1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <linux/stackprotector.h> 16 #include <linux/tick.h> 17 #include <linux/cpuidle.h> 18 #include <trace/events/power.h> 19 #include <linux/hw_breakpoint.h> 20 #include <asm/cpu.h> 21 #include <asm/apic.h> 22 #include <asm/syscalls.h> 23 #include <asm/idle.h> 24 #include <asm/uaccess.h> 25 #include <asm/i387.h> 26 #include <asm/fpu-internal.h> 27 #include <asm/debugreg.h> 28 #include <asm/nmi.h> 29 30 #ifdef CONFIG_X86_64 31 static DEFINE_PER_CPU(unsigned char, is_idle); 32 static ATOMIC_NOTIFIER_HEAD(idle_notifier); 33 34 void idle_notifier_register(struct notifier_block *n) 35 { 36 atomic_notifier_chain_register(&idle_notifier, n); 37 } 38 EXPORT_SYMBOL_GPL(idle_notifier_register); 39 40 void idle_notifier_unregister(struct notifier_block *n) 41 { 42 atomic_notifier_chain_unregister(&idle_notifier, n); 43 } 44 EXPORT_SYMBOL_GPL(idle_notifier_unregister); 45 #endif 46 47 struct kmem_cache *task_xstate_cachep; 48 EXPORT_SYMBOL_GPL(task_xstate_cachep); 49 50 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 51 { 52 int ret; 53 54 *dst = *src; 55 if (fpu_allocated(&src->thread.fpu)) { 56 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); 57 ret = fpu_alloc(&dst->thread.fpu); 58 if (ret) 59 return ret; 60 fpu_copy(&dst->thread.fpu, &src->thread.fpu); 61 } 62 return 0; 63 } 64 65 void free_thread_xstate(struct task_struct *tsk) 66 { 67 fpu_free(&tsk->thread.fpu); 68 } 69 70 void free_thread_info(struct thread_info *ti) 71 { 72 free_thread_xstate(ti->task); 73 free_pages((unsigned long)ti, THREAD_ORDER); 74 } 75 76 void arch_task_cache_init(void) 77 { 78 task_xstate_cachep = 79 kmem_cache_create("task_xstate", xstate_size, 80 __alignof__(union thread_xstate), 81 SLAB_PANIC | SLAB_NOTRACK, NULL); 82 } 83 84 /* 85 * Free current thread data structures etc.. 86 */ 87 void exit_thread(void) 88 { 89 struct task_struct *me = current; 90 struct thread_struct *t = &me->thread; 91 unsigned long *bp = t->io_bitmap_ptr; 92 93 if (bp) { 94 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 95 96 t->io_bitmap_ptr = NULL; 97 clear_thread_flag(TIF_IO_BITMAP); 98 /* 99 * Careful, clear this in the TSS too: 100 */ 101 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 102 t->io_bitmap_max = 0; 103 put_cpu(); 104 kfree(bp); 105 } 106 } 107 108 void show_regs(struct pt_regs *regs) 109 { 110 show_registers(regs); 111 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0); 112 } 113 114 void show_regs_common(void) 115 { 116 const char *vendor, *product, *board; 117 118 vendor = dmi_get_system_info(DMI_SYS_VENDOR); 119 if (!vendor) 120 vendor = ""; 121 product = dmi_get_system_info(DMI_PRODUCT_NAME); 122 if (!product) 123 product = ""; 124 125 /* Board Name is optional */ 126 board = dmi_get_system_info(DMI_BOARD_NAME); 127 128 printk(KERN_CONT "\n"); 129 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s", 130 current->pid, current->comm, print_tainted(), 131 init_utsname()->release, 132 (int)strcspn(init_utsname()->version, " "), 133 init_utsname()->version); 134 printk(KERN_CONT " %s %s", vendor, product); 135 if (board) 136 printk(KERN_CONT "/%s", board); 137 printk(KERN_CONT "\n"); 138 } 139 140 void flush_thread(void) 141 { 142 struct task_struct *tsk = current; 143 144 flush_ptrace_hw_breakpoint(tsk); 145 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 146 /* 147 * Forget coprocessor state.. 148 */ 149 tsk->fpu_counter = 0; 150 clear_fpu(tsk); 151 clear_used_math(); 152 } 153 154 static void hard_disable_TSC(void) 155 { 156 write_cr4(read_cr4() | X86_CR4_TSD); 157 } 158 159 void disable_TSC(void) 160 { 161 preempt_disable(); 162 if (!test_and_set_thread_flag(TIF_NOTSC)) 163 /* 164 * Must flip the CPU state synchronously with 165 * TIF_NOTSC in the current running context. 