xref: /linux/arch/x86/kernel/process.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/cpuid/api.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/msr.h>
56 #include <asm/shstk.h>
57 
58 #include "process.h"
59 
60 /*
61  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
62  * no more per-task TSS's. The TSS size is kept cacheline-aligned
63  * so they are allowed to end up in the .data..cacheline_aligned
64  * section. Since TSS's are completely CPU-local, we want them
65  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
66  */
67 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
68 	.x86_tss = {
69 		/*
70 		 * .sp0 is only used when entering ring 0 from a lower
71 		 * privilege level.  Since the init task never runs anything
72 		 * but ring 0 code, there is no need for a valid value here.
73 		 * Poison it.
74 		 */
75 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
76 
77 #ifdef CONFIG_X86_32
78 		.sp1 = TOP_OF_INIT_STACK,
79 
80 		.ss0 = __KERNEL_DS,
81 		.ss1 = __KERNEL_CS,
82 #endif
83 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
84 	 },
85 };
86 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
87 
88 DEFINE_PER_CPU(bool, __tss_limit_invalid);
89 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
90 
91 /*
92  * The cache may be in an incoherent state and needs flushing during kexec.
93  * E.g., on SME/TDX platforms, dirty cacheline aliases with and without
94  * encryption bit(s) can coexist and the cache needs to be flushed before
95  * booting to the new kernel to avoid the silent memory corruption due to
96  * dirty cachelines with different encryption property being written back
97  * to the memory.
98  */
99 DEFINE_PER_CPU(bool, cache_state_incoherent);
100 
101 /*
102  * this gets called so that we can store lazy state into memory and copy the
103  * current task into the new thread.
104  */
105 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
106 {
107 	/* fpu_clone() will initialize the "dst_fpu" memory */
108 	memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(*dst), 0);
109 
110 #ifdef CONFIG_VM86
111 	dst->thread.vm86 = NULL;
112 #endif
113 
114 	return 0;
115 }
116 
117 #ifdef CONFIG_X86_64
118 void arch_release_task_struct(struct task_struct *tsk)
119 {
120 	if (fpu_state_size_dynamic() && !(tsk->flags & (PF_KTHREAD | PF_USER_WORKER)))
121 		fpstate_free(x86_task_fpu(tsk));
122 }
123 #endif
124 
125 /*
126  * Free thread data structures etc..
127  */
128 void exit_thread(struct task_struct *tsk)
129 {
130 	struct thread_struct *t = &tsk->thread;
131 
132 	if (test_thread_flag(TIF_IO_BITMAP))
133 		io_bitmap_exit(tsk);
134 
135 	free_vm86(t);
136 
137 	shstk_free(tsk);
138 	fpu__drop(tsk);
139 }
140 
141 static int set_new_tls(struct task_struct *p, unsigned long tls)
142 {
143 	struct user_desc __user *utls = (struct user_desc __user *)tls;
144 
145 	if (in_ia32_syscall())
146 		return do_set_thread_area(p, -1, utls, 0);
147 	else
148 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
149 }
150 
151 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
152 				     int (*fn)(void *), void *fn_arg)
153 {
154 	schedule_tail(prev);
155 
156 	/* Is this a kernel thread? */
157 	if (unlikely(fn)) {
158 		fn(fn_arg);
159 		/*
160 		 * A kernel thread is allowed to return here after successfully
161 		 * calling kernel_execve().  Exit to userspace to complete the
162 		 * execve() syscall.
