1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/cpu.h> 9 #include <linux/prctl.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 12 #include <linux/sched/idle.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/init.h> 17 #include <linux/export.h> 18 #include <linux/pm.h> 19 #include <linux/tick.h> 20 #include <linux/random.h> 21 #include <linux/user-return-notifier.h> 22 #include <linux/dmi.h> 23 #include <linux/utsname.h> 24 #include <linux/stackprotector.h> 25 #include <linux/cpuidle.h> 26 #include <linux/acpi.h> 27 #include <linux/elf-randomize.h> 28 #include <linux/static_call.h> 29 #include <trace/events/power.h> 30 #include <linux/hw_breakpoint.h> 31 #include <linux/entry-common.h> 32 #include <asm/cpu.h> 33 #include <asm/cpuid.h> 34 #include <asm/apic.h> 35 #include <linux/uaccess.h> 36 #include <asm/mwait.h> 37 #include <asm/fpu/api.h> 38 #include <asm/fpu/sched.h> 39 #include <asm/fpu/xstate.h> 40 #include <asm/debugreg.h> 41 #include <asm/nmi.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mce.h> 44 #include <asm/vm86.h> 45 #include <asm/switch_to.h> 46 #include <asm/desc.h> 47 #include <asm/prctl.h> 48 #include <asm/spec-ctrl.h> 49 #include <asm/io_bitmap.h> 50 #include <asm/proto.h> 51 #include <asm/frame.h> 52 #include <asm/unwind.h> 53 #include <asm/tdx.h> 54 #include <asm/mmu_context.h> 55 #include <asm/shstk.h> 56 57 #include "process.h" 58 59 /* 60 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 61 * no more per-task TSS's. The TSS size is kept cacheline-aligned 62 * so they are allowed to end up in the .data..cacheline_aligned 63 * section. Since TSS's are completely CPU-local, we want them 64 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 65 */ 66 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 67 .x86_tss = { 68 /* 69 * .sp0 is only used when entering ring 0 from a lower 70 * privilege level. Since the init task never runs anything 71 * but ring 0 code, there is no need for a valid value here. 72 * Poison it. 73 */ 74 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 75 76 #ifdef CONFIG_X86_32 77 .sp1 = TOP_OF_INIT_STACK, 78 79 .ss0 = __KERNEL_DS, 80 .ss1 = __KERNEL_CS, 81 #endif 82 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 83 }, 84 }; 85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 86 87 DEFINE_PER_CPU(bool, __tss_limit_invalid); 88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 89 90 /* 91 * this gets called so that we can store lazy state into memory and copy the 92 * current task into the new thread. 93 */ 94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 95 { 96 /* init_task is not dynamically sized (incomplete FPU state) */ 97 if (unlikely(src == &init_task)) 98 memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(init_task), 0); 99 else 100 memcpy(dst, src, arch_task_struct_size); 101 102 #ifdef CONFIG_VM86 103 dst->thread.vm86 = NULL; 104 #endif 105 /* Drop the copied pointer to current's fpstate */ 106 dst->thread.fpu.fpstate = NULL; 107 108 return 0; 109 } 110 111 #ifdef CONFIG_X86_64 112 void arch_release_task_struct(struct task_struct *tsk) 113 { 114 if (fpu_state_size_dynamic()) 115 fpstate_free(&tsk->thread.fpu); 116 } 117 #endif 118 119 /* 120 * Free thread data structures etc.. 121 */ 122 void exit_thread(struct task_struct *tsk) 123 { 124 struct thread_struct *t = &tsk->thread; 125 struct fpu *fpu = &t->fpu; 126 127 if (test_thread_flag(TIF_IO_BITMAP)) 128 io_bitmap_exit(tsk); 129 130 free_vm86(t); 131 132 shstk_free(tsk); 133 fpu__drop(fpu); 134 } 135 136 static int set_new_tls(struct task_struct *p, unsigned long tls) 137 { 138 struct user_desc __user *utls = (struct user_desc __user *)tls; 139 140 if (in_ia32_syscall()) 141 return do_set_thread_area(p, -1, utls, 0); 142 else 143 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 144 } 145 146 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs, 147 int (*fn)(void *), void *fn_arg) 148 { 149 schedule_tail(prev); 150 151 /* Is this a kernel thread? */ 152 if (unlikely(fn)) { 153 fn(fn_arg); 154 /* 155 * A kernel thread is allowed to return here after successfully 156 * calling kernel_execve(). Exit to userspace to complete the 157 * execve() syscall. 