xref: /linux/arch/x86/kernel/process.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 
32 /*
33  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34  * no more per-task TSS's. The TSS size is kept cacheline-aligned
35  * so they are allowed to end up in the .data..cacheline_aligned
36  * section. Since TSS's are completely CPU-local, we want them
37  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38  */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40 
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44 
45 void idle_notifier_register(struct notifier_block *n)
46 {
47 	atomic_notifier_chain_register(&idle_notifier, n);
48 }
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
50 
51 void idle_notifier_unregister(struct notifier_block *n)
52 {
53 	atomic_notifier_chain_unregister(&idle_notifier, n);
54 }
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
57 
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
60 
61 /*
62  * this gets called so that we can store lazy state into memory and copy the
63  * current task into the new thread.
64  */
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66 {
67 	int ret;
68 
69 	*dst = *src;
70 	if (fpu_allocated(&src->thread.fpu)) {
71 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 		ret = fpu_alloc(&dst->thread.fpu);
73 		if (ret)
74 			return ret;
75 		fpu_copy(dst, src);
76 	}
77 	return 0;
78 }
79 
80 void free_thread_xstate(struct task_struct *tsk)
81 {
82 	fpu_free(&tsk->thread.fpu);
83 }
84 
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 	free_thread_xstate(tsk);
88 }
89 
90 void arch_task_cache_init(void)
91 {
92         task_xstate_cachep =
93         	kmem_cache_create("task_xstate", xstate_size,
94 				  __alignof__(union thread_xstate),
95 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
96 }
97 
98 /*
99  * Free current thread data structures etc..
100  */
101 void exit_thread(void)
102 {
103 	struct task_struct *me = current;
104 	struct thread_struct *t = &me->thread;
105 	unsigned long *bp = t->io_bitmap_ptr;
106 
107 	if (bp) {
108 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
109 
110 		t->io_bitmap_ptr = NULL;
111 		clear_thread_flag(TIF_IO_BITMAP);
112 		/*
113 		 * Careful, clear this in the TSS too:
114 		 */
115 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 		t->io_bitmap_max = 0;
117 		put_cpu();
118 		kfree(bp);
119 	}
120 
121 	drop_fpu(me);
122 }
123 
124 void show_regs_common(void)
125 {
126 	const char *vendor, *product, *board;
127 
128 	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
129 	if (!vendor)
130 		vendor = "";
131 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
132 	if (!product)
133 		product = "";
134 
135 	/* Board Name is optional */
136 	board = dmi_get_system_info(DMI_BOARD_NAME);
137 
138 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
139 	       current->pid, current->comm, print_tainted(),
140 	       init_utsname()->release,
141 	       (int)strcspn(init_utsname()->version, " "),
142 	       init_utsname()->version,
143 	       vendor, product,
144 	       board ? "/" : "",
145 	       board ? board : "");
146 }
147 
148 void flush_thread(void)
149 {
150 	struct task_struct *tsk = current;
151 
152 	flush_ptrace_hw_breakpoint(tsk);
153 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 	drop_init_fpu(tsk);
155 	/*
156 	 * Free the FPU state for non xsave platforms. They get reallocated
157 	 * lazily at the first use.
158 	 */
159 	if (!use_eager_fpu())
160 		free_thread_xstate(tsk);
161 }
162 
163 static void hard_disable_TSC(void)
164 {
165 	write_cr4(read_cr4() | X86_CR4_TSD);
166 }
167 
168 void disable_TSC(void)
169 {
170 	preempt_disable();
171 	if (!test_and_set_thread_flag(TIF_NOTSC))
172 		/*
173 		 * Must flip the CPU state synchronously with
174 		 * TIF_NOTSC in the current running context.
175 		 */
176 		hard_disable_TSC();
177 	preempt_enable();
178 }
179 
180 static void hard_enable_TSC(void)
181 {
182 	write_cr4(read_cr4() & ~X86_CR4_TSD);
183 }
184 
185 static void enable_TSC(void)
186 {
187 	preempt_disable();
188 	if (test_and_clear_thread_flag(TIF_NOTSC))
189 		/*
190 		 * Must flip the CPU state synchronously with
191 		 * TIF_NOTSC in the current running context.