163 		 */
164 		regs->ax = 0;
165 	}
166 
167 	syscall_exit_to_user_mode(regs);
168 }
169 
170 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
171 {
172 	u64 clone_flags = args->flags;
173 	unsigned long sp = args->stack;
174 	unsigned long tls = args->tls;
175 	struct inactive_task_frame *frame;
176 	struct fork_frame *fork_frame;
177 	struct pt_regs *childregs;
178 	unsigned long new_ssp;
179 	int ret = 0;
180 
181 	childregs = task_pt_regs(p);
182 	fork_frame = container_of(childregs, struct fork_frame, regs);
183 	frame = &fork_frame->frame;
184 
185 	frame->bp = encode_frame_pointer(childregs);
186 	frame->ret_addr = (unsigned long) ret_from_fork_asm;
187 	p->thread.sp = (unsigned long) fork_frame;
188 	p->thread.io_bitmap = NULL;
189 	clear_tsk_thread_flag(p, TIF_IO_BITMAP);
190 	p->thread.iopl_warn = 0;
191 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
192 
193 #ifdef CONFIG_X86_64
194 	current_save_fsgs();
195 	p->thread.fsindex = current->thread.fsindex;
196 	p->thread.fsbase = current->thread.fsbase;
197 	p->thread.gsindex = current->thread.gsindex;
198 	p->thread.gsbase = current->thread.gsbase;
199 
200 	savesegment(es, p->thread.es);
201 	savesegment(ds, p->thread.ds);
202 
203 	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
204 		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
205 #else
206 	p->thread.sp0 = (unsigned long) (childregs + 1);
207 	savesegment(gs, p->thread.gs);
208 	/*
209 	 * Clear all status flags including IF and set fixed bit. 64bit
210 	 * does not have this initialization as the frame does not contain
211 	 * flags. The flags consistency (especially vs. AC) is there
212 	 * ensured via objtool, which lacks 32bit support.
213 	 */
214 	frame->flags = X86_EFLAGS_FIXED;
215 #endif
216 
217 	/*
218 	 * Allocate a new shadow stack for thread if needed. If shadow stack,
219 	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
220 	 * update it.
221 	 */
222 	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
223 	if (IS_ERR_VALUE(new_ssp))
224 		return PTR_ERR((void *)new_ssp);
225 
226 	fpu_clone(p, clone_flags, args->fn, new_ssp);
227 
228 	/* Kernel thread ? */
229 	if (unlikely(p->flags & PF_KTHREAD)) {
230 		p->thread.pkru = pkru_get_init_value();
231 		memset(childregs, 0, sizeof(struct pt_regs));
232 		kthread_frame_init(frame, args->fn, args->fn_arg);
233 		return 0;
234 	}
235 
236 	/*
237 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
238 	 * is only valid when scheduled out.
239 	 */
240 	p->thread.pkru = read_pkru();
241 
242 	frame->bx = 0;
243 	*childregs = *current_pt_regs();
244 	childregs->ax = 0;
245 	if (sp)
246 		childregs->sp = sp;
247 
248 	if (unlikely(args->fn)) {
249 		/*
250 		 * A user space thread, but it doesn't return to
251 		 * ret_after_fork().
252 		 *
253 		 * In order to indicate that to tools like gdb,
254 		 * we reset the stack and instruction pointers.
255 		 *
256 		 * It does the same kernel frame setup to return to a kernel
257 		 * function that a kernel thread does.
258 		 */
259 		childregs->sp = 0;
260 		childregs->ip = 0;
261 		kthread_frame_init(frame, args->fn, args->fn_arg);
262 		return 0;
263 	}
264 
265 	/* Set a new TLS for the child thread? */
266 	if (clone_flags & CLONE_SETTLS)
267 		ret = set_new_tls(p, tls);
268 
269 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
270 		io_bitmap_share(p);
271 
272 	return ret;
273 }
274 
275 static void pkru_flush_thread(void)
276 {
277 	/*
278 	 * If PKRU is enabled the default PKRU value has to be loaded into
279 	 * the hardware right here (similar to context switch).
280 	 */
281 	pkru_write_default();
282 }
283 
284 void flush_thread(void)
285 {
286 	struct task_struct *tsk = current;
287 
288 	flush_ptrace_hw_breakpoint(tsk);
289 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
290 
291 	fpu_flush_thread();
292 	pkru_flush_thread();
293 }
294 
295 void disable_TSC(void)
296 {
297 	preempt_disable();
298 	if (!test_and_set_thread_flag(TIF_NOTSC))
299 		/*
300 		 * Must flip the CPU state synchronously with
301 		 * TIF_NOTSC in the current running context.
