xref: /linux/arch/x86/kernel/process.c (revision 9e2b3e834c450ce23073093992f450544100c99a)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/api.h>
34 #include <asm/fpu/sched.h>
35 #include <asm/fpu/xstate.h>
36 #include <asm/debugreg.h>
37 #include <asm/nmi.h>
38 #include <asm/tlbflush.h>
39 #include <asm/mce.h>
40 #include <asm/vm86.h>
41 #include <asm/switch_to.h>
42 #include <asm/desc.h>
43 #include <asm/prctl.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/io_bitmap.h>
46 #include <asm/proto.h>
47 #include <asm/frame.h>
48 #include <asm/unwind.h>
49 
50 #include "process.h"
51 
52 /*
53  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
54  * no more per-task TSS's. The TSS size is kept cacheline-aligned
55  * so they are allowed to end up in the .data..cacheline_aligned
56  * section. Since TSS's are completely CPU-local, we want them
57  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
58  */
59 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
60 	.x86_tss = {
61 		/*
62 		 * .sp0 is only used when entering ring 0 from a lower
63 		 * privilege level.  Since the init task never runs anything
64 		 * but ring 0 code, there is no need for a valid value here.
65 		 * Poison it.
66 		 */
67 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
68 
69 #ifdef CONFIG_X86_32
70 		.sp1 = TOP_OF_INIT_STACK,
71 
72 		.ss0 = __KERNEL_DS,
73 		.ss1 = __KERNEL_CS,
74 #endif
75 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
76 	 },
77 };
78 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
79 
80 DEFINE_PER_CPU(bool, __tss_limit_invalid);
81 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
82 
83 /*
84  * this gets called so that we can store lazy state into memory and copy the
85  * current task into the new thread.
86  */
87 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
88 {
89 	memcpy(dst, src, arch_task_struct_size);
90 #ifdef CONFIG_VM86
91 	dst->thread.vm86 = NULL;
92 #endif
93 	/* Drop the copied pointer to current's fpstate */
94 	dst->thread.fpu.fpstate = NULL;
95 
96 	return 0;
97 }
98 
99 #ifdef CONFIG_X86_64
100 void arch_release_task_struct(struct task_struct *tsk)
101 {
102 	if (fpu_state_size_dynamic())
103 		fpstate_free(&tsk->thread.fpu);
104 }
105 #endif
106 
107 /*
108  * Free thread data structures etc..
109  */
110 void exit_thread(struct task_struct *tsk)
111 {
112 	struct thread_struct *t = &tsk->thread;
113 	struct fpu *fpu = &t->fpu;
114 
115 	if (test_thread_flag(TIF_IO_BITMAP))
116 		io_bitmap_exit(tsk);
117 
118 	free_vm86(t);
119 
120 	fpu__drop(fpu);
121 }
122 
123 static int set_new_tls(struct task_struct *p, unsigned long tls)
124 {
125 	struct user_desc __user *utls = (struct user_desc __user *)tls;
126 
127 	if (in_ia32_syscall())
128 		return do_set_thread_area(p, -1, utls, 0);
129 	else
130 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
131 }
132 
133 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
134 		struct task_struct *p, unsigned long tls)
135 {
136 	struct inactive_task_frame *frame;
137 	struct fork_frame *fork_frame;
138 	struct pt_regs *childregs;
139 	int ret = 0;
140 
141 	childregs = task_pt_regs(p);
142 	fork_frame = container_of(childregs, struct fork_frame, regs);
143 	frame = &fork_frame->frame;
144 
145 	frame->bp = encode_frame_pointer(childregs);
146 	frame->ret_addr = (unsigned long) ret_from_fork;
147 	p->thread.sp = (unsigned long) fork_frame;
148 	p->thread.io_bitmap = NULL;
149 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
150 
151 #ifdef CONFIG_X86_64
152 	current_save_fsgs();
153 	p->thread.fsindex = current->thread.fsindex;
154 	p->thread.fsbase = current->thread.fsbase;
155 	p->thread.gsindex = current->thread.gsindex;
156 	p->thread.gsbase = current->thread.gsbase;
157 
158 	savesegment(es, p->thread.es);
159 	savesegment(ds, p->thread.ds);
160 #else
161 	p->thread.sp0 = (unsigned long) (childregs + 1);
162 	/*
163 	 * Clear all status flags including IF and set fixed bit. 64bit
164 	 * does not have this initialization as the frame does not contain
165 	 * flags. The flags consistency (especially vs. AC) is there
166 	 * ensured via objtool, which lacks 32bit support.