192 		 */
193 		hard_enable_TSC();
194 	preempt_enable();
195 }
196 
197 int get_tsc_mode(unsigned long adr)
198 {
199 	unsigned int val;
200 
201 	if (test_thread_flag(TIF_NOTSC))
202 		val = PR_TSC_SIGSEGV;
203 	else
204 		val = PR_TSC_ENABLE;
205 
206 	return put_user(val, (unsigned int __user *)adr);
207 }
208 
209 int set_tsc_mode(unsigned int val)
210 {
211 	if (val == PR_TSC_SIGSEGV)
212 		disable_TSC();
213 	else if (val == PR_TSC_ENABLE)
214 		enable_TSC();
215 	else
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
222 		      struct tss_struct *tss)
223 {
224 	struct thread_struct *prev, *next;
225 
226 	prev = &prev_p->thread;
227 	next = &next_p->thread;
228 
229 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
230 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
231 		unsigned long debugctl = get_debugctlmsr();
232 
233 		debugctl &= ~DEBUGCTLMSR_BTF;
234 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
235 			debugctl |= DEBUGCTLMSR_BTF;
236 
237 		update_debugctlmsr(debugctl);
238 	}
239 
240 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
241 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
242 		/* prev and next are different */
243 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
244 			hard_disable_TSC();
245 		else
246 			hard_enable_TSC();
247 	}
248 
249 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
250 		/*
251 		 * Copy the relevant range of the IO bitmap.
252 		 * Normally this is 128 bytes or less:
253 		 */
254 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
255 		       max(prev->io_bitmap_max, next->io_bitmap_max));
256 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
257 		/*
258 		 * Clear any possible leftover bits:
259 		 */
260 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
261 	}
262 	propagate_user_return_notify(prev_p, next_p);
263 }
264 
265 /*
266  * Idle related variables and functions
267  */
268 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
269 EXPORT_SYMBOL(boot_option_idle_override);
270 
271 /*
272  * Powermanagement idle function, if any..
273  */
274 void (*pm_idle)(void);
275 #ifdef CONFIG_APM_MODULE
276 EXPORT_SYMBOL(pm_idle);
277 #endif
278 
279 #ifndef CONFIG_SMP
280 static inline void play_dead(void)
281 {
282 	BUG();
283 }
284 #endif
285 
286 #ifdef CONFIG_X86_64
287 void enter_idle(void)
288 {
289 	this_cpu_write(is_idle, 1);
290 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
291 }
292 
293 static void __exit_idle(void)
294 {
295 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
296 		return;
297 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
298 }
299 
300 /* Called from interrupts to signify idle end */
301 void exit_idle(void)
302 {
303 	/* idle loop has pid 0 */
304 	if (current->pid)
305 		return;
306 	__exit_idle();
307 }
308 #endif
309 
310 /*
311  * The idle thread. There's no useful work to be
312  * done, so just try to conserve power and have a
313  * low exit latency (ie sit in a loop waiting for
314  * somebody to say that they'd like to reschedule)
315  */
316 void cpu_idle(void)
317 {
318 	/*
319 	 * If we're the non-boot CPU, nothing set the stack canary up
320 	 * for us.  CPU0 already has it initialized but no harm in
321 	 * doing it again.  This is a good place for updating it, as
322 	 * we wont ever return from this function (so the invalid
323 	 * canaries already on the stack wont ever trigger).
324 	 */
325 	boot_init_stack_canary();
326 	current_thread_info()->status |= TS_POLLING;
327 
328 	while (1) {
329 		tick_nohz_idle_enter();
330 
331 		while (!need_resched()) {
332 			rmb();
333 
334 			if (cpu_is_offline(smp_processor_id()))
335 				play_dead();
336 
337 			/*
338 			 * Idle routines should keep interrupts disabled
339 			 * from here on, until they go to idle.
340 			 * Otherwise, idle callbacks can misfire.