158 */ 159 regs->ax = 0; 160 } 161 162 syscall_exit_to_user_mode(regs); 163 } 164 165 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 166 { 167 unsigned long clone_flags = args->flags; 168 unsigned long sp = args->stack; 169 unsigned long tls = args->tls; 170 struct inactive_task_frame *frame; 171 struct fork_frame *fork_frame; 172 struct pt_regs *childregs; 173 unsigned long new_ssp; 174 int ret = 0; 175 176 childregs = task_pt_regs(p); 177 fork_frame = container_of(childregs, struct fork_frame, regs); 178 frame = &fork_frame->frame; 179 180 frame->bp = encode_frame_pointer(childregs); 181 frame->ret_addr = (unsigned long) ret_from_fork_asm; 182 p->thread.sp = (unsigned long) fork_frame; 183 p->thread.io_bitmap = NULL; 184 p->thread.iopl_warn = 0; 185 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 186 187 #ifdef CONFIG_X86_64 188 current_save_fsgs(); 189 p->thread.fsindex = current->thread.fsindex; 190 p->thread.fsbase = current->thread.fsbase; 191 p->thread.gsindex = current->thread.gsindex; 192 p->thread.gsbase = current->thread.gsbase; 193 194 savesegment(es, p->thread.es); 195 savesegment(ds, p->thread.ds); 196 197 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM) 198 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags); 199 #else 200 p->thread.sp0 = (unsigned long) (childregs + 1); 201 savesegment(gs, p->thread.gs); 202 /* 203 * Clear all status flags including IF and set fixed bit. 64bit 204 * does not have this initialization as the frame does not contain 205 * flags. The flags consistency (especially vs. AC) is there 206 * ensured via objtool, which lacks 32bit support. 207 */ 208 frame->flags = X86_EFLAGS_FIXED; 209 #endif 210 211 /* 212 * Allocate a new shadow stack for thread if needed. If shadow stack, 213 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to 214 * update it. 215 */ 216 new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size); 217 if (IS_ERR_VALUE(new_ssp)) 218 return PTR_ERR((void *)new_ssp); 219 220 fpu_clone(p, clone_flags, args->fn, new_ssp); 221 222 /* Kernel thread ? */ 223 if (unlikely(p->flags & PF_KTHREAD)) { 224 p->thread.pkru = pkru_get_init_value(); 225 memset(childregs, 0, sizeof(struct pt_regs)); 226 kthread_frame_init(frame, args->fn, args->fn_arg); 227 return 0; 228 } 229 230 /* 231 * Clone current's PKRU value from hardware. tsk->thread.pkru 232 * is only valid when scheduled out. 233 */ 234 p->thread.pkru = read_pkru(); 235 236 frame->bx = 0; 237 *childregs = *current_pt_regs(); 238 childregs->ax = 0; 239 if (sp) 240 childregs->sp = sp; 241 242 if (unlikely(args->fn)) { 243 /* 244 * A user space thread, but it doesn't return to 245 * ret_after_fork(). 246 * 247 * In order to indicate that to tools like gdb, 248 * we reset the stack and instruction pointers. 249 * 250 * It does the same kernel frame setup to return to a kernel 251 * function that a kernel thread does. 252 */ 253 childregs->sp = 0; 254 childregs->ip = 0; 255 kthread_frame_init(frame, args->fn, args->fn_arg); 256 return 0; 257 } 258 259 /* Set a new TLS for the child thread? */ 260 if (clone_flags & CLONE_SETTLS) 261 ret = set_new_tls(p, tls); 262 263 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 264 io_bitmap_share(p); 265 266 return ret; 267 } 268 269 static void pkru_flush_thread(void) 270 { 271 /* 272 * If PKRU is enabled the default PKRU value has to be loaded into 273 * the hardware right here (similar to context switch). 