302 		 */
303 		cr4_set_bits(X86_CR4_TSD);
304 	preempt_enable();
305 }
306 
307 static void enable_TSC(void)
308 {
309 	preempt_disable();
310 	if (test_and_clear_thread_flag(TIF_NOTSC))
311 		/*
312 		 * Must flip the CPU state synchronously with
313 		 * TIF_NOTSC in the current running context.
314 		 */
315 		cr4_clear_bits(X86_CR4_TSD);
316 	preempt_enable();
317 }
318 
319 int get_tsc_mode(unsigned long adr)
320 {
321 	unsigned int val;
322 
323 	if (test_thread_flag(TIF_NOTSC))
324 		val = PR_TSC_SIGSEGV;
325 	else
326 		val = PR_TSC_ENABLE;
327 
328 	return put_user(val, (unsigned int __user *)adr);
329 }
330 
331 int set_tsc_mode(unsigned int val)
332 {
333 	if (val == PR_TSC_SIGSEGV)
334 		disable_TSC();
335 	else if (val == PR_TSC_ENABLE)
336 		enable_TSC();
337 	else
338 		return -EINVAL;
339 
340 	return 0;
341 }
342 
343 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
344 
345 static void set_cpuid_faulting(bool on)
346 {
347 
348 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
349 		u64 msrval;
350 
351 		msrval = this_cpu_read(msr_misc_features_shadow);
352 		msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
353 		msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
354 		this_cpu_write(msr_misc_features_shadow, msrval);
355 		wrmsrq(MSR_MISC_FEATURES_ENABLES, msrval);
356 	} else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
357 		if (on)
358 			msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_CPUID_USER_DIS_BIT);
359 		else
360 			msr_clear_bit(MSR_K7_HWCR, MSR_K7_HWCR_CPUID_USER_DIS_BIT);
361 	}
362 }
363 
364 static void disable_cpuid(void)
365 {
366 	preempt_disable();
367 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
368 		/*
369 		 * Must flip the CPU state synchronously with
370 		 * TIF_NOCPUID in the current running context.
371 		 */
372 		set_cpuid_faulting(true);
373 	}
374 	preempt_enable();
375 }
376 
377 static void enable_cpuid(void)
378 {
379 	preempt_disable();
380 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
381 		/*
382 		 * Must flip the CPU state synchronously with
383 		 * TIF_NOCPUID in the current running context.
384 		 */
385 		set_cpuid_faulting(false);
386 	}
387 	preempt_enable();
388 }
389 
390 static int get_cpuid_mode(void)
391 {
392 	return !test_thread_flag(TIF_NOCPUID);
393 }
394 
395 static int set_cpuid_mode(unsigned long cpuid_enabled)
396 {
397 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
398 		return -ENODEV;
399 
400 	if (cpuid_enabled)
401 		enable_cpuid();
402 	else
403 		disable_cpuid();
404 
405 	return 0;
406 }
407 
408 /*
409  * Called immediately after a successful exec.
410  */
411 void arch_setup_new_exec(void)
412 {
413 	/* If cpuid was previously disabled for this task, re-enable it. */
414 	if (test_thread_flag(TIF_NOCPUID))
415 		enable_cpuid();
416 
417 	/*
418 	 * Don't inherit TIF_SSBD across exec boundary when
419 	 * PR_SPEC_DISABLE_NOEXEC is used.
