1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/system.h> 18 #include <asm/apic.h> 19 #include <asm/syscalls.h> 20 #include <asm/idle.h> 21 #include <asm/uaccess.h> 22 #include <asm/i387.h> 23 #include <asm/debugreg.h> 24 25 unsigned long idle_halt; 26 EXPORT_SYMBOL(idle_halt); 27 unsigned long idle_nomwait; 28 EXPORT_SYMBOL(idle_nomwait); 29 30 struct kmem_cache *task_xstate_cachep; 31 EXPORT_SYMBOL_GPL(task_xstate_cachep); 32 33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 34 { 35 int ret; 36 37 *dst = *src; 38 if (fpu_allocated(&src->thread.fpu)) { 39 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); 40 ret = fpu_alloc(&dst->thread.fpu); 41 if (ret) 42 return ret; 43 fpu_copy(&dst->thread.fpu, &src->thread.fpu); 44 } 45 return 0; 46 } 47 48 void free_thread_xstate(struct task_struct *tsk) 49 { 50 fpu_free(&tsk->thread.fpu); 51 } 52 53 void free_thread_info(struct thread_info *ti) 54 { 55 free_thread_xstate(ti->task); 56 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 57 } 58 59 void arch_task_cache_init(void) 60 { 61 task_xstate_cachep = 62 kmem_cache_create("task_xstate", xstate_size, 63 __alignof__(union thread_xstate), 64 SLAB_PANIC | SLAB_NOTRACK, NULL); 65 } 66 67 /* 68 * Free current thread data structures etc.. 69 */ 70 void exit_thread(void) 71 { 72 struct task_struct *me = current; 73 struct thread_struct *t = &me->thread; 74 unsigned long *bp = t->io_bitmap_ptr; 75 76 if (bp) { 77 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 78 79 t->io_bitmap_ptr = NULL; 80 clear_thread_flag(TIF_IO_BITMAP); 81 /* 82 * Careful, clear this in the TSS too: 83 */ 84 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 85 t->io_bitmap_max = 0; 86 put_cpu(); 87 kfree(bp); 88 } 89 } 90 91 void show_regs(struct pt_regs *regs) 92 { 93 show_registers(regs); 94 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs)); 95 } 96 97 void show_regs_common(void) 98 { 99 const char *board, *product; 100 101 board = dmi_get_system_info(DMI_BOARD_NAME); 102 if (!board) 103 board = ""; 104 product = dmi_get_system_info(DMI_PRODUCT_NAME); 105 if (!product) 106 product = ""; 107 108 printk(KERN_CONT "\n"); 109 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", 110 current->pid, current->comm, print_tainted(), 111 init_utsname()->release, 112 (int)strcspn(init_utsname()->version, " "), 113 init_utsname()->version, board, product); 114 } 115 116 void flush_thread(void) 117 { 118 struct task_struct *tsk = current; 119 120 flush_ptrace_hw_breakpoint(tsk); 121 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 122 /* 123 * Forget coprocessor state.. 124 */ 125 tsk->fpu_counter = 0; 126 clear_fpu(tsk); 127 clear_used_math(); 128 } 129 130 static void hard_disable_TSC(void) 131 { 132 write_cr4(read_cr4() | X86_CR4_TSD); 133 } 134 135 void disable_TSC(void) 136 { 137 preempt_disable(); 138 if (!test_and_set_thread_flag(TIF_NOTSC)) 139 /* 140 * Must flip the CPU state synchronously with 141 * TIF_NOTSC in the current running context. 142 */ 143 hard_disable_TSC(); 144 preempt_enable(); 145 } 146 147 static void hard_enable_TSC(void) 148 { 149 write_cr4(read_cr4() & ~X86_CR4_TSD); 150 } 151 152 static void enable_TSC(void) 153 { 154 preempt_disable(); 155 if (test_and_clear_thread_flag(TIF_NOTSC)) 156 /* 157 * Must flip the CPU state synchronously with 158 * TIF_NOTSC in the current running context. 159 */ 160 hard_enable_TSC(); 161 preempt_enable(); 162 } 163 164 int get_tsc_mode(unsigned long adr) 165 { 166 unsigned int val; 167 168 if (test_thread_flag(TIF_NOTSC)) 169 val = PR_TSC_SIGSEGV; 170 else 171 val = PR_TSC_ENABLE; 172 173 return put_user(val, (unsigned int __user *)adr); 174 } 175 176 int set_tsc_mode(unsigned int val) 177 { 178 if (val == PR_TSC_SIGSEGV) 179 disable_TSC(); 180 else if (val == PR_TSC_ENABLE) 181 enable_TSC(); 182 else 183 return -EINVAL; 184 185 return 0; 186 } 187 188 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 189 struct tss_struct *tss) 190 { 191 struct thread_struct *prev, *next; 192 193 prev = &prev_p->thread; 194 next = &next_p->thread; 195 196 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 197 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 198 unsigned long debugctl = get_debugctlmsr(); 199 200 debugctl &= ~DEBUGCTLMSR_BTF; 201 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 202 debugctl |= DEBUGCTLMSR_BTF; 203 204 update_debugctlmsr(debugctl); 205 } 206 207 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 208 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 209 /* prev and next are different */ 210 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 211 hard_disable_TSC(); 212 else 213 hard_enable_TSC(); 214 } 215 216 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 217 /* 218 * Copy the relevant range of the IO bitmap. 