274 */ 275 pkru_write_default(); 276 } 277 278 void flush_thread(void) 279 { 280 struct task_struct *tsk = current; 281 282 flush_ptrace_hw_breakpoint(tsk); 283 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 284 285 fpu_flush_thread(); 286 pkru_flush_thread(); 287 } 288 289 void disable_TSC(void) 290 { 291 preempt_disable(); 292 if (!test_and_set_thread_flag(TIF_NOTSC)) 293 /* 294 * Must flip the CPU state synchronously with 295 * TIF_NOTSC in the current running context. 296 */ 297 cr4_set_bits(X86_CR4_TSD); 298 preempt_enable(); 299 } 300 301 static void enable_TSC(void) 302 { 303 preempt_disable(); 304 if (test_and_clear_thread_flag(TIF_NOTSC)) 305 /* 306 * Must flip the CPU state synchronously with 307 * TIF_NOTSC in the current running context. 308 */ 309 cr4_clear_bits(X86_CR4_TSD); 310 preempt_enable(); 311 } 312 313 int get_tsc_mode(unsigned long adr) 314 { 315 unsigned int val; 316 317 if (test_thread_flag(TIF_NOTSC)) 318 val = PR_TSC_SIGSEGV; 319 else 320 val = PR_TSC_ENABLE; 321 322 return put_user(val, (unsigned int __user *)adr); 323 } 324 325 int set_tsc_mode(unsigned int val) 326 { 327 if (val == PR_TSC_SIGSEGV) 328 disable_TSC(); 329 else if (val == PR_TSC_ENABLE) 330 enable_TSC(); 331 else 332 return -EINVAL; 333 334 return 0; 335 } 336 337 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 338 339 static void set_cpuid_faulting(bool on) 340 { 341 u64 msrval; 342 343 msrval = this_cpu_read(msr_misc_features_shadow); 344 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 345 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 346 this_cpu_write(msr_misc_features_shadow, msrval); 347 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 348 } 349 350 static void disable_cpuid(void) 351 { 352 preempt_disable(); 353 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 354 /* 355 * Must flip the CPU state synchronously with 356 * TIF_NOCPUID in the current running context. 357 */ 358 set_cpuid_faulting(true); 359 } 360 preempt_enable(); 361 } 362 363 static void enable_cpuid(void) 364 { 365 preempt_disable(); 366 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 367 /* 368 * Must flip the CPU state synchronously with 369 * TIF_NOCPUID in the current running context. 370 */ 371 set_cpuid_faulting(false); 372 } 373 preempt_enable(); 374 } 375 376 static int get_cpuid_mode(void) 377 { 378 return !test_thread_flag(TIF_NOCPUID); 379 } 380 381 static int set_cpuid_mode(unsigned long cpuid_enabled) 382 { 383 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 384 return -ENODEV; 385 386 if (cpuid_enabled) 387 enable_cpuid(); 388 else 389 disable_cpuid(); 390 391 return 0; 392 } 393 394 /* 395 * Called immediately after a successful exec. 396 */ 397 void arch_setup_new_exec(void) 398 { 399 /* If cpuid was previously disabled for this task, re-enable it. */ 400 if (test_thread_flag(TIF_NOCPUID)) 401 enable_cpuid(); 402 403 /* 404 * Don't inherit TIF_SSBD across exec boundary when 405 * PR_SPEC_DISABLE_NOEXEC is used. 406 */ 407 if (test_thread_flag(TIF_SSBD) && 408 task_spec_ssb_noexec(current)) { 409 clear_thread_flag(TIF_SSBD); 410 task_clear_spec_ssb_disable(current); 411 task_clear_spec_ssb_noexec(current); 412 speculation_ctrl_update(read_thread_flags()); 413 } 414 415 mm_reset_untag_mask(current->mm); 416 } 417 418 #ifdef CONFIG_X86_IOPL_IOPERM 419 static inline void switch_to_bitmap(unsigned long tifp) 420 { 421 /* 422 * Invalidate I/O bitmap if the previous task used it. This prevents 423 * any possible leakage of an active I/O bitmap. 