341 			 */
342 			local_touch_nmi();
343 			local_irq_disable();
344 
345 			enter_idle();
346 
347 			/* Don't trace irqs off for idle */
348 			stop_critical_timings();
349 
350 			/* enter_idle() needs rcu for notifiers */
351 			rcu_idle_enter();
352 
353 			if (cpuidle_idle_call())
354 				pm_idle();
355 
356 			rcu_idle_exit();
357 			start_critical_timings();
358 
359 			/* In many cases the interrupt that ended idle
360 			   has already called exit_idle. But some idle
361 			   loops can be woken up without interrupt. */
362 			__exit_idle();
363 		}
364 
365 		tick_nohz_idle_exit();
366 		preempt_enable_no_resched();
367 		schedule();
368 		preempt_disable();
369 	}
370 }
371 
372 /*
373  * We use this if we don't have any better
374  * idle routine..
375  */
376 void default_idle(void)
377 {
378 	trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
379 	trace_cpu_idle_rcuidle(1, smp_processor_id());
380 	current_thread_info()->status &= ~TS_POLLING;
381 	/*
382 	 * TS_POLLING-cleared state must be visible before we
383 	 * test NEED_RESCHED:
384 	 */
385 	smp_mb();
386 
387 	if (!need_resched())
388 		safe_halt();	/* enables interrupts racelessly */
389 	else
390 		local_irq_enable();
391 	current_thread_info()->status |= TS_POLLING;
392 	trace_power_end_rcuidle(smp_processor_id());
393 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
394 }
395 #ifdef CONFIG_APM_MODULE
396 EXPORT_SYMBOL(default_idle);
397 #endif
398 
399 bool set_pm_idle_to_default(void)
400 {
401 	bool ret = !!pm_idle;
402 
403 	pm_idle = default_idle;
404 
405 	return ret;
406 }
407 void stop_this_cpu(void *dummy)
408 {
409 	local_irq_disable();
410 	/*
411 	 * Remove this CPU:
412 	 */
413 	set_cpu_online(smp_processor_id(), false);
414 	disable_local_APIC();
415 
416 	for (;;) {
417 		if (hlt_works(smp_processor_id()))
418 			halt();
419 	}
420 }
421 
422 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
423 static void mwait_idle(void)
424 {
425 	if (!need_resched()) {
426 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
427 		trace_cpu_idle_rcuidle(1, smp_processor_id());
428 		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
429 			clflush((void *)&current_thread_info()->flags);
430 
431 		__monitor((void *)&current_thread_info()->flags, 0, 0);
432 		smp_mb();
433 		if (!need_resched())
434 			__sti_mwait(0, 0);
435 		else
436 			local_irq_enable();
437 		trace_power_end_rcuidle(smp_processor_id());
438 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
439 	} else
440 		local_irq_enable();
441 }
442 
443 /*
444  * On SMP it's slightly faster (but much more power-consuming!)
445  * to poll the ->work.need_resched flag instead of waiting for the
446  * cross-CPU IPI to arrive. Use this option with caution.
447  */
448 static void poll_idle(void)
449 {
450 	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
451 	trace_cpu_idle_rcuidle(0, smp_processor_id());
452 	local_irq_enable();
453 	while (!need_resched())
454 		cpu_relax();
455 	trace_power_end_rcuidle(smp_processor_id());
456 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
457 }
458 
459 /*
460  * mwait selection logic:
461  *
462  * It depends on the CPU. For AMD CPUs that support MWAIT this is
463  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
464  * then depend on a clock divisor and current Pstate of the core. If
465  * all cores of a processor are in halt state (C1) the processor can
466  * enter the C1E (C1 enhanced) state. If mwait is used this will never
467  * happen.
468  *
469  * idle=mwait overrides this decision and forces the usage of mwait.