420 	 */
421 	if (test_thread_flag(TIF_SSBD) &&
422 	    task_spec_ssb_noexec(current)) {
423 		clear_thread_flag(TIF_SSBD);
424 		task_clear_spec_ssb_disable(current);
425 		task_clear_spec_ssb_noexec(current);
426 		speculation_ctrl_update(read_thread_flags());
427 	}
428 
429 	mm_reset_untag_mask(current->mm);
430 }
431 
432 #ifdef CONFIG_X86_IOPL_IOPERM
433 static inline void switch_to_bitmap(unsigned long tifp)
434 {
435 	/*
436 	 * Invalidate I/O bitmap if the previous task used it. This prevents
437 	 * any possible leakage of an active I/O bitmap.
438 	 *
439 	 * If the next task has an I/O bitmap it will handle it on exit to
440 	 * user mode.
441 	 */
442 	if (tifp & _TIF_IO_BITMAP)
443 		tss_invalidate_io_bitmap();
444 }
445 
446 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
447 {
448 	/*
449 	 * Copy at least the byte range of the incoming tasks bitmap which
450 	 * covers the permitted I/O ports.
451 	 *
452 	 * If the previous task which used an I/O bitmap had more bits
453 	 * permitted, then the copy needs to cover those as well so they
454 	 * get turned off.
455 	 */
456 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
457 	       max(tss->io_bitmap.prev_max, iobm->max));
458 
459 	/*
460 	 * Store the new max and the sequence number of this bitmap
461 	 * and a pointer to the bitmap itself.
462 	 */
463 	tss->io_bitmap.prev_max = iobm->max;
464 	tss->io_bitmap.prev_sequence = iobm->sequence;
465 }
466 
467 /**
468  * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
469  */
470 void native_tss_update_io_bitmap(void)
471 {
472 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
473 	struct thread_struct *t = &current->thread;
474 	u16 *base = &tss->x86_tss.io_bitmap_base;
475 
476 	if (!test_thread_flag(TIF_IO_BITMAP)) {
477 		native_tss_invalidate_io_bitmap();
478 		return;
479 	}
480 
481 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
482 		*base = IO_BITMAP_OFFSET_VALID_ALL;
483 	} else {
484 		struct io_bitmap *iobm = t->io_bitmap;
485 
486 		if (WARN_ON_ONCE(!iobm)) {
487 			clear_thread_flag(TIF_IO_BITMAP);
488 			native_tss_invalidate_io_bitmap();
489 		}
490 
491 		/*
492 		 * Only copy bitmap data when the sequence number differs. The
493 		 * update time is accounted to the incoming task.
494 		 */
495 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
496 			tss_copy_io_bitmap(tss, iobm);
497 
498 		/* Enable the bitmap */
499 		*base = IO_BITMAP_OFFSET_VALID_MAP;
500 	}
501 
502 	/*
503 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
504 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
505 	 * access from user space to trigger a #GP because the bitmap is outside
506 	 * the TSS limit.
507 	 */
508 	refresh_tss_limit();
509 }
510 #else /* CONFIG_X86_IOPL_IOPERM */
511 static inline void switch_to_bitmap(unsigned long tifp) { }
512 #endif
513 
514 #ifdef CONFIG_SMP
515 
516 struct ssb_state {
517 	struct ssb_state	*shared_state;
518 	raw_spinlock_t		lock;
519 	unsigned int		disable_state;
520 	unsigned long		local_state;
521 };
522 
523 #define LSTATE_SSB	0
524 
525 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
526 
527 void speculative_store_bypass_ht_init(void)
528 {
529 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
530 	unsigned int this_cpu = smp_processor_id();
531 	unsigned int cpu;
532 
533 	st->local_state = 0;
534 
535 	/*
536 	 * Shared state setup happens once on the first bringup
537 	 * of the CPU. It's not destroyed on CPU hotunplug.
538 	 */
539 	if (st->shared_state)
540 		return;
541 
542 	raw_spin_lock_init(&st->lock);
543 
544 	/*
545 	 * Go over HT siblings and check whether one of them has set up the
546 	 * shared state pointer already.