424 * 425 * If the next task has an I/O bitmap it will handle it on exit to 426 * user mode. 427 */ 428 if (tifp & _TIF_IO_BITMAP) 429 tss_invalidate_io_bitmap(); 430 } 431 432 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 433 { 434 /* 435 * Copy at least the byte range of the incoming tasks bitmap which 436 * covers the permitted I/O ports. 437 * 438 * If the previous task which used an I/O bitmap had more bits 439 * permitted, then the copy needs to cover those as well so they 440 * get turned off. 441 */ 442 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 443 max(tss->io_bitmap.prev_max, iobm->max)); 444 445 /* 446 * Store the new max and the sequence number of this bitmap 447 * and a pointer to the bitmap itself. 448 */ 449 tss->io_bitmap.prev_max = iobm->max; 450 tss->io_bitmap.prev_sequence = iobm->sequence; 451 } 452 453 /** 454 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode 455 */ 456 void native_tss_update_io_bitmap(void) 457 { 458 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 459 struct thread_struct *t = ¤t->thread; 460 u16 *base = &tss->x86_tss.io_bitmap_base; 461 462 if (!test_thread_flag(TIF_IO_BITMAP)) { 463 native_tss_invalidate_io_bitmap(); 464 return; 465 } 466 467 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 468 *base = IO_BITMAP_OFFSET_VALID_ALL; 469 } else { 470 struct io_bitmap *iobm = t->io_bitmap; 471 472 /* 473 * Only copy bitmap data when the sequence number differs. The 474 * update time is accounted to the incoming task. 475 */ 476 if (tss->io_bitmap.prev_sequence != iobm->sequence) 477 tss_copy_io_bitmap(tss, iobm); 478 479 /* Enable the bitmap */ 480 *base = IO_BITMAP_OFFSET_VALID_MAP; 481 } 482 483 /* 484 * Make sure that the TSS limit is covering the IO bitmap. It might have 485 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 486 * access from user space to trigger a #GP because the bitmap is outside 487 * the TSS limit. 488 */ 489 refresh_tss_limit(); 490 } 491 #else /* CONFIG_X86_IOPL_IOPERM */ 492 static inline void switch_to_bitmap(unsigned long tifp) { } 493 #endif 494 495 #ifdef CONFIG_SMP 496 497 struct ssb_state { 498 struct ssb_state *shared_state; 499 raw_spinlock_t lock; 500 unsigned int disable_state; 501 unsigned long local_state; 502 }; 503 504 #define LSTATE_SSB 0 505 506 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 507 508 void speculative_store_bypass_ht_init(void) 509 { 510 struct ssb_state *st = this_cpu_ptr(&ssb_state); 511 unsigned int this_cpu = smp_processor_id(); 512 unsigned int cpu; 513 514 st->local_state = 0; 515 516 /* 517 * Shared state setup happens once on the first bringup 518 * of the CPU. It's not destroyed on CPU hotunplug. 519 */ 520 if (st->shared_state) 521 return; 522 523 raw_spin_lock_init(&st->lock); 524 525 /* 526 * Go over HT siblings and check whether one of them has set up the 527 * shared state pointer already. 528 */ 529 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 530 if (cpu == this_cpu) 531 continue; 532 533 if (!per_cpu(ssb_state, cpu).shared_state) 534 continue; 535 536 /* Link it to the state of the sibling: */ 537 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 538 return; 539 } 540 541 /* 542 * First HT sibling to come up on the core. Link shared state of 543 * the first HT sibling to itself. The siblings on the same core 544 * which come up later will see the shared state pointer and link 545 * themselves to the state of this CPU. 546 */ 547 st->shared_state = st; 548 } 549 550 /* 551 * Logic is: First HT