219 * Normally this is 128 bytes or less: 220 */ 221 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 222 max(prev->io_bitmap_max, next->io_bitmap_max)); 223 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 224 /* 225 * Clear any possible leftover bits: 226 */ 227 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 228 } 229 propagate_user_return_notify(prev_p, next_p); 230 } 231 232 int sys_fork(struct pt_regs *regs) 233 { 234 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 235 } 236 237 /* 238 * This is trivial, and on the face of it looks like it 239 * could equally well be done in user mode. 240 * 241 * Not so, for quite unobvious reasons - register pressure. 242 * In user mode vfork() cannot have a stack frame, and if 243 * done by calling the "clone()" system call directly, you 244 * do not have enough call-clobbered registers to hold all 245 * the information you need. 246 */ 247 int sys_vfork(struct pt_regs *regs) 248 { 249 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 250 NULL, NULL); 251 } 252 253 long 254 sys_clone(unsigned long clone_flags, unsigned long newsp, 255 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 256 { 257 if (!newsp) 258 newsp = regs->sp; 259 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 260 } 261 262 /* 263 * This gets run with %si containing the 264 * function to call, and %di containing 265 * the "args". 266 */ 267 extern void kernel_thread_helper(void); 268 269 /* 270 * Create a kernel thread 271 */ 272 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 273 { 274 struct pt_regs regs; 275 276 memset(®s, 0, sizeof(regs)); 277 278 regs.si = (unsigned long) fn; 279 regs.di = (unsigned long) arg; 280 281 #ifdef CONFIG_X86_32 282 regs.ds = __USER_DS; 283 regs.es = __USER_DS; 284 regs.fs = __KERNEL_PERCPU; 285 regs.gs = __KERNEL_STACK_CANARY; 286 #else 287 regs.ss = __KERNEL_DS; 288 #endif 289 290 regs.orig_ax = -1; 291 regs.ip = (unsigned long) kernel_thread_helper; 292 regs.cs = __KERNEL_CS | get_kernel_rpl(); 293 regs.flags = X86_EFLAGS_IF | 0x2; 294 295 /* Ok, create the new process.. */ 296 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 297 } 298 EXPORT_SYMBOL(kernel_thread); 299 300 /* 301 * sys_execve() executes a new program. 302 */ 303 long sys_execve(const char __user *name, 304 const char __user *const __user *argv, 305 const char __user *const __user *envp, struct pt_regs *regs) 306 { 307 long error; 308 char *filename; 309 310 filename = getname(name); 311 error = PTR_ERR(filename); 312 if (IS_ERR(filename)) 313 return error; 314 error = do_execve(filename, argv, envp, regs); 315 316 #ifdef CONFIG_X86_32 317 if (error == 0) { 318 /* Make sure we don't return using sysenter.. */ 319 set_thread_flag(TIF_IRET); 320 } 321 #endif 322 323 putname(filename); 324 return error; 325 } 326 327 /* 328 * Idle related variables and functions 329 */ 330 unsigned long boot_option_idle_override = 0; 331 EXPORT_SYMBOL(boot_option_idle_override); 332 333 /* 334 * Powermanagement idle function, if any.. 335 */ 336 void (*pm_idle)(void); 337 EXPORT_SYMBOL(pm_idle); 338 339 #ifdef CONFIG_X86_32 340 /* 341 * This halt magic was a workaround for ancient floppy DMA 342 * wreckage. It should be safe to remove. 343 */ 344 static int hlt_counter; 345 void disable_hlt(void) 346 { 347 hlt_counter++; 348 } 349 EXPORT_SYMBOL(disable_hlt); 350 351 void enable_hlt(void) 352 { 353 hlt_counter--; 354 } 355 EXPORT_SYMBOL(enable_hlt); 356 357 static inline int hlt_use_halt(void) 358 { 359 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 360 } 361 #else 362 static inline int hlt_use_halt(void) 363 { 364 return 1; 365 } 366 #endif 367 368 /* 369 * We use this if we don't have any better 370 * idle routine.. 