xref: /linux/arch/x86/kernel/process.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/system.h>
18 #include <asm/apic.h>
19 #include <asm/syscalls.h>
20 #include <asm/idle.h>
21 #include <asm/uaccess.h>
22 #include <asm/i387.h>
23 #include <asm/debugreg.h>
24 
25 unsigned long idle_halt;
26 EXPORT_SYMBOL(idle_halt);
27 unsigned long idle_nomwait;
28 EXPORT_SYMBOL(idle_nomwait);
29 
30 struct kmem_cache *task_xstate_cachep;
31 EXPORT_SYMBOL_GPL(task_xstate_cachep);
32 
33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34 {
35 	int ret;
36 
37 	*dst = *src;
38 	if (fpu_allocated(&src->thread.fpu)) {
39 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
40 		ret = fpu_alloc(&dst->thread.fpu);
41 		if (ret)
42 			return ret;
43 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
44 	}
45 	return 0;
46 }
47 
48 void free_thread_xstate(struct task_struct *tsk)
49 {
50 	fpu_free(&tsk->thread.fpu);
51 }
52 
53 void free_thread_info(struct thread_info *ti)
54 {
55 	free_thread_xstate(ti->task);
56 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
57 }
58 
59 void arch_task_cache_init(void)
60 {
61         task_xstate_cachep =
62         	kmem_cache_create("task_xstate", xstate_size,
63 				  __alignof__(union thread_xstate),
64 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
65 }
66 
67 /*
68  * Free current thread data structures etc..
69  */
70 void exit_thread(void)
71 {
72 	struct task_struct *me = current;
73 	struct thread_struct *t = &me->thread;
74 	unsigned long *bp = t->io_bitmap_ptr;
75 
76 	if (bp) {
77 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
78 
79 		t->io_bitmap_ptr = NULL;
80 		clear_thread_flag(TIF_IO_BITMAP);
81 		/*
82 		 * Careful, clear this in the TSS too:
83 		 */
84 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
85 		t->io_bitmap_max = 0;
86 		put_cpu();
87 		kfree(bp);
88 	}
89 }
90 
91 void show_regs(struct pt_regs *regs)
92 {
93 	show_registers(regs);
94 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs));
95 }
96 
97 void show_regs_common(void)
98 {
99 	const char *board, *product;
100 
101 	board = dmi_get_system_info(DMI_BOARD_NAME);
102 	if (!board)
103 		board = "";
104 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
105 	if (!product)
106 		product = "";
107 
108 	printk(KERN_CONT "\n");
109 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
110 		current->pid, current->comm, print_tainted(),
111 		init_utsname()->release,
112 		(int)strcspn(init_utsname()->version, " "),
113 		init_utsname()->version, board, product);
114 }
115 
116 void flush_thread(void)
117 {
118 	struct task_struct *tsk = current;
119 
120 	flush_ptrace_hw_breakpoint(tsk);
121 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
122 	/*
123 	 * Forget coprocessor state..
124 	 */
125 	tsk->fpu_counter = 0;
126 	clear_fpu(tsk);
127 	clear_used_math();
128 }
129 
130 static void hard_disable_TSC(void)
131 {
132 	write_cr4(read_cr4() | X86_CR4_TSD);
133 }
134 
135 void disable_TSC(void)
136 {
137 	preempt_disable();
138 	if (!test_and_set_thread_flag(TIF_NOTSC))
139 		/*
140 		 * Must flip the CPU state synchronously with
141 		 * TIF_NOTSC in the current running context.
142 		 */
143 		hard_disable_TSC();
144 	preempt_enable();
145 }
146 
147 static void hard_enable_TSC(void)
148 {
149 	write_cr4(read_cr4() & ~X86_CR4_TSD);
150 }
151 
152 static void enable_TSC(void)
153 {
154 	preempt_disable();
155 	if (test_and_clear_thread_flag(TIF_NOTSC))
156 		/*
157 		 * Must flip the CPU state synchronously with
158 		 * TIF_NOTSC in the current running context.