sibling enables SSBD for both siblings in the core 552 * and last sibling to disable it, disables it for the whole core. This how 553 * MSR_SPEC_CTRL works in "hardware": 554 * 555 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 556 */ 557 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 558 { 559 struct ssb_state *st = this_cpu_ptr(&ssb_state); 560 u64 msr = x86_amd_ls_cfg_base; 561 562 if (!static_cpu_has(X86_FEATURE_ZEN)) { 563 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 564 wrmsrl(MSR_AMD64_LS_CFG, msr); 565 return; 566 } 567 568 if (tifn & _TIF_SSBD) { 569 /* 570 * Since this can race with prctl(), block reentry on the 571 * same CPU. 572 */ 573 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 574 return; 575 576 msr |= x86_amd_ls_cfg_ssbd_mask; 577 578 raw_spin_lock(&st->shared_state->lock); 579 /* First sibling enables SSBD: */ 580 if (!st->shared_state->disable_state) 581 wrmsrl(MSR_AMD64_LS_CFG, msr); 582 st->shared_state->disable_state++; 583 raw_spin_unlock(&st->shared_state->lock); 584 } else { 585 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 586 return; 587 588 raw_spin_lock(&st->shared_state->lock); 589 st->shared_state->disable_state--; 590 if (!st->shared_state->disable_state) 591 wrmsrl(MSR_AMD64_LS_CFG, msr); 592 raw_spin_unlock(&st->shared_state->lock); 593 } 594 } 595 #else 596 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 597 { 598 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 599 600 wrmsrl(MSR_AMD64_LS_CFG, msr); 601 } 602 #endif 603 604 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 605 { 606 /* 607 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 608 * so ssbd_tif_to_spec_ctrl() just works. 609 */ 610 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 611 } 612 613 /* 614 * Update the MSRs managing speculation control, during context switch. 615 * 616 * tifp: Previous task's thread flags 617 * tifn: Next task's thread flags 618 */ 619 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 620 unsigned long tifn) 621 { 622 unsigned long tif_diff = tifp ^ tifn; 623 u64 msr = x86_spec_ctrl_base; 624 bool updmsr = false; 625 626 lockdep_assert_irqs_disabled(); 627 628 /* Handle change of TIF_SSBD depending on the mitigation method. */ 629 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 630 if (tif_diff & _TIF_SSBD) 631 amd_set_ssb_virt_state(tifn); 632 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 633 if (tif_diff & _TIF_SSBD) 634 amd_set_core_ssb_state(tifn); 635 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 636 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 637 updmsr |= !!(tif_diff & _TIF_SSBD); 638 msr |= ssbd_tif_to_spec_ctrl(tifn); 639 } 640 641 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ 642 if (IS_ENABLED(CONFIG_SMP) && 643 static_branch_unlikely(&switch_to_cond_stibp)) { 644 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 645 msr |= stibp_tif_to_spec_ctrl(tifn); 646 } 647 648 if (updmsr) 649 update_spec_ctrl_cond(msr); 650 } 651 652 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 653 { 654 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 655 if (task_spec_ssb_disable(tsk)) 656 set_tsk_thread_flag(tsk, TIF_SSBD); 657 else 658 clear_tsk_thread_flag(tsk, TIF_SSBD); 659 660 if (task_spec_ib_disable(tsk)) 661 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 662 else 663 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 664 } 665 /* Return the updated threadinfo flags*/ 666 return read_task_thread_flags(tsk); 667 } 668 669 void speculation_ctrl_update(unsigned long tif) 670 { 671 unsigned long flags; 672 673 /* Forced update. Make sure all relevant TIF flags