167 	 */
168 	frame->flags = X86_EFLAGS_FIXED;
169 #endif
170 
171 	fpu_clone(p, clone_flags);
172 
173 	/* Kernel thread ? */
174 	if (unlikely(p->flags & PF_KTHREAD)) {
175 		p->thread.pkru = pkru_get_init_value();
176 		memset(childregs, 0, sizeof(struct pt_regs));
177 		kthread_frame_init(frame, sp, arg);
178 		return 0;
179 	}
180 
181 	/*
182 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
183 	 * is only valid when scheduled out.
184 	 */
185 	p->thread.pkru = read_pkru();
186 
187 	frame->bx = 0;
188 	*childregs = *current_pt_regs();
189 	childregs->ax = 0;
190 	if (sp)
191 		childregs->sp = sp;
192 
193 #ifdef CONFIG_X86_32
194 	task_user_gs(p) = get_user_gs(current_pt_regs());
195 #endif
196 
197 	if (unlikely(p->flags & PF_IO_WORKER)) {
198 		/*
199 		 * An IO thread is a user space thread, but it doesn't
200 		 * return to ret_after_fork().
201 		 *
202 		 * In order to indicate that to tools like gdb,
203 		 * we reset the stack and instruction pointers.
204 		 *
205 		 * It does the same kernel frame setup to return to a kernel
206 		 * function that a kernel thread does.
207 		 */
208 		childregs->sp = 0;
209 		childregs->ip = 0;
210 		kthread_frame_init(frame, sp, arg);
211 		return 0;
212 	}
213 
214 	/* Set a new TLS for the child thread? */
215 	if (clone_flags & CLONE_SETTLS)
216 		ret = set_new_tls(p, tls);
217 
218 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
219 		io_bitmap_share(p);
220 
221 	return ret;
222 }
223 
224 static void pkru_flush_thread(void)
225 {
226 	/*
227 	 * If PKRU is enabled the default PKRU value has to be loaded into
228 	 * the hardware right here (similar to context switch).
229 	 */
230 	pkru_write_default();
231 }
232 
233 void flush_thread(void)
234 {
235 	struct task_struct *tsk = current;
236 
237 	flush_ptrace_hw_breakpoint(tsk);
238 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
239 
240 	fpu_flush_thread();
241 	pkru_flush_thread();
242 }
243 
244 void disable_TSC(void)
245 {
246 	preempt_disable();
247 	if (!test_and_set_thread_flag(TIF_NOTSC))
248 		/*
249 		 * Must flip the CPU state synchronously with
250 		 * TIF_NOTSC in the current running context.
251 		 */
252 		cr4_set_bits(X86_CR4_TSD);
253 	preempt_enable();
254 }
255 
256 static void enable_TSC(void)
257 {
258 	preempt_disable();
259 	if (test_and_clear_thread_flag(TIF_NOTSC))
260 		/*
261 		 * Must flip the CPU state synchronously with
262 		 * TIF_NOTSC in the current running context.