159 		 */
160 		hard_enable_TSC();
161 	preempt_enable();
162 }
163 
164 int get_tsc_mode(unsigned long adr)
165 {
166 	unsigned int val;
167 
168 	if (test_thread_flag(TIF_NOTSC))
169 		val = PR_TSC_SIGSEGV;
170 	else
171 		val = PR_TSC_ENABLE;
172 
173 	return put_user(val, (unsigned int __user *)adr);
174 }
175 
176 int set_tsc_mode(unsigned int val)
177 {
178 	if (val == PR_TSC_SIGSEGV)
179 		disable_TSC();
180 	else if (val == PR_TSC_ENABLE)
181 		enable_TSC();
182 	else
183 		return -EINVAL;
184 
185 	return 0;
186 }
187 
188 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
189 		      struct tss_struct *tss)
190 {
191 	struct thread_struct *prev, *next;
192 
193 	prev = &prev_p->thread;
194 	next = &next_p->thread;
195 
196 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
197 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
198 		unsigned long debugctl = get_debugctlmsr();
199 
200 		debugctl &= ~DEBUGCTLMSR_BTF;
201 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
202 			debugctl |= DEBUGCTLMSR_BTF;
203 
204 		update_debugctlmsr(debugctl);
205 	}
206 
207 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
208 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
209 		/* prev and next are different */
210 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
211 			hard_disable_TSC();
212 		else
213 			hard_enable_TSC();
214 	}
215 
216 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
217 		/*
218 		 * Copy the relevant range of the IO bitmap.
219 		 * Normally this is 128 bytes or less:
220 		 */
221 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
222 		       max(prev->io_bitmap_max, next->io_bitmap_max));
223 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
224 		/*
225 		 * Clear any possible leftover bits:
226 		 */
227 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
228 	}
229 	propagate_user_return_notify(prev_p, next_p);
230 }
231 
232 int sys_fork(struct pt_regs *regs)
233 {
234 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
235 }
236 
237 /*
238  * This is trivial, and on the face of it looks like it
239  * could equally well be done in user mode.
240  *
241  * Not so, for quite unobvious reasons - register pressure.
242  * In user mode vfork() cannot have a stack frame, and if
243  * done by calling the "clone()" system call directly, you
244  * do not have enough call-clobbered registers to hold all
245  * the information you need.
246  */
247 int sys_vfork(struct pt_regs *regs)
248 {
249 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
250 		       NULL, NULL);
251 }
252 
253 long
254 sys_clone(unsigned long clone_flags, unsigned long newsp,
255 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
256 {
257 	if (!newsp)
258 		newsp = regs->sp;
259 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
260 }
261 
262 /*
263  * This gets run with %si containing the
264  * function to call, and %di containing
265  * the "args".
266  */
267 extern void kernel_thread_helper(void);
268 
269 /*
270  * Create a kernel thread
271  */
272 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
273 {
274 	struct pt_regs regs;
275 
276 	memset(&regs, 0, sizeof(regs));
277 
278 	regs.si = (unsigned long) fn;
279 	regs.di = (unsigned long) arg;
280 
281 #ifdef CONFIG_X86_32
282 	regs.ds = __USER_DS;
283 	regs.es = __USER_DS;
284 	regs.fs = __KERNEL_PERCPU;
285 	regs.gs = __KERNEL_STACK_CANARY;
286 #else
287 	regs.ss = __KERNEL_DS;
288 #endif
289 
290 	regs.orig_ax = -1;
291 	regs.ip = (unsigned long) kernel_thread_helper;
292 	regs.cs = __KERNEL_CS | get_kernel_rpl();
293 	regs.flags = X86_EFLAGS_IF | 0x2;
294 
295 	/* Ok, create the new process.. */
296 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
297 }
298 EXPORT_SYMBOL(kernel_thread);
299 
300 /*
301  * sys_execve() executes a new program.
302  */
303 long sys_execve(const char __user *name,
304 		const char __user *const __user *argv,
305 		const char __user *const __user *envp, struct pt_regs *regs)
306 {
307 	long error;
308 	char *filename;
309 
310 	filename = getname(name);
311 	error = PTR_ERR(filename);
312 	if (IS_ERR(filename))
313 		return error;
314 	error = do_execve(filename, argv, envp, regs);
315 
316 #ifdef CONFIG_X86_32
317 	if (error == 0) {
318 		/* Make sure we don't return using sysenter.. */
319                 set_thread_flag(TIF_IRET);
320         }
321 #endif
322 
323 	putname(filename);
324 	return error;
325 }
326 
327 /*
328  * Idle related variables and functions
329  */
330 unsigned long boot_option_idle_override = 0;
331 EXPORT_SYMBOL(boot_option_idle_override);
332 
333 /*
334  * Powermanagement idle function, if any..
335  */
336 void (*pm_idle)(void);
337 EXPORT_SYMBOL(pm_idle);
338 
339 #ifdef CONFIG_X86_32
340 /*
341  * This halt magic was a workaround for ancient floppy DMA
342  * wreckage. It should be safe to remove.