are different */ 674 local_irq_save(flags); 675 __speculation_ctrl_update(~tif, tif); 676 local_irq_restore(flags); 677 } 678 679 /* Called from seccomp/prctl update */ 680 void speculation_ctrl_update_current(void) 681 { 682 preempt_disable(); 683 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 684 preempt_enable(); 685 } 686 687 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 688 { 689 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 690 691 newval = cr4 ^ mask; 692 if (newval != cr4) { 693 this_cpu_write(cpu_tlbstate.cr4, newval); 694 __write_cr4(newval); 695 } 696 } 697 698 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 699 { 700 unsigned long tifp, tifn; 701 702 tifn = read_task_thread_flags(next_p); 703 tifp = read_task_thread_flags(prev_p); 704 705 switch_to_bitmap(tifp); 706 707 propagate_user_return_notify(prev_p, next_p); 708 709 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 710 arch_has_block_step()) { 711 unsigned long debugctl, msk; 712 713 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 714 debugctl &= ~DEBUGCTLMSR_BTF; 715 msk = tifn & _TIF_BLOCKSTEP; 716 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 717 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 718 } 719 720 if ((tifp ^ tifn) & _TIF_NOTSC) 721 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 722 723 if ((tifp ^ tifn) & _TIF_NOCPUID) 724 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 725 726 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 727 __speculation_ctrl_update(tifp, tifn); 728 } else { 729 speculation_ctrl_update_tif(prev_p); 730 tifn = speculation_ctrl_update_tif(next_p); 731 732 /* Enforce MSR update to ensure consistent state */ 733 __speculation_ctrl_update(~tifn, tifn); 734 } 735 } 736 737 /* 738 * Idle related variables and functions 739 */ 740 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 741 EXPORT_SYMBOL(boot_option_idle_override); 742 743 /* 744 * We use this if we don't have any better idle routine.. 745 */ 746 void __cpuidle default_idle(void) 747 { 748 raw_safe_halt(); 749 raw_local_irq_disable(); 750 } 751 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 752 EXPORT_SYMBOL(default_idle); 753 #endif 754 755 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle); 756 757 static bool x86_idle_set(void) 758 { 759 return !!static_call_query(x86_idle); 760 } 761 762 #ifndef CONFIG_SMP 763 static inline void __noreturn play_dead(void) 764 { 765 BUG(); 766 } 767 #endif 768 769 void arch_cpu_idle_enter(void) 770 { 771 tsc_verify_tsc_adjust(false); 772 local_touch_nmi(); 773 } 774 775 void __noreturn arch_cpu_idle_dead(void) 776 { 777 play_dead(); 778 } 779 780 /* 781 * Called from the generic idle code. 782 */ 783 void __cpuidle arch_cpu_idle(void) 784 { 785 static_call(x86_idle)(); 786 } 787 EXPORT_SYMBOL_GPL(arch_cpu_idle); 788 789 #ifdef CONFIG_XEN 790 bool xen_set_default_idle(void) 791 { 792 bool ret = x86_idle_set(); 793 794 static_call_update(x86_idle, default_idle); 795 796 return ret; 797 } 798 #endif 799 800 struct cpumask cpus_stop_mask; 801 802 void __noreturn stop_this_cpu(void *dummy) 803 { 804 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info); 805 unsigned int cpu = smp_processor_id(); 806 807 local_irq_disable(); 808 809 /* 810 * Remove this CPU from the online mask and disable it 811 * unconditionally. This might be redundant in case that the reboot 812 * vector was handled late and stop_other_cpus() sent an NMI. 813 * 814 * According to SDM and APM NMIs can be accepted even after soft 815 * disabling the local APIC. 816 */ 817 set_cpu_online(cpu, false); 818 disable_local_APIC(); 819 mcheck_cpu_clear(c); 820 821 /* 822 * Use wbinvd on processors that support SME. This provides support 823 * for performing a successful kexec when going from SME inactive 824 * to SME active (or vice-versa). The cache must be cleared so that 825 * if there are entries with the same physical address, both with and 826 * without the encryption bit, they don't race each other when flushed 827 * and potentially end up with the wrong entry being committed to 828 * memory. 