371 */ 372 void default_idle(void) 373 { 374 if (hlt_use_halt()) { 375 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 376 trace_cpu_idle(1, smp_processor_id()); 377 current_thread_info()->status &= ~TS_POLLING; 378 /* 379 * TS_POLLING-cleared state must be visible before we 380 * test NEED_RESCHED: 381 */ 382 smp_mb(); 383 384 if (!need_resched()) 385 safe_halt(); /* enables interrupts racelessly */ 386 else 387 local_irq_enable(); 388 current_thread_info()->status |= TS_POLLING; 389 } else { 390 local_irq_enable(); 391 /* loop is done by the caller */ 392 cpu_relax(); 393 } 394 } 395 #ifdef CONFIG_APM_MODULE 396 EXPORT_SYMBOL(default_idle); 397 #endif 398 399 void stop_this_cpu(void *dummy) 400 { 401 local_irq_disable(); 402 /* 403 * Remove this CPU: 404 */ 405 set_cpu_online(smp_processor_id(), false); 406 disable_local_APIC(); 407 408 for (;;) { 409 if (hlt_works(smp_processor_id())) 410 halt(); 411 } 412 } 413 414 static void do_nothing(void *unused) 415 { 416 } 417 418 /* 419 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 420 * pm_idle and update to new pm_idle value. Required while changing pm_idle 421 * handler on SMP systems. 422 * 423 * Caller must have changed pm_idle to the new value before the call. Old 424 * pm_idle value will not be used by any CPU after the return of this function. 425 */ 426 void cpu_idle_wait(void) 427 { 428 smp_mb(); 429 /* kick all the CPUs so that they exit out of pm_idle */ 430 smp_call_function(do_nothing, NULL, 1); 431 } 432 EXPORT_SYMBOL_GPL(cpu_idle_wait); 433 434 /* 435 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 436 * which can obviate IPI to trigger checking of need_resched. 437 * We execute MONITOR against need_resched and enter optimized wait state 438 * through MWAIT. Whenever someone changes need_resched, we would be woken 439 * up from MWAIT (without an IPI). 440 * 441 * New with Core Duo processors, MWAIT can take some hints based on CPU 442 * capability. 443 */ 444 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 445 { 446 trace_power_start(POWER_CSTATE, (ax>>4)+1, smp_processor_id()); 447 trace_cpu_idle((ax>>4)+1, smp_processor_id()); 448 if (!need_resched()) { 449 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR)) 450 clflush((void *)¤t_thread_info()->flags); 451 452 __monitor((void *)¤t_thread_info()->flags, 0, 0); 453 smp_mb(); 454 if (!need_resched()) 455 __mwait(ax, cx); 456 } 457 } 458 459 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 460 static void mwait_idle(void) 461 { 462 if (!need_resched()) { 463 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 464 trace_cpu_idle(1, smp_processor_id()); 465 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR)) 466 clflush((void *)¤t_thread_info()->flags); 467 468 __monitor((void *)¤t_thread_info()->flags, 0, 0); 469 smp_mb(); 470 if (!need_resched()) 471 __sti_mwait(0, 0); 472 else 473 local_irq_enable(); 474 } else 475 local_irq_enable(); 476 } 477 478 /* 479 * On SMP it's slightly faster (but much more power-consuming!) 480 * to poll the ->work.need_resched flag instead of waiting for the 481 * cross-CPU IPI to arrive. Use this option with caution. 482 */ 483 static void poll_idle(void) 484 { 485 trace_power_start(POWER_CSTATE, 0, smp_processor_id()); 486 trace_cpu_idle(0, smp_processor_id()); 487 local_irq_enable(); 488 while (!need_resched()) 489 cpu_relax(); 490 trace_power_end(smp_processor_id()); 491 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 492 } 493 494 /* 495 * mwait selection logic: 496 * 497 * It depends on the CPU. For AMD CPUs that support MWAIT this is 498 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 499 * then depend on a clock divisor and current Pstate of the core. If 500 * all cores of a processor are in halt state (C1) the processor can 501 * enter the C1E (C1 enhanced) state. If mwait is used this will never 502 * happen. 503 * 504 * idle=mwait overrides this decision and forces the usage of mwait. 