343  */
344 static int hlt_counter;
345 void disable_hlt(void)
346 {
347 	hlt_counter++;
348 }
349 EXPORT_SYMBOL(disable_hlt);
350 
351 void enable_hlt(void)
352 {
353 	hlt_counter--;
354 }
355 EXPORT_SYMBOL(enable_hlt);
356 
357 static inline int hlt_use_halt(void)
358 {
359 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
360 }
361 #else
362 static inline int hlt_use_halt(void)
363 {
364 	return 1;
365 }
366 #endif
367 
368 /*
369  * We use this if we don't have any better
370  * idle routine..
371  */
372 void default_idle(void)
373 {
374 	if (hlt_use_halt()) {
375 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
376 		trace_cpu_idle(1, smp_processor_id());
377 		current_thread_info()->status &= ~TS_POLLING;
378 		/*
379 		 * TS_POLLING-cleared state must be visible before we
380 		 * test NEED_RESCHED:
381 		 */
382 		smp_mb();
383 
384 		if (!need_resched())
385 			safe_halt();	/* enables interrupts racelessly */
386 		else
387 			local_irq_enable();
388 		current_thread_info()->status |= TS_POLLING;
389 	} else {
390 		local_irq_enable();
391 		/* loop is done by the caller */
392 		cpu_relax();
393 	}
394 }
395 #ifdef CONFIG_APM_MODULE
396 EXPORT_SYMBOL(default_idle);
397 #endif
398 
399 void stop_this_cpu(void *dummy)
400 {
401 	local_irq_disable();
402 	/*
403 	 * Remove this CPU:
404 	 */
405 	set_cpu_online(smp_processor_id(), false);
406 	disable_local_APIC();
407 
408 	for (;;) {
409 		if (hlt_works(smp_processor_id()))
410 			halt();
411 	}
412 }
413 
414 static void do_nothing(void *unused)
415 {
416 }
417 
418 /*
419  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
420  * pm_idle and update to new pm_idle value. Required while changing pm_idle
421  * handler on SMP systems.
422  *
423  * Caller must have changed pm_idle to the new value before the call. Old
424  * pm_idle value will not be used by any CPU after the return of this function.
425  */
426 void cpu_idle_wait(void)
427 {
428 	smp_mb();
429 	/* kick all the CPUs so that they exit out of pm_idle */
430 	smp_call_function(do_nothing, NULL, 1);
431 }
432 EXPORT_SYMBOL_GPL(cpu_idle_wait);
433 
434 /*
435  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
436  * which can obviate IPI to trigger checking of need_resched.
437  * We execute MONITOR against need_resched and enter optimized wait state
438  * through MWAIT. Whenever someone changes need_resched, we would be woken
439  * up from MWAIT (without an IPI).
440  *
441  * New with Core Duo processors, MWAIT can take some hints based on CPU
442  * capability.
443  */
444 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
445 {
446 	trace_power_start(POWER_CSTATE, (ax>>4)+1, smp_processor_id());
447 	trace_cpu_idle((ax>>4)+1, smp_processor_id());
448 	if (!need_resched()) {
449 		if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
450 			clflush((void *)&current_thread_info()->flags);
451 
452 		__monitor((void *)&current_thread_info()->flags, 0, 0);
453 		smp_mb();
454 		if (!need_resched())
455 			__mwait(ax, cx);
456 	}
457 }
458 
459 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
460 static void mwait_idle(void)
461 {
462 	if (!need_resched()) {
463 		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
464 		trace_cpu_idle(1, smp_processor_id());
465 		if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
466 			clflush((void *)&current_thread_info()->flags);
467 
468 		__monitor((void *)&current_thread_info()->flags, 0, 0);
469 		smp_mb();
470 		if (!need_resched())
471 			__sti_mwait(0, 0);
472 		else
473 			local_irq_enable();
474 	} else
475 		local_irq_enable();
476 }
477 
478 /*
479  * On SMP it's slightly faster (but much more power-consuming!)
480  * to poll the ->work.need_resched flag instead of waiting for the
481  * cross-CPU IPI to arrive. Use this option with caution.
482  */
483 static void poll_idle(void)
484 {
485 	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
486 	trace_cpu_idle(0, smp_processor_id());
487 	local_irq_enable();
488 	while (!need_resched())
489 		cpu_relax();
490 	trace_power_end(smp_processor_id());
491 	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
492 }
493 
494 /*
495  * mwait selection logic:
496  *
497  * It depends on the CPU. For AMD CPUs that support MWAIT this is
498  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
499  * then depend on a clock divisor and current Pstate of the core. If
500  * all cores of a processor are in halt state (C1) the processor can
501  * enter the C1E (C1 enhanced) state. If mwait is used this will never
502  * happen.
503  *
504  * idle=mwait overrides this decision and forces the usage of mwait.
