomize_brk(struct mm_struct *mm) 720 { 721 return randomize_page(mm->brk, 0x02000000); 722 } 723 724 /* 725 * Called from fs/proc with a reference on @p to find the function 726 * which called into schedule(). This needs to be done carefully 727 * because the task might wake up and we might look at a stack 728 * changing under us. 729 */ 730 unsigned long get_wchan(struct task_struct *p) 731 { 732 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 733 int count = 0; 734 735 if (!p || p == current || p->state == TASK_RUNNING) 736 return 0; 737 738 if (!try_get_task_stack(p)) 739 return 0; 740 741 start = (unsigned long)task_stack_page(p); 742 if (!start) 743 goto out; 744 745 /* 746 * Layout of the stack page: 747 * 748 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 749 * PADDING 750 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 751 * stack 752 * ----------- bottom = start 753 * 754 * The tasks stack pointer points at the location where the 755 * framepointer is stored. The data on the stack is: 756 * ... IP FP ... IP FP 757 * 758 * We need to read FP and IP, so we need to adjust the upper 759 * bound by another unsigned long. 760 */ 761 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 762 top -= 2 * sizeof(unsigned long); 763 bottom = start; 764 765 sp = READ_ONCE(p->thread.sp); 766 if (sp < bottom || sp > top) 767 goto out; 768 769 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 770 do { 771 if (fp < bottom || fp > top) 772 goto out; 773 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 774 if (!in_sched_functions(ip)) { 775 ret = ip; 776 goto out; 777 } 778 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 779 } while (count++ < 16 && p->state != TASK_RUNNING); 780 781 out: 782 put_task_stack(p); 783 return ret; 784 } 785 786 long do_arch_prctl_common(struct task_struct *task, int option, 787 unsigned long cpuid_enabled) 788 { 789 switch (option) { 790 case ARCH_GET_CPUID: 791 return get_cpuid_mode(); 792 case ARCH_SET_CPUID: 793 return set_cpuid_mode(task, cpuid_enabled); 794 } 795 796 return -EINVAL; 797 } 798