166 */ 167 hard_disable_TSC(); 168 preempt_enable(); 169 } 170 171 static void hard_enable_TSC(void) 172 { 173 write_cr4(read_cr4() & ~X86_CR4_TSD); 174 } 175 176 static void enable_TSC(void) 177 { 178 preempt_disable(); 179 if (test_and_clear_thread_flag(TIF_NOTSC)) 180 /* 181 * Must flip the CPU state synchronously with 182 * TIF_NOTSC in the current running context. 183 */ 184 hard_enable_TSC(); 185 preempt_enable(); 186 } 187 188 int get_tsc_mode(unsigned long adr) 189 { 190 unsigned int val; 191 192 if (test_thread_flag(TIF_NOTSC)) 193 val = PR_TSC_SIGSEGV; 194 else 195 val = PR_TSC_ENABLE; 196 197 return put_user(val, (unsigned int __user *)adr); 198 } 199 200 int set_tsc_mode(unsigned int val) 201 { 202 if (val == PR_TSC_SIGSEGV) 203 disable_TSC(); 204 else if (val == PR_TSC_ENABLE) 205 enable_TSC(); 206 else 207 return -EINVAL; 208 209 return 0; 210 } 211 212 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 213 struct tss_struct *tss) 214 { 215 struct thread_struct *prev, *next; 216 217 prev = &prev_p->thread; 218 next = &next_p->thread; 219 220 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 221 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 222 unsigned long debugctl = get_debugctlmsr(); 223 224 debugctl &= ~DEBUGCTLMSR_BTF; 225 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 226 debugctl |= DEBUGCTLMSR_BTF; 227 228 update_debugctlmsr(debugctl); 229 } 230 231 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 232 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 233 /* prev and next are different */ 234 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 235 hard_disable_TSC(); 236 else 237 hard_enable_TSC(); 238 } 239 240 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 241 /* 242 * Copy the relevant range of the IO bitmap. 243 * Normally this is 128 bytes or less: 244 */ 245 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 246 max(prev->io_bitmap_max, next->io_bitmap_max)); 247 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 248 /* 249 * Clear any possible leftover bits: 250 */ 251 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 252 } 253 propagate_user_return_notify(prev_p, next_p); 254 } 255 256 int sys_fork(struct pt_regs *regs) 257 { 258 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 259 } 260 261 /* 262 * This is trivial, and on the face of it looks like it 263 * could equally well be done in user mode. 264 * 265 * Not so, for quite unobvious reasons - register pressure. 266 * In user mode vfork() cannot have a stack frame, and if 267 * done by calling the "clone()" system call directly, you 268 * do not have enough call-clobbered registers to hold all 269 * the information you need. 270 */ 271 int sys_vfork(struct pt_regs *regs) 272 { 273 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 274 NULL, NULL); 275 } 276 277 long 278 sys_clone(unsigned long clone_flags, unsigned long newsp, 279 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 280 { 281 if (!newsp) 282 newsp = regs->sp; 283 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 284 } 285 286 /* 287 * This gets run with %si containing the 288 * function to call, and %di containing 289 * the "args". 290 */ 291 extern void kernel_thread_helper(void); 292 293 /* 294 * Create a kernel thread 295 */ 296 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 297 { 298 struct pt_regs regs; 299 300 memset(®s, 0, sizeof(regs)); 301 302 regs.si = (unsigned long) fn; 303 regs.di = (unsigned long) arg; 304 305 #ifdef CONFIG_X86_32 306 regs.ds = __USER_DS; 307 regs.es = __USER_DS; 308 regs.fs = __KERNEL_PERCPU; 309 regs.gs = __KERNEL_STACK_CANARY; 310 #else 311 regs.ss = __KERNEL_DS; 312 #endif 313 314 regs.orig_ax = -1; 315 regs.ip = (unsigned long) kernel_thread_helper; 316 regs.cs = __KERNEL_CS | get_kernel_rpl(); 317 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1; 318 319 /* Ok, create the new process.. */ 320 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 321 } 322 EXPORT_SYMBOL(kernel_thread); 323 324 /* 325 * sys_execve() executes a new program. 