263 		 */
264 		cr4_clear_bits(X86_CR4_TSD);
265 	preempt_enable();
266 }
267 
268 int get_tsc_mode(unsigned long adr)
269 {
270 	unsigned int val;
271 
272 	if (test_thread_flag(TIF_NOTSC))
273 		val = PR_TSC_SIGSEGV;
274 	else
275 		val = PR_TSC_ENABLE;
276 
277 	return put_user(val, (unsigned int __user *)adr);
278 }
279 
280 int set_tsc_mode(unsigned int val)
281 {
282 	if (val == PR_TSC_SIGSEGV)
283 		disable_TSC();
284 	else if (val == PR_TSC_ENABLE)
285 		enable_TSC();
286 	else
287 		return -EINVAL;
288 
289 	return 0;
290 }
291 
292 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
293 
294 static void set_cpuid_faulting(bool on)
295 {
296 	u64 msrval;
297 
298 	msrval = this_cpu_read(msr_misc_features_shadow);
299 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
300 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
301 	this_cpu_write(msr_misc_features_shadow, msrval);
302 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
303 }
304 
305 static void disable_cpuid(void)
306 {
307 	preempt_disable();
308 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
309 		/*
310 		 * Must flip the CPU state synchronously with
311 		 * TIF_NOCPUID in the current running context.
312 		 */
313 		set_cpuid_faulting(true);
314 	}
315 	preempt_enable();
316 }
317 
318 static void enable_cpuid(void)
319 {
320 	preempt_disable();
321 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
322 		/*
323 		 * Must flip the CPU state synchronously with
324 		 * TIF_NOCPUID in the current running context.
325 		 */
326 		set_cpuid_faulting(false);
327 	}
328 	preempt_enable();
329 }
330 
331 static int get_cpuid_mode(void)
332 {
333 	return !test_thread_flag(TIF_NOCPUID);
334 }
335 
336 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
337 {
338 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
339 		return -ENODEV;
340 
341 	if (cpuid_enabled)
342 		enable_cpuid();
343 	else
344 		disable_cpuid();
345 
346 	return 0;
347 }
348 
349 /*
350  * Called immediately after a successful exec.
351  */
352 void arch_setup_new_exec(void)
353 {
354 	/* If cpuid was previously disabled for this task, re-enable it. */
355 	if (test_thread_flag(TIF_NOCPUID))
356 		enable_cpuid();
357 
358 	/*
359 	 * Don't inherit TIF_SSBD across exec boundary when
360 	 * PR_SPEC_DISABLE_NOEXEC is used.
361 	 */
362 	if (test_thread_flag(TIF_SSBD) &&
363 	    task_spec_ssb_noexec(current)) {
364 		clear_thread_flag(TIF_SSBD);
365 		task_clear_spec_ssb_disable(current);
366 		task_clear_spec_ssb_noexec(current);
367 		speculation_ctrl_update(task_thread_info(current)->flags);
368 	}
369 }
370 
371 #ifdef CONFIG_X86_IOPL_IOPERM
372 static inline void switch_to_bitmap(unsigned long tifp)
373 {
374 	/*
375 	 * Invalidate I/O bitmap if the previous task used it. This prevents
376 	 * any possible leakage of an active I/O bitmap.
377 	 *
378 	 * If the next task has an I/O bitmap it will handle it on exit to
379 	 * user mode.
380 	 */
381 	if (tifp & _TIF_IO_BITMAP)
382 		tss_invalidate_io_bitmap();
383 }
384 
385 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
386 {
387 	/*
388 	 * Copy at least the byte range of the incoming tasks bitmap which
389 	 * covers the permitted I/O ports.
390 	 *
391 	 * If the previous task which used an I/O bitmap had more bits
392 	 * permitted, then the copy needs to cover those as well so they
393 	 * get turned off.
394 	 */
395 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
396 	       max(tss->io_bitmap.prev_max, iobm->max));
397 
398 	/*
399 	 * Store the new max and the sequence number of this bitmap
400 	 * and a pointer to the bitmap itself.
401 	 */
402 	tss->io_bitmap.prev_max = iobm->max;
403 	tss->io_bitmap.prev_sequence = iobm->sequence;
404 }
405 
406 /**
407  * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
408  */
409 void native_tss_update_io_bitmap(void)
410 {
411 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
412 	struct thread_struct *t = &current->thread;
413 	u16 *base = &tss->x86_tss.io_bitmap_base;
414 
415 	if (!test_thread_flag(TIF_IO_BITMAP)) {
416 		native_tss_invalidate_io_bitmap();
417 		return;
418 	}
419 
420 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
421 		*base = IO_BITMAP_OFFSET_VALID_ALL;
422 	} else {
423 		struct io_bitmap *iobm = t->io_bitmap;
424 
425 		/*
426 		 * Only copy bitmap data when the sequence number differs. The
427 		 * update time is accounted to the incoming task.