829 * 830 * Test the CPUID bit directly because the machine might've cleared 831 * X86_FEATURE_SME due to cmdline options. 832 */ 833 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0))) 834 wbinvd(); 835 836 /* 837 * This brings a cache line back and dirties it, but 838 * native_stop_other_cpus() will overwrite cpus_stop_mask after it 839 * observed that all CPUs reported stop. This write will invalidate 840 * the related cache line on this CPU. 841 */ 842 cpumask_clear_cpu(cpu, &cpus_stop_mask); 843 844 #ifdef CONFIG_SMP 845 if (smp_ops.stop_this_cpu) { 846 smp_ops.stop_this_cpu(); 847 BUG(); 848 } 849 #endif 850 851 for (;;) { 852 /* 853 * Use native_halt() so that memory contents don't change 854 * (stack usage and variables) after possibly issuing the 855 * wbinvd() above. 856 */ 857 native_halt(); 858 } 859 } 860 861 /* 862 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf 863 * exists and whenever MONITOR/MWAIT extensions are present there is at 864 * least one C1 substate. 865 * 866 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait 867 * is passed to kernel commandline parameter. 868 */ 869 static __init bool prefer_mwait_c1_over_halt(void) 870 { 871 const struct cpuinfo_x86 *c = &boot_cpu_data; 872 u32 eax, ebx, ecx, edx; 873 874 /* If override is enforced on the command line, fall back to HALT. */ 875 if (boot_option_idle_override != IDLE_NO_OVERRIDE) 876 return false; 877 878 /* MWAIT is not supported on this platform. Fallback to HALT */ 879 if (!cpu_has(c, X86_FEATURE_MWAIT)) 880 return false; 881 882 /* Monitor has a bug or APIC stops in C1E. Fallback to HALT */ 883 if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) 884 return false; 885 886 cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx); 887 888 /* 889 * If MWAIT extensions are not available, it is safe to use MWAIT 890 * with EAX=0, ECX=0. 891 */ 892 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) 893 return true; 894 895 /* 896 * If MWAIT extensions are available, there should be at least one 897 * MWAIT C1 substate present. 898 */ 899 return !!(edx & MWAIT_C1_SUBSTATE_MASK); 900 } 901 902 /* 903 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 904 * with interrupts enabled and no flags, which is backwards compatible with the 905 * original MWAIT implementation. 906 */ 907 static __cpuidle void mwait_idle(void) 908 { 909 if (!current_set_polling_and_test()) { 910 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 911 mb(); /* quirk */ 912 clflush((void *)¤t_thread_info()->flags); 913 mb(); /* quirk */ 914 } 915 916 __monitor((void *)¤t_thread_info()->flags, 0, 0); 917 if (!need_resched()) { 918 __sti_mwait(0, 0); 919 raw_local_irq_disable(); 920 } 921 } 922 __current_clr_polling(); 923 } 924 925 void __init select_idle_routine(void) 926 { 927 if (boot_option_idle_override == IDLE_POLL) { 928 if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1) 929 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 930 return; 931 } 932 933 /* Required to guard against xen_set_default_idle() */ 934 if (x86_idle_set()) 935 return; 936 937 if (prefer_mwait_c1_over_halt()) { 938 pr_info("using mwait in idle threads\n"); 939 static_call_update(x86_idle, mwait_idle); 940 