470  */
471 
472 #define MWAIT_INFO			0x05
473 #define MWAIT_ECX_EXTENDED_INFO		0x01
474 #define MWAIT_EDX_C1			0xf0
475 
476 int mwait_usable(const struct cpuinfo_x86 *c)
477 {
478 	u32 eax, ebx, ecx, edx;
479 
480 	/* Use mwait if idle=mwait boot option is given */
481 	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
482 		return 1;
483 
484 	/*
485 	 * Any idle= boot option other than idle=mwait means that we must not
486 	 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
487 	 */
488 	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
489 		return 0;
490 
491 	if (c->cpuid_level < MWAIT_INFO)
492 		return 0;
493 
494 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
495 	/* Check, whether EDX has extended info about MWAIT */
496 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
497 		return 1;
498 
499 	/*
500 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
501 	 * C1  supports MWAIT
502 	 */
503 	return (edx & MWAIT_EDX_C1);
504 }
505 
506 bool amd_e400_c1e_detected;
507 EXPORT_SYMBOL(amd_e400_c1e_detected);
508 
509 static cpumask_var_t amd_e400_c1e_mask;
510 
511 void amd_e400_remove_cpu(int cpu)
512 {
513 	if (amd_e400_c1e_mask != NULL)
514 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
515 }
516 
517 /*
518  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
519  * pending message MSR. If we detect C1E, then we handle it the same
520  * way as C3 power states (local apic timer and TSC stop)
521  */
522 static void amd_e400_idle(void)
523 {
524 	if (need_resched())
525 		return;
526 
527 	if (!amd_e400_c1e_detected) {
528 		u32 lo, hi;
529 
530 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
531 
532 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
533 			amd_e400_c1e_detected = true;
534 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
535 				mark_tsc_unstable("TSC halt in AMD C1E");
536 			pr_info("System has AMD C1E enabled\n");
537 		}
538 	}
539 
540 	if (amd_e400_c1e_detected) {
541 		int cpu = smp_processor_id();
542 
543 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
544 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
545 			/*
546 			 * Force broadcast so ACPI can not interfere.
547 			 */
548 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
549 					   &cpu);
550 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
551 		}
552 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
553 
554 		default_idle();
555 
556 		/*
557 		 * The switch back from broadcast mode needs to be
558 		 * called with interrupts disabled.
559 		 */
560 		 local_irq_disable();
561 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
562 		 local_irq_enable();
563 	} else
564 		default_idle();
565 }
566 
567 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
568 {
569 #ifdef CONFIG_SMP
570 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
571 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
572 	}
573 #endif
574 	if (pm_idle)
575 		return;
576 
577 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
578 		/*
579 		 * One CPU supports mwait => All CPUs supports mwait
580 		 */
581 		pr_info("using mwait in idle threads\n");
582 		pm_idle = mwait_idle;
583 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
584 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
585 		pr_info("using AMD E400 aware idle routine\n");
586 		pm_idle = amd_e400_idle;
587 	} else
588 		pm_idle = default_idle;
589 }
590 
591 void __init init_amd_e400_c1e_mask(void)
592 {
593 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
594 	if (pm_idle == amd_e400_idle)
595 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
596 }
597 
598 static int __init idle_setup(char *str)
599 {
600 	if (!str)
601 		return -EINVAL;
602 
603 	if (!strcmp(str, "poll")) {
604 		pr_info("using polling idle threads\n");
605 		pm_idle = poll_idle;
606 		boot_option_idle_override = IDLE_POLL;
607 	} else if (!strcmp(str, "mwait")) {
608 		boot_option_idle_override = IDLE_FORCE_MWAIT;
609 		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
610 	} else if (!strcmp(str, "halt")) {
611 		/*
612 		 * When the boot option of idle=halt is added, halt is
613 		 * forced to be used for CPU idle. In such case CPU C2/C3
614 		 * won't be used again.
615 		 * To continue to load the CPU idle driver, don't touch
616 		 * the boot_option_idle_override.
617 		 */
618 		pm_idle = default_idle;
619 		boot_option_idle_override = IDLE_HALT;
620 	} else if (!strcmp(str, "nomwait")) {
621 		/*
622 		 * If the boot option of "idle=nomwait" is added,
623 		 * it means that mwait will be disabled for CPU C2/C3
624 		 * states. In such case it won't touch the variable
625 		 * of boot_option_idle_override.
626 		 */
627 		boot_option_idle_override = IDLE_NOMWAIT;
628 	} else
629 		return -1;
630 
631 	return 0;
632 }
633 early_param("idle", idle_setup);
634 
635 unsigned long arch_align_stack(unsigned long sp)
636 {
637 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
638 		sp -= get_random_int() % 8192;
639 	return sp & ~0xf;
640 }
641 
642 unsigned long arch_randomize_brk(struct mm_struct *mm)
643 {
644 	unsigned long range_end = mm->brk + 0x02000000;
645 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
646 }
647 
648