428 		 */
429 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
430 			tss_copy_io_bitmap(tss, iobm);
431 
432 		/* Enable the bitmap */
433 		*base = IO_BITMAP_OFFSET_VALID_MAP;
434 	}
435 
436 	/*
437 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
438 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
439 	 * access from user space to trigger a #GP because tbe bitmap is outside
440 	 * the TSS limit.
441 	 */
442 	refresh_tss_limit();
443 }
444 #else /* CONFIG_X86_IOPL_IOPERM */
445 static inline void switch_to_bitmap(unsigned long tifp) { }
446 #endif
447 
448 #ifdef CONFIG_SMP
449 
450 struct ssb_state {
451 	struct ssb_state	*shared_state;
452 	raw_spinlock_t		lock;
453 	unsigned int		disable_state;
454 	unsigned long		local_state;
455 };
456 
457 #define LSTATE_SSB	0
458 
459 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
460 
461 void speculative_store_bypass_ht_init(void)
462 {
463 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
464 	unsigned int this_cpu = smp_processor_id();
465 	unsigned int cpu;
466 
467 	st->local_state = 0;
468 
469 	/*
470 	 * Shared state setup happens once on the first bringup
471 	 * of the CPU. It's not destroyed on CPU hotunplug.
472 	 */
473 	if (st->shared_state)
474 		return;
475 
476 	raw_spin_lock_init(&st->lock);
477 
478 	/*
479 	 * Go over HT siblings and check whether one of them has set up the
480 	 * shared state pointer already.
481 	 */
482 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
483 		if (cpu == this_cpu)
484 			continue;
485 
486 		if (!per_cpu(ssb_state, cpu).shared_state)
487 			continue;
488 
489 		/* Link it to the state of the sibling: */
490 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
491 		return;
492 	}
493 
494 	/*
495 	 * First HT sibling to come up on the core.  Link shared state of
496 	 * the first HT sibling to itself. The siblings on the same core
497 	 * which come up later will see the shared state pointer and link
498 	 * themselves to the state of this CPU.
499 	 */
500 	st->shared_state = st;
501 }
502 
503 /*
504  * Logic is: First HT sibling enables SSBD for both siblings in the core
505  * and last sibling to disable it, disables it for the whole core. This how
506  * MSR_SPEC_CTRL works in "hardware":
507  *
508  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
509  */
510 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
511 {
512 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
513 	u64 msr = x86_amd_ls_cfg_base;
514 
515 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
516 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
517 		wrmsrl(MSR_AMD64_LS_CFG, msr);
518 		return;
519 	}
520 
521 	if (tifn & _TIF_SSBD) {
522 		/*
523 		 * Since this can race with prctl(), block reentry on the
524 		 * same CPU.
525 		 */
526 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
527 			return;
528 
529 		msr |= x86_amd_ls_cfg_ssbd_mask;
530 
531 		raw_spin_lock(&st->shared_state->lock);
532 		/* First sibling enables SSBD: */
533 		if (!st->shared_state->disable_state)
534 			wrmsrl(MSR_AMD64_LS_CFG, msr);
535 		st->shared_state->disable_state++;
536 		raw_spin_unlock(&st->shared_state->lock);
537 	} else {
538 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
539 			return;
540 
541 		raw_spin_lock(&st->shared_state->lock);
542 		st->shared_state->disable_state--;
543 		if (!st->shared_state->disable_state)
544 			wrmsrl(MSR_AMD64_LS_CFG, msr);
545 		raw_spin_unlock(&st->shared_state->lock);
546 	}
547 }
548 #else
549 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
550 {
551 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
552 
553 	wrmsrl(MSR_AMD64_LS_CFG, msr);
554 }
555 #endif
556 
557 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
558 {
559 	/*
560 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
561 	 * so ssbd_tif_to_spec_ctrl() just works.