326 */ 327 long sys_execve(const char __user *name, 328 const char __user *const __user *argv, 329 const char __user *const __user *envp, struct pt_regs *regs) 330 { 331 long error; 332 char *filename; 333 334 filename = getname(name); 335 error = PTR_ERR(filename); 336 if (IS_ERR(filename)) 337 return error; 338 error = do_execve(filename, argv, envp, regs); 339 340 #ifdef CONFIG_X86_32 341 if (error == 0) { 342 /* Make sure we don't return using sysenter.. */ 343 set_thread_flag(TIF_IRET); 344 } 345 #endif 346 347 putname(filename); 348 return error; 349 } 350 351 /* 352 * Idle related variables and functions 353 */ 354 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 355 EXPORT_SYMBOL(boot_option_idle_override); 356 357 /* 358 * Powermanagement idle function, if any.. 359 */ 360 void (*pm_idle)(void); 361 #ifdef CONFIG_APM_MODULE 362 EXPORT_SYMBOL(pm_idle); 363 #endif 364 365 #ifdef CONFIG_X86_32 366 /* 367 * This halt magic was a workaround for ancient floppy DMA 368 * wreckage. It should be safe to remove. 369 */ 370 static int hlt_counter; 371 void disable_hlt(void) 372 { 373 hlt_counter++; 374 } 375 EXPORT_SYMBOL(disable_hlt); 376 377 void enable_hlt(void) 378 { 379 hlt_counter--; 380 } 381 EXPORT_SYMBOL(enable_hlt); 382 383 static inline int hlt_use_halt(void) 384 { 385 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 386 } 387 #else 388 static inline int hlt_use_halt(void) 389 { 390 return 1; 391 } 392 #endif 393 394 #ifndef CONFIG_SMP 395 static inline void play_dead(void) 396 { 397 BUG(); 398 } 399 #endif 400 401 #ifdef CONFIG_X86_64 402 void enter_idle(void) 403 { 404 percpu_write(is_idle, 1); 405 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); 406 } 407 408 static void __exit_idle(void) 409 { 410 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) 411 return; 412 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); 413 } 414 415 /* Called from interrupts to signify idle end */ 416 void exit_idle(void) 417 { 418 /* idle loop has pid 0 */ 419 if (current->pid) 420 return; 421 __exit_idle(); 422 } 423 #endif 424 425 /* 426 * The idle thread. There's no useful work to be 427 * done, so just try to conserve power and have a 428 * low exit latency (ie sit in a loop waiting for 429 * somebody to say that they'd like to reschedule) 430 */ 431 void cpu_idle(void) 432 { 433 /* 434 * If we're the non-boot CPU, nothing set the stack canary up 435 * for us. CPU0 already has it initialized but no harm in 436 * doing it again. This is a good place for updating it, as 437 * we wont ever return from this function (so the invalid 438 * canaries already on the stack wont ever trigger). 439 */ 440 boot_init_stack_canary(); 441 current_thread_info()->status |= TS_POLLING; 442 443 while (1) { 444 tick_nohz_idle_enter(); 445 446 while (!need_resched()) { 447 rmb(); 448 449 if (cpu_is_offline(smp_processor_id())) 450 play_dead(); 451 452 /* 453 * Idle routines should keep interrupts disabled 454 * from here on, until they go to idle. 455 * Otherwise, idle callbacks can misfire. 456 */ 457 local_touch_nmi(); 458 local_irq_disable(); 459 460 enter_idle(); 461 462 /* Don't trace irqs off for idle */ 463 stop_critical_timings(); 464 465 /* enter_idle() needs rcu for notifiers */ 466 rcu_idle_enter(); 467 468 if (cpuidle_idle_call()) 469 pm_idle(); 470 471 rcu_idle_exit(); 472 start_critical_timings(); 473 474 /* In many cases the interrupt that ended idle 475 has already called exit_idle. But some idle 476 loops can be woken up without interrupt. */ 477 __exit_idle(); 478 } 479 480 tick_nohz_idle_exit(); 481 preempt_enable_no_resched(); 482 schedule(); 483 preempt_disable(); 484 } 485 } 486 487 /* 488 * We use this if we don't have any better 489 * idle routine.. 