547 	 */
548 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
549 		if (cpu == this_cpu)
550 			continue;
551 
552 		if (!per_cpu(ssb_state, cpu).shared_state)
553 			continue;
554 
555 		/* Link it to the state of the sibling: */
556 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
557 		return;
558 	}
559 
560 	/*
561 	 * First HT sibling to come up on the core.  Link shared state of
562 	 * the first HT sibling to itself. The siblings on the same core
563 	 * which come up later will see the shared state pointer and link
564 	 * themselves to the state of this CPU.
565 	 */
566 	st->shared_state = st;
567 }
568 
569 /*
570  * Logic is: First HT sibling enables SSBD for both siblings in the core
571  * and last sibling to disable it, disables it for the whole core. This how
572  * MSR_SPEC_CTRL works in "hardware":
573  *
574  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
575  */
576 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
577 {
578 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
579 	u64 msr = x86_amd_ls_cfg_base;
580 
581 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
582 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
583 		wrmsrq(MSR_AMD64_LS_CFG, msr);
584 		return;
585 	}
586 
587 	if (tifn & _TIF_SSBD) {
588 		/*
589 		 * Since this can race with prctl(), block reentry on the
590 		 * same CPU.
591 		 */
592 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
593 			return;
594 
595 		msr |= x86_amd_ls_cfg_ssbd_mask;
596 
597 		raw_spin_lock(&st->shared_state->lock);
598 		/* First sibling enables SSBD: */
599 		if (!st->shared_state->disable_state)
600 			wrmsrq(MSR_AMD64_LS_CFG, msr);
601 		st->shared_state->disable_state++;
602 		raw_spin_unlock(&st->shared_state->lock);
603 	} else {
604 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
605 			return;
606 
607 		raw_spin_lock(&st->shared_state->lock);
608 		st->shared_state->disable_state--;
609 		if (!st->shared_state->disable_state)
610 			wrmsrq(MSR_AMD64_LS_CFG, msr);
611 		raw_spin_unlock(&st->shared_state->lock);
612 	}
613 }
614 #else
615 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
616 {
617 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
618 
619 	wrmsrq(MSR_AMD64_LS_CFG, msr);
620 }
621 #endif
622 
623 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
624 {
625 	/*
626 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
627 	 * so ssbd_tif_to_spec_ctrl() just works.
628 	 */
629 	wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
630 }
631 
632 /*
633  * Update the MSRs managing speculation control, during context switch.
634  *
635  * tifp: Previous task's thread flags
636  * tifn: Next task's thread flags
637  */
638 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
639 						      unsigned long tifn)
640 {
641 	unsigned long tif_diff = tifp ^ tifn;
642 	u64 msr = x86_spec_ctrl_base;
643 	bool updmsr = false;
644 
645 	lockdep_assert_irqs_disabled();
646 
647 	/* Handle change of TIF_SSBD depending on the mitigation method. */
648 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
649 		if (tif_diff & _TIF_SSBD)
650 			amd_set_ssb_virt_state(tifn);
651 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
652 		if (tif_diff & _TIF_SSBD)
653 			amd_set_core_ssb_state(tifn);
654 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
655 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
656 		updmsr |= !!(tif_diff & _TIF_SSBD);
657 		msr |= ssbd_tif_to_spec_ctrl(tifn);
658 	}
659 
660 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
661 	if (IS_ENABLED(CONFIG_SMP) &&
662 	    static_branch_unlikely(&switch_to_cond_stibp)) {
663 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
664 		msr |= stibp_tif_to_spec_ctrl(tifn);
665 	}
666 
667 	if (updmsr)
668 		update_spec_ctrl_cond(msr);
669 }
670 
671 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
672 {
673 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
674 		if (task_spec_ssb_disable(tsk))
675 			set_tsk_thread_flag(tsk, TIF_SSBD);
