1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/system.h> 18 #include <asm/apic.h> 19 #include <asm/syscalls.h> 20 #include <asm/idle.h> 21 #include <asm/uaccess.h> 22 #include <asm/i387.h> 23 #include <asm/ds.h> 24 #include <asm/debugreg.h> 25 26 unsigned long idle_halt; 27 EXPORT_SYMBOL(idle_halt); 28 unsigned long idle_nomwait; 29 EXPORT_SYMBOL(idle_nomwait); 30 31 struct kmem_cache *task_xstate_cachep; 32 33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 34 { 35 *dst = *src; 36 if (src->thread.xstate) { 37 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep, 38 GFP_KERNEL); 39 if (!dst->thread.xstate) 40 return -ENOMEM; 41 WARN_ON((unsigned long)dst->thread.xstate & 15); 42 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size); 43 } 44 return 0; 45 } 46 47 void free_thread_xstate(struct task_struct *tsk) 48 { 49 if (tsk->thread.xstate) { 50 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate); 51 tsk->thread.xstate = NULL; 52 } 53 54 WARN(tsk->thread.ds_ctx, "leaking DS context\n"); 55 } 56 57 void free_thread_info(struct thread_info *ti) 58 { 59 free_thread_xstate(ti->task); 60 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 61 } 62 63 void arch_task_cache_init(void) 64 { 65 task_xstate_cachep = 66 kmem_cache_create("task_xstate", xstate_size, 67 __alignof__(union thread_xstate), 68 SLAB_PANIC | SLAB_NOTRACK, NULL); 69 } 70 71 /* 72 * Free current thread data structures etc.. 73 */ 74 void exit_thread(void) 75 { 76 struct task_struct *me = current; 77 struct thread_struct *t = &me->thread; 78 unsigned long *bp = t->io_bitmap_ptr; 79 80 if (bp) { 81 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 82 83 t->io_bitmap_ptr = NULL; 84 clear_thread_flag(TIF_IO_BITMAP); 85 /* 86 * Careful, clear this in the TSS too: 87 */ 88 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 89 t->io_bitmap_max = 0; 90 put_cpu(); 91 kfree(bp); 92 } 93 } 94 95 void show_regs(struct pt_regs *regs) 96 { 97 show_registers(regs); 98 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 99 regs->bp); 100 } 101 102 void show_regs_common(void) 103 { 104 const char *board, *product; 105 106 board = dmi_get_system_info(DMI_BOARD_NAME); 107 if (!board) 108 board = ""; 109 product = dmi_get_system_info(DMI_PRODUCT_NAME); 110 if (!product) 111 product = ""; 112 113 printk(KERN_CONT "\n"); 114 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", 115 current->pid, current->comm, print_tainted(), 116 init_utsname()->release, 117 (int)strcspn(init_utsname()->version, " "), 118 init_utsname()->version, board, product); 119 } 120 121 void flush_thread(void) 122 { 123 struct task_struct *tsk = current; 124 125 flush_ptrace_hw_breakpoint(tsk); 126 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 127 /* 128 * Forget coprocessor state.. 129 */ 130 tsk->fpu_counter = 0; 131 clear_fpu(tsk); 132 clear_used_math(); 133 } 134 135 static void hard_disable_TSC(void) 136 { 137 write_cr4(read_cr4() | X86_CR4_TSD); 138 } 139 140 void disable_TSC(void) 141 { 142 preempt_disable(); 143 if (!test_and_set_thread_flag(TIF_NOTSC)) 144 /* 145 * Must flip the CPU state synchronously with 146 * TIF_NOTSC in the current running context. 147 */ 148 hard_disable_TSC(); 149 preempt_enable(); 150 } 151 152 static void hard_enable_TSC(void) 153 { 154 write_cr4(read_cr4() & ~X86_CR4_TSD); 155 } 156 157 static void enable_TSC(void) 158 { 159 preempt_disable(); 160 if (test_and_clear_thread_flag(TIF_NOTSC)) 161 /* 162 * Must flip the CPU state synchronously with 163 * TIF_NOTSC in the current running context. 164 */ 165 hard_enable_TSC(); 166 preempt_enable(); 167 } 168 169 int get_tsc_mode(unsigned long adr) 170 { 171 unsigned int val; 172 173 if (test_thread_flag(TIF_NOTSC)) 174 val = PR_TSC_SIGSEGV; 175 else 176 val = PR_TSC_ENABLE; 177 178 return put_user(val, (unsigned int __user *)adr); 179 } 180 181 int set_tsc_mode(unsigned int val) 182 { 183 if (val == PR_TSC_SIGSEGV) 184 disable_TSC(); 185 else if (val == PR_TSC_ENABLE) 186 enable_TSC(); 187 else 188 return -EINVAL; 189 190 return 0; 191 } 192 193 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 194 struct tss_struct *tss) 195 { 196 struct thread_struct *prev, *next; 197 198 prev = &prev_p->thread; 199 next = &next_p->thread; 200 201 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || 202 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) 203 ds_switch_to(prev_p, next_p); 204 else if (next->debugctlmsr != prev->debugctlmsr) 205 update_debugctlmsr(next->debugctlmsr); 206 207 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 208 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 209 /* prev and next are different */ 210 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 211 hard_disable_TSC(); 212 else 213 hard_enable_TSC(); 214 } 215 216 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 217 /* 218 * Copy the relevant range of the IO bitmap. 