490 */ 491 void default_idle(void) 492 { 493 if (hlt_use_halt()) { 494 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id()); 495 trace_cpu_idle_rcuidle(1, smp_processor_id()); 496 current_thread_info()->status &= ~TS_POLLING; 497 /* 498 * TS_POLLING-cleared state must be visible before we 499 * test NEED_RESCHED: 500 */ 501 smp_mb(); 502 503 if (!need_resched()) 504 safe_halt(); /* enables interrupts racelessly */ 505 else 506 local_irq_enable(); 507 current_thread_info()->status |= TS_POLLING; 508 trace_power_end_rcuidle(smp_processor_id()); 509 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 510 } else { 511 local_irq_enable(); 512 /* loop is done by the caller */ 513 cpu_relax(); 514 } 515 } 516 #ifdef CONFIG_APM_MODULE 517 EXPORT_SYMBOL(default_idle); 518 #endif 519 520 bool set_pm_idle_to_default(void) 521 { 522 bool ret = !!pm_idle; 523 524 pm_idle = default_idle; 525 526 return ret; 527 } 528 void stop_this_cpu(void *dummy) 529 { 530 local_irq_disable(); 531 /* 532 * Remove this CPU: 533 */ 534 set_cpu_online(smp_processor_id(), false); 535 disable_local_APIC(); 536 537 for (;;) { 538 if (hlt_works(smp_processor_id())) 539 halt(); 540 } 541 } 542 543 static void do_nothing(void *unused) 544 { 545 } 546 547 /* 548 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 549 * pm_idle and update to new pm_idle value. Required while changing pm_idle 550 * handler on SMP systems. 551 * 552 * Caller must have changed pm_idle to the new value before the call. Old 553 * pm_idle value will not be used by any CPU after the return of this function. 554 */ 555 void cpu_idle_wait(void) 556 { 557 smp_mb(); 558 /* kick all the CPUs so that they exit out of pm_idle */ 559 smp_call_function(do_nothing, NULL, 1); 560 } 561 EXPORT_SYMBOL_GPL(cpu_idle_wait); 562 563 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 564 static void mwait_idle(void) 565 { 566 if (!need_resched()) { 567 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id()); 568 trace_cpu_idle_rcuidle(1, smp_processor_id()); 569 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR)) 570 clflush((void *)¤t_thread_info()->flags); 571 572 __monitor((void *)¤t_thread_info()->flags, 0, 0); 573 smp_mb(); 574 if (!need_resched()) 575 __sti_mwait(0, 0); 576 else 577 local_irq_enable(); 578 trace_power_end_rcuidle(smp_processor_id()); 579 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 580 } else 581 local_irq_enable(); 582 } 583 584 /* 585 * On SMP it's slightly faster (but much more power-consuming!) 586 * to poll the ->work.need_resched flag instead of waiting for the 587 * cross-CPU IPI to arrive. Use this option with caution. 588 */ 589 static void poll_idle(void) 590 { 591 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id()); 592 trace_cpu_idle_rcuidle(0, smp_processor_id()); 593 local_irq_enable(); 594 while (!need_resched()) 595 cpu_relax(); 596 trace_power_end_rcuidle(smp_processor_id()); 597 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 598 } 599 600 /* 601 * mwait selection logic: 602 * 603 * It depends on the CPU. For AMD CPUs that support MWAIT this is 604 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 605 * then depend on a clock divisor and current Pstate of the core. If 606 * all cores of a processor are in halt state (C1) the processor can 607 * enter the C1E (C1 enhanced) state. If mwait is used this will never 608 * happen. 609 * 610 * idle=mwait overrides this decision and forces the usage of mwait. 611 */ 612 613 #define MWAIT_INFO 0x05 614 #define MWAIT_ECX_EXTENDED_INFO 0x01 615 #define MWAIT_EDX_C1 0xf0 616 617 int mwait_usable(const struct cpuinfo_x86 *c) 618 { 619 u32 eax, ebx, ecx, edx; 620 621 if (boot_option_idle_override == IDLE_FORCE_MWAIT) 622 return 1; 623 624 if (c->cpuid_level < MWAIT_INFO) 625 return 0; 626 627 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 628 /* Check, whether EDX has extended info about MWAIT */ 629 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 630 return 1; 631 632 /* 633 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 634 * C1 supports MWAIT 635 */ 636 return (edx & MWAIT_EDX_C1); 637 } 638 639 bool amd_e400_c1e_detected; 640 EXPORT_SYMBOL(amd_e400_c1e_detected); 641 642 static cpumask_var_t amd_e400_c1e_mask; 643 644 void amd_e400_remove_cpu(int