562 	 */
563 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
564 }
565 
566 /*
567  * Update the MSRs managing speculation control, during context switch.
568  *
569  * tifp: Previous task's thread flags
570  * tifn: Next task's thread flags
571  */
572 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
573 						      unsigned long tifn)
574 {
575 	unsigned long tif_diff = tifp ^ tifn;
576 	u64 msr = x86_spec_ctrl_base;
577 	bool updmsr = false;
578 
579 	lockdep_assert_irqs_disabled();
580 
581 	/* Handle change of TIF_SSBD depending on the mitigation method. */
582 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
583 		if (tif_diff & _TIF_SSBD)
584 			amd_set_ssb_virt_state(tifn);
585 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
586 		if (tif_diff & _TIF_SSBD)
587 			amd_set_core_ssb_state(tifn);
588 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
589 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
590 		updmsr |= !!(tif_diff & _TIF_SSBD);
591 		msr |= ssbd_tif_to_spec_ctrl(tifn);
592 	}
593 
594 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
595 	if (IS_ENABLED(CONFIG_SMP) &&
596 	    static_branch_unlikely(&switch_to_cond_stibp)) {
597 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
598 		msr |= stibp_tif_to_spec_ctrl(tifn);
599 	}
600 
601 	if (updmsr)
602 		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
603 }
604 
605 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
606 {
607 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
608 		if (task_spec_ssb_disable(tsk))
609 			set_tsk_thread_flag(tsk, TIF_SSBD);
610 		else
611 			clear_tsk_thread_flag(tsk, TIF_SSBD);
612 
613 		if (task_spec_ib_disable(tsk))
614 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
615 		else
616 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
617 	}
618 	/* Return the updated threadinfo flags*/
619 	return task_thread_info(tsk)->flags;
620 }
621 
622 void speculation_ctrl_update(unsigned long tif)
623 {
624 	unsigned long flags;
625 
626 	/* Forced update. Make sure all relevant TIF flags are different */
627 	local_irq_save(flags);
628 	__speculation_ctrl_update(~tif, tif);
629 	local_irq_restore(flags);
630 }
631 
632 /* Called from seccomp/prctl update */
633 void speculation_ctrl_update_current(void)
634 {
635 	preempt_disable();
636 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
637 	preempt_enable();
638 }
639 
640 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
641 {
642 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
643 
644 	newval = cr4 ^ mask;
645 	if (newval != cr4) {
646 		this_cpu_write(cpu_tlbstate.cr4, newval);
647 		__write_cr4(newval);
648 	}
649 }
650 
651 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
652 {
653 	unsigned long tifp, tifn;
654 
655 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
656 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
657 
658 	switch_to_bitmap(tifp);
659 
660 	propagate_user_return_notify(prev_p, next_p);
661 
662 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
663 	    arch_has_block_step()) {
664 		unsigned long debugctl, msk;
665 
666 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
667 		debugctl &= ~DEBUGCTLMSR_BTF;
668 		msk = tifn & _TIF_BLOCKSTEP;
669 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
670 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
671 	}
672 
673 	if ((tifp ^ tifn) & _TIF_NOTSC)
674 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
675 
676 	if ((tifp ^ tifn) & _TIF_NOCPUID)
677 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
678 
679 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
680 		__speculation_ctrl_update(tifp, tifn);
681 	} else {
682 		speculation_ctrl_update_tif(prev_p);
683 		tifn = speculation_ctrl_update_tif(next_p);
684 
685 		/* Enforce MSR update to ensure consistent state */
686 		__speculation_ctrl_update(~tifn, tifn);
687 	}
688 
689 	if ((tifp ^ tifn) & _TIF_SLD)
690 		switch_to_sld(tifn);
691 }
692 
693 /*
694  * Idle related variables and functions
695  */
696 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
697 EXPORT_SYMBOL(boot_option_idle_override);
698 
699 static void (*x86_idle)(void);
700 
701 #ifndef CONFIG_SMP
702 static inline void play_dead(void)
703 {
704 	BUG();
705 }
706 #endif
707 
708 void arch_cpu_idle_enter(void)
709 {
710 	tsc_verify_tsc_adjust(false);
711 	local_touch_nmi();
712 }
713 
714 void arch_cpu_idle_dead(void)
715 {
716 	play_dead();
717 }
718 
719 /*
720  * Called from the generic idle code.