676 		else
677 			clear_tsk_thread_flag(tsk, TIF_SSBD);
678 
679 		if (task_spec_ib_disable(tsk))
680 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
681 		else
682 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
683 	}
684 	/* Return the updated threadinfo flags*/
685 	return read_task_thread_flags(tsk);
686 }
687 
688 void speculation_ctrl_update(unsigned long tif)
689 {
690 	unsigned long flags;
691 
692 	/* Forced update. Make sure all relevant TIF flags are different */
693 	local_irq_save(flags);
694 	__speculation_ctrl_update(~tif, tif);
695 	local_irq_restore(flags);
696 }
697 
698 /* Called from seccomp/prctl update */
699 void speculation_ctrl_update_current(void)
700 {
701 	preempt_disable();
702 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
703 	preempt_enable();
704 }
705 
706 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
707 {
708 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
709 
710 	newval = cr4 ^ mask;
711 	if (newval != cr4) {
712 		this_cpu_write(cpu_tlbstate.cr4, newval);
713 		__write_cr4(newval);
714 	}
715 }
716 
717 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
718 {
719 	unsigned long tifp, tifn;
720 
721 	tifn = read_task_thread_flags(next_p);
722 	tifp = read_task_thread_flags(prev_p);
723 
724 	switch_to_bitmap(tifp);
725 
726 	propagate_user_return_notify(prev_p, next_p);
727 
728 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
729 	    arch_has_block_step()) {
730 		unsigned long debugctl, msk;
731 
732 		rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
733 		debugctl &= ~DEBUGCTLMSR_BTF;
734 		msk = tifn & _TIF_BLOCKSTEP;
735 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
736 		wrmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
737 	}
738 
739 	if ((tifp ^ tifn) & _TIF_NOTSC)
740 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
741 
742 	if ((tifp ^ tifn) & _TIF_NOCPUID)
743 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
744 
745 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
746 		__speculation_ctrl_update(tifp, tifn);
747 	} else {
748 		speculation_ctrl_update_tif(prev_p);
749 		tifn = speculation_ctrl_update_tif(next_p);
750 
751 		/* Enforce MSR update to ensure consistent state */
752 		__speculation_ctrl_update(~tifn, tifn);
753 	}
754 }
755 
756 /*
757  * Idle related variables and functions
758  */
759 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
760 EXPORT_SYMBOL(boot_option_idle_override);
761 
762 /*
763  * We use this if we don't have any better idle routine..
764  */
765 void __cpuidle default_idle(void)
766 {
767 	raw_safe_halt();
768 	raw_local_irq_disable();
769 }
770 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
771 EXPORT_SYMBOL(default_idle);
772 #endif
773 
774 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
775 
776 static bool x86_idle_set(void)
777 {
778 	return !!static_call_query(x86_idle);
779 }
780 
781 #ifndef CONFIG_SMP
782 static inline void __noreturn play_dead(void)
783 {
784 	BUG();
785 }
786 #endif
787 
788 void arch_cpu_idle_enter(void)
789 {
790 	tsc_verify_tsc_adjust(false);
791 	local_touch_nmi();
792 }
793 
794 void __noreturn arch_cpu_idle_dead(void)
795 {
796 	play_dead();
797 }
798 
799 /*
800  * Called from the generic idle code.
801  */
802 void __cpuidle arch_cpu_idle(void)
803 {
804 	static_call(x86_idle)();
805 }
806 EXPORT_SYMBOL_GPL(arch_cpu_idle);
807 
808 #ifdef CONFIG_XEN
809 bool xen_set_default_idle(void)
810 {
811 	bool ret = x86_idle_set();
812 
813 	static_call_update(x86_idle, default_idle);
814 
815 	return ret;
816 }
817 #endif
818 
819 struct cpumask cpus_stop_mask;
820 
821 void __noreturn stop_this_cpu(void *dummy)
822 {
823 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
824 	unsigned int cpu = smp_processor_id();
825 
826 	local_irq_disable();
827 
828 	/*
829 	 * Remove this CPU from the online mask and disable it
830 	 * unconditionally. This might be redundant in case that the reboot
831 	 * vector was handled late and stop_other_cpus() sent an NMI.