505  */
506 static int __cpuinitdata force_mwait;
507 
508 #define MWAIT_INFO			0x05
509 #define MWAIT_ECX_EXTENDED_INFO		0x01
510 #define MWAIT_EDX_C1			0xf0
511 
512 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
513 {
514 	u32 eax, ebx, ecx, edx;
515 
516 	if (force_mwait)
517 		return 1;
518 
519 	if (c->cpuid_level < MWAIT_INFO)
520 		return 0;
521 
522 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
523 	/* Check, whether EDX has extended info about MWAIT */
524 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
525 		return 1;
526 
527 	/*
528 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
529 	 * C1  supports MWAIT
530 	 */
531 	return (edx & MWAIT_EDX_C1);
532 }
533 
534 bool c1e_detected;
535 EXPORT_SYMBOL(c1e_detected);
536 
537 static cpumask_var_t c1e_mask;
538 
539 void c1e_remove_cpu(int cpu)
540 {
541 	if (c1e_mask != NULL)
542 		cpumask_clear_cpu(cpu, c1e_mask);
543 }
544 
545 /*
546  * C1E aware idle routine. We check for C1E active in the interrupt
547  * pending message MSR. If we detect C1E, then we handle it the same
548  * way as C3 power states (local apic timer and TSC stop)
549  */
550 static void c1e_idle(void)
551 {
552 	if (need_resched())
553 		return;
554 
555 	if (!c1e_detected) {
556 		u32 lo, hi;
557 
558 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
559 
560 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
561 			c1e_detected = true;
562 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
563 				mark_tsc_unstable("TSC halt in AMD C1E");
564 			printk(KERN_INFO "System has AMD C1E enabled\n");
565 		}
566 	}
567 
568 	if (c1e_detected) {
569 		int cpu = smp_processor_id();
570 
571 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
572 			cpumask_set_cpu(cpu, c1e_mask);
573 			/*
574 			 * Force broadcast so ACPI can not interfere.
575 			 */
576 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
577 					   &cpu);
578 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
579 			       cpu);
580 		}
581 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
582 
583 		default_idle();
584 
585 		/*
586 		 * The switch back from broadcast mode needs to be
587 		 * called with interrupts disabled.
588 		 */
589 		 local_irq_disable();
590 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
591 		 local_irq_enable();
592 	} else
593 		default_idle();
594 }
595 
596 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
597 {
598 #ifdef CONFIG_SMP
599 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
600 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
601 			" performance may degrade.\n");
602 	}
603 #endif
604 	if (pm_idle)
605 		return;
606 
607 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
608 		/*
609 		 * One CPU supports mwait => All CPUs supports mwait
610 		 */
611 		printk(KERN_INFO "using mwait in idle threads.\n");
612 		pm_idle = mwait_idle;
613 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
614 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
615 		printk(KERN_INFO "using C1E aware idle routine\n");
616 		pm_idle = c1e_idle;
617 	} else
618 		pm_idle = default_idle;
619 }
620 
621 void __init init_c1e_mask(void)
622 {
623 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
624 	if (pm_idle == c1e_idle)
625 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
626 }
627 
628 static int __init idle_setup(char *str)
629 {
630 	if (!str)
631 		return -EINVAL;
632 
633 	if (!strcmp(str, "poll")) {
634 		printk("using polling idle threads.\n");
635 		pm_idle = poll_idle;
636 	} else if (!strcmp(str, "mwait"))
637 		force_mwait = 1;
638 	else if (!strcmp(str, "halt")) {
639 		/*
640 		 * When the boot option of idle=halt is added, halt is
641 		 * forced to be used for CPU idle. In such case CPU C2/C3
642 		 * won't be used again.
643 		 * To continue to load the CPU idle driver, don't touch
644 		 * the boot_option_idle_override.
645 		 */
646 		pm_idle = default_idle;
647 		idle_halt = 1;
648 		return 0;
649 	} else if (!strcmp(str, "nomwait")) {
650 		/*
651 		 * If the boot option of "idle=nomwait" is added,
652 		 * it means that mwait will be disabled for CPU C2/C3
653 		 * states. In such case it won't touch the variable
654 		 * of boot_option_idle_override.
655 		 */
656 		idle_nomwait = 1;
657 		return 0;
658 	} else
659 		return -1;
660 
661 	boot_option_idle_override = 1;
662 	return 0;
663 }
664 early_param("idle", idle_setup);
665 
666 unsigned long arch_align_stack(unsigned long sp)
667 {
668 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
669 		sp -= get_random_int() % 8192;
670 	return sp & ~0xf;
671 }
672 
673 unsigned long arch_randomize_brk(struct mm_struct *mm)
674 {
675 	unsigned long range_end = mm->brk + 0x02000000;
676 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
677 }
678 
679