cpu) 645 { 646 if (amd_e400_c1e_mask != NULL) 647 cpumask_clear_cpu(cpu, amd_e400_c1e_mask); 648 } 649 650 /* 651 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt 652 * pending message MSR. If we detect C1E, then we handle it the same 653 * way as C3 power states (local apic timer and TSC stop) 654 */ 655 static void amd_e400_idle(void) 656 { 657 if (need_resched()) 658 return; 659 660 if (!amd_e400_c1e_detected) { 661 u32 lo, hi; 662 663 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 664 665 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 666 amd_e400_c1e_detected = true; 667 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 668 mark_tsc_unstable("TSC halt in AMD C1E"); 669 printk(KERN_INFO "System has AMD C1E enabled\n"); 670 } 671 } 672 673 if (amd_e400_c1e_detected) { 674 int cpu = smp_processor_id(); 675 676 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { 677 cpumask_set_cpu(cpu, amd_e400_c1e_mask); 678 /* 679 * Force broadcast so ACPI can not interfere. 680 */ 681 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 682 &cpu); 683 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 684 cpu); 685 } 686 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 687 688 default_idle(); 689 690 /* 691 * The switch back from broadcast mode needs to be 692 * called with interrupts disabled. 693 */ 694 local_irq_disable(); 695 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 696 local_irq_enable(); 697 } else 698 default_idle(); 699 } 700 701 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 702 { 703 #ifdef CONFIG_SMP 704 if (pm_idle == poll_idle && smp_num_siblings > 1) { 705 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," 706 " performance may degrade.\n"); 707 } 708 #endif 709 if (pm_idle) 710 return; 711 712 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 713 /* 714 * One CPU supports mwait => All CPUs supports mwait 715 */ 716 printk(KERN_INFO "using mwait in idle threads.\n"); 717 pm_idle = mwait_idle; 718 } else if (cpu_has_amd_erratum(amd_erratum_400)) { 719 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 720 printk(KERN_INFO "using AMD E400 aware idle routine\n"); 721 pm_idle = amd_e400_idle; 722 } else 723 pm_idle = default_idle; 724 } 725 726 void __init init_amd_e400_c1e_mask(void) 727 { 728 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ 729 if (pm_idle == amd_e400_idle) 730 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); 731 } 732 733 static int __init idle_setup(char *str) 734 { 735 if (!str) 736 return -EINVAL; 737 738 if (!strcmp(str, "poll")) { 739 printk("using polling idle threads.\n"); 740 pm_idle = poll_idle; 741 boot_option_idle_override = IDLE_POLL; 742 } else if (!strcmp(str, "mwait")) { 743 boot_option_idle_override = IDLE_FORCE_MWAIT; 744 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n"); 745 } else if (!strcmp(str, "halt")) { 746 /* 747 * When the boot option of idle=halt is added, halt is 748 * forced to be used for CPU idle. In such case CPU C2/C3 749 * won't be used again. 750 * To continue to load the CPU idle driver, don't touch 751 * the boot_option_idle_override. 752 */ 753 pm_idle = default_idle; 754 boot_option_idle_override = IDLE_HALT; 755 } else if (!strcmp(str, "nomwait")) { 756 /* 757 * If the boot option of "idle=nomwait" is added, 758 * it means that mwait will be disabled for CPU C2/C3 759 * states. In such case it won't touch the variable 760 * of boot_option_idle_override. 761 */ 762 boot_option_idle_override = IDLE_NOMWAIT; 763 } else 764 return -1; 765 766 return 0; 767 } 768 early_param("idle", idle_setup); 769 770 unsigned long arch_align_stack(unsigned long sp) 771 { 772 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 773 sp -= get_random_int() % 8192; 774 return sp & ~0xf; 775 } 776 777 unsigned long arch_randomize_brk(struct mm_struct *mm) 778 { 779 unsigned long range_end = mm->brk + 0x02000000; 780 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 781 } 782 783