832 	 *
833 	 * According to SDM and APM NMIs can be accepted even after soft
834 	 * disabling the local APIC.
835 	 */
836 	set_cpu_online(cpu, false);
837 	disable_local_APIC();
838 	mcheck_cpu_clear(c);
839 
840 	if (this_cpu_read(cache_state_incoherent))
841 		wbinvd();
842 
843 	/*
844 	 * This brings a cache line back and dirties it, but
845 	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
846 	 * observed that all CPUs reported stop. This write will invalidate
847 	 * the related cache line on this CPU.
848 	 */
849 	cpumask_clear_cpu(cpu, &cpus_stop_mask);
850 
851 #ifdef CONFIG_SMP
852 	if (smp_ops.stop_this_cpu) {
853 		smp_ops.stop_this_cpu();
854 		BUG();
855 	}
856 #endif
857 
858 	for (;;) {
859 		/*
860 		 * Use native_halt() so that memory contents don't change
861 		 * (stack usage and variables) after possibly issuing the
862 		 * wbinvd() above.
863 		 */
864 		native_halt();
865 	}
866 }
867 
868 /*
869  * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
870  * exists and whenever MONITOR/MWAIT extensions are present there is at
871  * least one C1 substate.
872  *
873  * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
874  * is passed to kernel commandline parameter.
875  */
876 static __init bool prefer_mwait_c1_over_halt(void)
877 {
878 	const struct cpuinfo_x86 *c = &boot_cpu_data;
879 	u32 eax, ebx, ecx, edx;
880 
881 	/* If override is enforced on the command line, fall back to HALT. */
882 	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
883 		return false;
884 
885 	/* MWAIT is not supported on this platform. Fallback to HALT */
886 	if (!cpu_has(c, X86_FEATURE_MWAIT))
887 		return false;
888 
889 	/* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
890 	if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
891 		return false;
892 
893 	cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx);
894 
895 	/*
896 	 * If MWAIT extensions are not available, it is safe to use MWAIT
897 	 * with EAX=0, ECX=0.
898 	 */
899 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
900 		return true;
901 
902 	/*
903 	 * If MWAIT extensions are available, there should be at least one
904 	 * MWAIT C1 substate present.
905 	 */
906 	return !!(edx & MWAIT_C1_SUBSTATE_MASK);
907 }
908 
909 /*
910  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
911  * with interrupts enabled and no flags, which is backwards compatible with the
912  * original MWAIT implementation.
913  */
914 static __cpuidle void mwait_idle(void)
915 {
916 	if (need_resched())
917 		return;
918 
919 	x86_idle_clear_cpu_buffers();
920 
921 	if (!current_set_polling_and_test()) {
922 		const void *addr = &current_thread_info()->flags;
923 
924 		alternative_input("", "clflush (%[addr])", X86_BUG_CLFLUSH_MONITOR, [addr] "a" (addr));
925 		__monitor(addr, 0, 0);
926 		if (need_resched())
927 			goto out;
928 
929 		__sti_mwait(0, 0);
930 		raw_local_irq_disable();
931 	}
932 
933 out:
934 	__current_clr_polling();
935 }
936 
937 void __init select_idle_routine(void)
938 {
939 	if (boot_option_idle_override == IDLE_POLL) {
940 		if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
941 			pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
942 		return;
943 	}
944 
945 	/* Required to guard against xen_set_default_idle() */
946 	if (x86_idle_set())
947 		return;
948 
949 	if (prefer_mwait_c1_over_halt()) {
950 		pr_info("using mwait in idle threads\n");
951 		static_call_update(x86_idle, mwait_idle);
952 	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
953 		pr_info("using TDX aware idle routine\n");
954 		static_call_update(x86_idle, tdx_halt);
955 	} else {
956 		static_call_update(x86_idle, default_idle);
957 	}
958 }
959 
960 void amd_e400_c1e_apic_setup(void)
961 {
962 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
963 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
964 		local_irq_disable();
965 		tick_broadcast_force();
966 		local_irq_enable();
967 	}
968 }
969 
970 void __init arch_post_acpi_subsys_init(void)
971 {
972 	u32 lo, hi;
973 
974 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
975 		return;
976 
977 	/*
978 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
979 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
980 	 * MSR_K8_INT_PENDING_MSG.