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) { 941 pr_info("using TDX aware idle routine\n"); 942 static_call_update(x86_idle, tdx_halt); 943 } else { 944 static_call_update(x86_idle, default_idle); 945 } 946 } 947 948 void amd_e400_c1e_apic_setup(void) 949 { 950 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 951 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 952 local_irq_disable(); 953 tick_broadcast_force(); 954 local_irq_enable(); 955 } 956 } 957 958 void __init arch_post_acpi_subsys_init(void) 959 { 960 u32 lo, hi; 961 962 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 963 return; 964 965 /* 966 * AMD E400 detection needs to happen after ACPI has been enabled. If 967 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 968 * MSR_K8_INT_PENDING_MSG. 969 */ 970 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 971 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 972 return; 973 974 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 975 976 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 977 mark_tsc_unstable("TSC halt in AMD C1E"); 978 979 if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE)) 980 static_branch_enable(&arch_needs_tick_broadcast); 981 pr_info("System has AMD C1E erratum E400. Workaround enabled.\n"); 982 } 983 984 static int __init idle_setup(char *str) 985 { 986 if (!str) 987 return -EINVAL; 988 989 if (!strcmp(str, "poll")) { 990 pr_info("using polling idle threads\n"); 991 boot_option_idle_override = IDLE_POLL; 992 cpu_idle_poll_ctrl(true); 993 } else if (!strcmp(str, "halt")) { 994 /* 'idle=halt' HALT for idle. C-states are disabled. */ 995 boot_option_idle_override = IDLE_HALT; 996 } else if (!strcmp(str, "nomwait")) { 997 /* 'idle=nomwait' disables MWAIT for idle */ 998 boot_option_idle_override = IDLE_NOMWAIT; 999 } else { 1000 return -EINVAL; 1001 } 1002 1003 return 0; 1004 } 1005 early_param("idle", idle_setup); 1006 1007 unsigned long arch_align_stack(unsigned long sp) 1008 { 1009 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1010 sp -= get_random_u32_below(8192); 1011 return sp & ~0xf; 1012 } 1013 1014 unsigned long arch_randomize_brk(struct mm_struct *mm) 1015 { 1016 if (mmap_is_ia32()) 1017 return randomize_page(mm->brk, SZ_32M); 1018 1019 return randomize_page(mm->brk, SZ_1G); 1020 } 1021 1022 /* 1023 * Called from fs/proc with a reference on @p to find the function 1024 * which called into schedule(). This needs to be done carefully 1025 * because the task might wake up and we might look at a stack 1026 * changing under us. 1027 */ 1028 unsigned long __get_wchan(struct task_struct *p) 1029 { 1030 struct unwind_state state; 1031 unsigned long addr = 0; 1032 1033 if (!try_get_task_stack(p)) 1034 return 0; 1035 1036 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state); 1037 unwind_next_frame(&state)) { 1038 addr = unwind_get_return_address(&state); 1039 if (!addr) 1040 break; 1041 if (in_sched_functions(addr)) 1042 continue; 1043 break; 1044 } 1045 1046 put_task_stack(p); 1047 1048 return addr; 1049 } 1050 1051 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) 1052 { 1053 switch (option) { 1054 case ARCH_GET_CPUID: 1055 return get_cpuid_mode(); 1056 case ARCH_SET_CPUID: 1057 return set_cpuid_mode(arg2); 1058 case ARCH_GET_XCOMP_SUPP: 1059 case ARCH_GET_XCOMP_PERM: 1060 case ARCH_REQ_XCOMP_PERM: 1061 case ARCH_GET_XCOMP_GUEST_PERM: 1062 case ARCH_REQ_XCOMP_GUEST_PERM: 1063 return fpu_xstate_prctl(option, arg2); 1064 } 1065 1066 if (!in_ia32_syscall()) 1067 return do_arch_prctl_64(current, option, arg2); 1068 1069 return -EINVAL; 1070 } 1071 1072 SYSCALL_DEFINE0(ni_syscall) 1073 { 1074 return -ENOSYS; 1075 } 1076