505 */ 506 static int __cpuinitdata force_mwait; 507 508 #define MWAIT_INFO 0x05 509 #define MWAIT_ECX_EXTENDED_INFO 0x01 510 #define MWAIT_EDX_C1 0xf0 511 512 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 513 { 514 u32 eax, ebx, ecx, edx; 515 516 if (force_mwait) 517 return 1; 518 519 if (c->cpuid_level < MWAIT_INFO) 520 return 0; 521 522 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 523 /* Check, whether EDX has extended info about MWAIT */ 524 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 525 return 1; 526 527 /* 528 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 529 * C1 supports MWAIT 530 */ 531 return (edx & MWAIT_EDX_C1); 532 } 533 534 bool c1e_detected; 535 EXPORT_SYMBOL(c1e_detected); 536 537 static cpumask_var_t c1e_mask; 538 539 void c1e_remove_cpu(int cpu) 540 { 541 if (c1e_mask != NULL) 542 cpumask_clear_cpu(cpu, c1e_mask); 543 } 544 545 /* 546 * C1E aware idle routine. We check for C1E active in the interrupt 547 * pending message MSR. If we detect C1E, then we handle it the same 548 * way as C3 power states (local apic timer and TSC stop) 549 */ 550 static void c1e_idle(void) 551 { 552 if (need_resched()) 553 return; 554 555 if (!c1e_detected) { 556 u32 lo, hi; 557 558 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 559 560 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 561 c1e_detected = true; 562 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 563 mark_tsc_unstable("TSC halt in AMD C1E"); 564 printk(KERN_INFO "System has AMD C1E enabled\n"); 565 } 566 } 567 568 if (c1e_detected) { 569 int cpu = smp_processor_id(); 570 571 if (!cpumask_test_cpu(cpu, c1e_mask)) { 572 cpumask_set_cpu(cpu, c1e_mask); 573 /* 574 * Force broadcast so ACPI can not interfere. 575 */ 576 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 577 &cpu); 578 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 579 cpu); 580 } 581 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 582 583 default_idle(); 584 585 /* 586 * The switch back from broadcast mode needs to be 587 * called with interrupts disabled. 588 */ 589 local_irq_disable(); 590 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 591 local_irq_enable(); 592 } else 593 default_idle(); 594 } 595 596 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 597 { 598 #ifdef CONFIG_SMP 599 if (pm_idle == poll_idle && smp_num_siblings > 1) { 600 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," 601 " performance may degrade.\n"); 602 } 603 #endif 604 if (pm_idle) 605 return; 606 607 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 608 /* 609 * One CPU supports mwait => All CPUs supports mwait 610 */ 611 printk(KERN_INFO "using mwait in idle threads.\n"); 612 pm_idle = mwait_idle; 613 } else if (cpu_has_amd_erratum(amd_erratum_400)) { 614 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 615 printk(KERN_INFO "using C1E aware idle routine\n"); 616 pm_idle = c1e_idle; 617 } else 618 pm_idle = default_idle; 619 } 620 621 void __init init_c1e_mask(void) 622 { 623 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 624 if (pm_idle == c1e_idle) 625 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 626 } 627 628 static int __init idle_setup(char *str) 629 { 630 if (!str) 631 return -EINVAL; 632 633 if (!strcmp(str, "poll")) { 634 printk("using polling idle threads.\n"); 635 pm_idle = poll_idle; 636 } else if (!strcmp(str, "mwait")) 637 force_mwait = 1; 638 else if (!strcmp(str, "halt")) { 639 /* 640 * When the boot option of idle=halt is added, halt is 641 * forced to be used for CPU idle. In such case CPU C2/C3 642 * won't be used again. 643 * To continue to load the CPU idle driver, don't touch 644 * the boot_option_idle_override. 645 */ 646 pm_idle = default_idle; 647 idle_halt = 1; 648 return 0; 649 } else if (!strcmp(str, "nomwait")) { 650 /* 651 * If the boot option of "idle=nomwait" is added, 652 * it means that mwait will be disabled for CPU C2/C3 653 * states. In such case it won't touch the variable 654 * of boot_option_idle_override. 655 */ 656 idle_nomwait = 1; 657 return 0; 658 } else 659 return -1; 660 661 boot_option_idle_override = 1; 662 return 0; 663 } 664 early_param("idle", idle_setup); 665 666 unsigned long arch_align_stack(unsigned long sp) 667 { 668 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 669 sp -= get_random_int() % 8192; 670 return sp & ~0xf; 671 } 672 673 unsigned long arch_randomize_brk(struct mm_struct *mm) 674 { 675 unsigned long range_end = mm->brk + 0x02000000; 676 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 677 } 678 679