721  */
722 void arch_cpu_idle(void)
723 {
724 	x86_idle();
725 }
726 
727 /*
728  * We use this if we don't have any better idle routine..
729  */
730 void __cpuidle default_idle(void)
731 {
732 	raw_safe_halt();
733 }
734 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
735 EXPORT_SYMBOL(default_idle);
736 #endif
737 
738 #ifdef CONFIG_XEN
739 bool xen_set_default_idle(void)
740 {
741 	bool ret = !!x86_idle;
742 
743 	x86_idle = default_idle;
744 
745 	return ret;
746 }
747 #endif
748 
749 void stop_this_cpu(void *dummy)
750 {
751 	local_irq_disable();
752 	/*
753 	 * Remove this CPU:
754 	 */
755 	set_cpu_online(smp_processor_id(), false);
756 	disable_local_APIC();
757 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
758 
759 	/*
760 	 * Use wbinvd on processors that support SME. This provides support
761 	 * for performing a successful kexec when going from SME inactive
762 	 * to SME active (or vice-versa). The cache must be cleared so that
763 	 * if there are entries with the same physical address, both with and
764 	 * without the encryption bit, they don't race each other when flushed
765 	 * and potentially end up with the wrong entry being committed to
766 	 * memory.
767 	 */
768 	if (boot_cpu_has(X86_FEATURE_SME))
769 		native_wbinvd();
770 	for (;;) {
771 		/*
772 		 * Use native_halt() so that memory contents don't change
773 		 * (stack usage and variables) after possibly issuing the
774 		 * native_wbinvd() above.
775 		 */
776 		native_halt();
777 	}
778 }
779 
780 /*
781  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
782  * states (local apic timer and TSC stop).
783  *
784  * XXX this function is completely buggered vs RCU and tracing.
785  */
786 static void amd_e400_idle(void)
787 {
788 	/*
789 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
790 	 * gets set after static_cpu_has() places have been converted via
791 	 * alternatives.
792 	 */
793 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
794 		default_idle();
795 		return;
796 	}
797 
798 	tick_broadcast_enter();
799 
800 	default_idle();
801 
802 	/*
803 	 * The switch back from broadcast mode needs to be called with
804 	 * interrupts disabled.
805 	 */
806 	raw_local_irq_disable();
807 	tick_broadcast_exit();
808 	raw_local_irq_enable();
809 }
810 
811 /*
812  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
813  * We can't rely on cpuidle installing MWAIT, because it will not load
814  * on systems that support only C1 -- so the boot default must be MWAIT.
815  *
816  * Some AMD machines are the opposite, they depend on using HALT.
817  *
818  * So for default C1, which is used during boot until cpuidle loads,
819  * use MWAIT-C1 on Intel HW that has it, else use HALT.
820  */
821 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
822 {
823 	if (c->x86_vendor != X86_VENDOR_INTEL)
824 		return 0;
825 
826 	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
827 		return 0;
828 
829 	return 1;
830 }
831 
832 /*
833  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
834  * with interrupts enabled and no flags, which is backwards compatible with the
835  * original MWAIT implementation.