981 	 */
982 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
983 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
984 		return;
985 
986 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
987 
988 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
989 		mark_tsc_unstable("TSC halt in AMD C1E");
990 
991 	if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
992 		static_branch_enable(&arch_needs_tick_broadcast);
993 	pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
994 }
995 
996 static int __init idle_setup(char *str)
997 {
998 	if (!str)
999 		return -EINVAL;
1000 
1001 	if (!strcmp(str, "poll")) {
1002 		pr_info("using polling idle threads\n");
1003 		boot_option_idle_override = IDLE_POLL;
1004 		cpu_idle_poll_ctrl(true);
1005 	} else if (!strcmp(str, "halt")) {
1006 		/* 'idle=halt' HALT for idle. C-states are disabled. */
1007 		boot_option_idle_override = IDLE_HALT;
1008 	} else if (!strcmp(str, "nomwait")) {
1009 		/* 'idle=nomwait' disables MWAIT for idle */
1010 		boot_option_idle_override = IDLE_NOMWAIT;
1011 	} else {
1012 		return -EINVAL;
1013 	}
1014 
1015 	return 0;
1016 }
1017 early_param("idle", idle_setup);
1018 
1019 unsigned long arch_align_stack(unsigned long sp)
1020 {
1021 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1022 		sp -= get_random_u32_below(8192);
1023 	return sp & ~0xf;
1024 }
1025 
1026 unsigned long arch_randomize_brk(struct mm_struct *mm)
1027 {
1028 	if (mmap_is_ia32())
1029 		return randomize_page(mm->brk, SZ_32M);
1030 
1031 	return randomize_page(mm->brk, SZ_1G);
1032 }
1033 
1034 /*
1035  * Called from fs/proc with a reference on @p to find the function
1036  * which called into schedule(). This needs to be done carefully
1037  * because the task might wake up and we might look at a stack
1038  * changing under us.
1039  */
1040 unsigned long __get_wchan(struct task_struct *p)
1041 {
1042 	struct unwind_state state;
1043 	unsigned long addr = 0;
1044 
1045 	if (!try_get_task_stack(p))
1046 		return 0;
1047 
1048 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1049 	     unwind_next_frame(&state)) {
1050 		addr = unwind_get_return_address(&state);
1051 		if (!addr)
1052 			break;
1053 		if (in_sched_functions(addr))
1054 			continue;
1055 		break;
1056 	}
1057 
1058 	put_task_stack(p);
1059 
1060 	return addr;
1061 }
1062 
1063 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
1064 {
1065 	switch (option) {
1066 	case ARCH_GET_CPUID:
1067 		return get_cpuid_mode();
1068 	case ARCH_SET_CPUID:
1069 		return set_cpuid_mode(arg2);
1070 	case ARCH_GET_XCOMP_SUPP:
1071 	case ARCH_GET_XCOMP_PERM:
1072 	case ARCH_REQ_XCOMP_PERM:
1073 	case ARCH_GET_XCOMP_GUEST_PERM:
1074 	case ARCH_REQ_XCOMP_GUEST_PERM:
1075 		return fpu_xstate_prctl(option, arg2);
1076 	}
1077 
1078 	if (!in_ia32_syscall())
1079 		return do_arch_prctl_64(current, option, arg2);
1080 
1081 	return -EINVAL;
1082 }
1083 
1084 SYSCALL_DEFINE0(ni_syscall)
1085 {
1086 	return -ENOSYS;
1087 }
1088