836  */
837 static __cpuidle void mwait_idle(void)
838 {
839 	if (!current_set_polling_and_test()) {
840 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
841 			mb(); /* quirk */
842 			clflush((void *)&current_thread_info()->flags);
843 			mb(); /* quirk */
844 		}
845 
846 		__monitor((void *)&current_thread_info()->flags, 0, 0);
847 		if (!need_resched())
848 			__sti_mwait(0, 0);
849 		else
850 			raw_local_irq_enable();
851 	} else {
852 		raw_local_irq_enable();
853 	}
854 	__current_clr_polling();
855 }
856 
857 void select_idle_routine(const struct cpuinfo_x86 *c)
858 {
859 #ifdef CONFIG_SMP
860 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
861 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
862 #endif
863 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
864 		return;
865 
866 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
867 		pr_info("using AMD E400 aware idle routine\n");
868 		x86_idle = amd_e400_idle;
869 	} else if (prefer_mwait_c1_over_halt(c)) {
870 		pr_info("using mwait in idle threads\n");
871 		x86_idle = mwait_idle;
872 	} else
873 		x86_idle = default_idle;
874 }
875 
876 void amd_e400_c1e_apic_setup(void)
877 {
878 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
879 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
880 		local_irq_disable();
881 		tick_broadcast_force();
882 		local_irq_enable();
883 	}
884 }
885 
886 void __init arch_post_acpi_subsys_init(void)
887 {
888 	u32 lo, hi;
889 
890 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
891 		return;
892 
893 	/*
894 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
895 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
896 	 * MSR_K8_INT_PENDING_MSG.
897 	 */
898 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
899 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
900 		return;
901 
902 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
903 
904 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
905 		mark_tsc_unstable("TSC halt in AMD C1E");
906 	pr_info("System has AMD C1E enabled\n");
907 }
908 
909 static int __init idle_setup(char *str)
910 {
911 	if (!str)
912 		return -EINVAL;
913 
914 	if (!strcmp(str, "poll")) {
915 		pr_info("using polling idle threads\n");
916 		boot_option_idle_override = IDLE_POLL;
917 		cpu_idle_poll_ctrl(true);
918 	} else if (!strcmp(str, "halt")) {
919 		/*
920 		 * When the boot option of idle=halt is added, halt is
921 		 * forced to be used for CPU idle. In such case CPU C2/C3
922 		 * won't be used again.
923 		 * To continue to load the CPU idle driver, don't touch
924 		 * the boot_option_idle_override.
925 		 */
926 		x86_idle = default_idle;
927 		boot_option_idle_override = IDLE_HALT;
928 	} else if (!strcmp(str, "nomwait")) {
929 		/*
930 		 * If the boot option of "idle=nomwait" is added,
931 		 * it means that mwait will be disabled for CPU C2/C3
932 		 * states. In such case it won't touch the variable
933 		 * of boot_option_idle_override.
934 		 */
935 		boot_option_idle_override = IDLE_NOMWAIT;
936 	} else
937 		return -1;
938 
939 	return 0;
940 }
941 early_param("idle", idle_setup);
942 
943 unsigned long arch_align_stack(unsigned long sp)
944 {
945 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
946 		sp -= get_random_int() % 8192;
947 	return sp & ~0xf;
948 }
949 
950 unsigned long arch_randomize_brk(struct mm_struct *mm)
951 {
952 	return randomize_page(mm->brk, 0x02000000);
953 }
954 
955 /*
956  * Called from fs/proc with a reference on @p to find the function
957  * which called into schedule(). This needs to be done carefully
958  * because the task might wake up and we might look at a stack
959  * changing under us.
960  */
961 unsigned long __get_wchan(struct task_struct *p)
962 {
963 	struct unwind_state state;
964 	unsigned long addr = 0;
965 
966 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
967 	     unwind_next_frame(&state)) {
968 		addr = unwind_get_return_address(&state);
969 		if (!addr)
970 			break;
971 		if (in_sched_functions(addr))
972 			continue;
973 		break;
974 	}
975 
976 	return addr;
977 }
978 
979 long do_arch_prctl_common(struct task_struct *task, int option,
980 			  unsigned long arg2)
981 {
982 	switch (option) {
983 	case ARCH_GET_CPUID:
984 		return get_cpuid_mode();
985 	case ARCH_SET_CPUID:
986 		return set_cpuid_mode(task, arg2);
987 	case ARCH_GET_XCOMP_SUPP:
988 	case ARCH_GET_XCOMP_PERM:
989 	case ARCH_REQ_XCOMP_PERM:
990 		return fpu_xstate_prctl(task, option, arg2);
991 	}
992 
993 	return -EINVAL;
994 }
995