219 * Normally this is 128 bytes or less: 220 */ 221 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 222 max(prev->io_bitmap_max, next->io_bitmap_max)); 223 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 224 /* 225 * Clear any possible leftover bits: 226 */ 227 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 228 } 229 propagate_user_return_notify(prev_p, next_p); 230 } 231 232 int sys_fork(struct pt_regs *regs) 233 { 234 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 235 } 236 237 /* 238 * This is trivial, and on the face of it looks like it 239 * could equally well be done in user mode. 240 * 241 * Not so, for quite unobvious reasons - register pressure. 242 * In user mode vfork() cannot have a stack frame, and if 243 * done by calling the "clone()" system call directly, you 244 * do not have enough call-clobbered registers to hold all 245 * the information you need. 246 */ 247 int sys_vfork(struct pt_regs *regs) 248 { 249 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 250 NULL, NULL); 251 } 252 253 long 254 sys_clone(unsigned long clone_flags, unsigned long newsp, 255 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 256 { 257 if (!newsp) 258 newsp = regs->sp; 259 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 260 } 261 262 /* 263 * This gets run with %si containing the 264 * function to call, and %di containing 265 * the "args". 266 */ 267 extern void kernel_thread_helper(void); 268 269 /* 270 * Create a kernel thread 271 */ 272 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 273 { 274 struct pt_regs regs; 275 276 memset(®s, 0, sizeof(regs)); 277 278 regs.si = (unsigned long) fn; 279 regs.di = (unsigned long) arg; 280 281 #ifdef CONFIG_X86_32 282 regs.ds = __USER_DS; 283 regs.es = __USER_DS; 284 regs.fs = __KERNEL_PERCPU; 285 regs.gs = __KERNEL_STACK_CANARY; 286 #else 287 regs.ss = __KERNEL_DS; 288 #endif 289 290 regs.orig_ax = -1; 291 regs.ip = (unsigned long) kernel_thread_helper; 292 regs.cs = __KERNEL_CS | get_kernel_rpl(); 293 regs.flags = X86_EFLAGS_IF | 0x2; 294 295 /* Ok, create the new process.. */ 296 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 297 } 298 EXPORT_SYMBOL(kernel_thread); 299 300 /* 301 * sys_execve() executes a new program. 302 */ 303 long sys_execve(char __user *name, char __user * __user *argv, 304 char __user * __user *envp, struct pt_regs *regs) 305 { 306 long error; 307 char *filename; 308 309 filename = getname(name); 310 error = PTR_ERR(filename); 311 if (IS_ERR(filename)) 312 return error; 313 error = do_execve(filename, argv, envp, regs); 314 315 #ifdef CONFIG_X86_32 316 if (error == 0) { 317 /* Make sure we don't return using sysenter.. */ 318 set_thread_flag(TIF_IRET); 319 } 320 #endif 321 322 putname(filename); 323 return error; 324 } 325 326 /* 327 * Idle related variables and functions 328 */ 329 unsigned long boot_option_idle_override = 0; 330 EXPORT_SYMBOL(boot_option_idle_override); 331 332 /* 333 * Powermanagement idle function, if any.. 334 */ 335 void (*pm_idle)(void); 336 EXPORT_SYMBOL(pm_idle); 337 338 #ifdef CONFIG_X86_32 339 /* 340 * This halt magic was a workaround for ancient floppy DMA 341 * wreckage. It should be safe to remove. 342 */ 343 static int hlt_counter; 344 void disable_hlt(void) 345 { 346 hlt_counter++; 347 } 348 EXPORT_SYMBOL(disable_hlt); 349 350 void enable_hlt(void) 351 { 352 hlt_counter--; 353 } 354 EXPORT_SYMBOL(enable_hlt); 355 356 static inline int hlt_use_halt(void) 357 { 358 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 359 } 360 #else 361 static inline int hlt_use_halt(void) 362 { 363 return 1; 364 } 365 #endif 366 367 /* 368 * We use this if we don't have any better 369 * idle routine.. 370 */ 371 void default_idle(void) 372 { 373 if (hlt_use_halt()) { 374 trace_power_start(POWER_CSTATE, 1); 375 current_thread_info()->status &= ~TS_POLLING; 376 /* 377 * TS_POLLING-cleared state must be visible before we 378 * test NEED_RESCHED: 379 */ 380 smp_mb(); 381 382 if (!need_resched()) 383 safe_halt(); /* enables interrupts racelessly */ 384 else 385 local_irq_enable(); 386 current_thread_info()->status |= TS_POLLING; 387 } else { 388 local_irq_enable(); 389 /* loop is done by the caller */ 390 cpu_relax(); 391 } 392 } 393 #ifdef CONFIG_APM_MODULE 394 EXPORT_SYMBOL(default_idle); 395 #endif 396 397 void stop_this_cpu(void *dummy) 398 { 399 local_irq_disable(); 400 /* 401 * Remove this CPU: 402 */ 403 set_cpu_online(smp_processor_id(), false); 404 disable_local_APIC(); 405 406 for (;;) { 407 if (hlt_works(smp_processor_id())) 408 halt(); 409 } 410 } 411 412 static void do_nothing(void *unused) 413 { 414 } 415 416 /* 417 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 418 * pm_idle and update to new pm_idle value. Required while changing pm_idle 419 * handler on SMP systems. 420 * 421 * Caller must have changed pm_idle to the new value before the call. Old 422 * pm_idle value will not be used by any CPU after the return of this function. 423 */ 424 void cpu_idle_wait(void) 425 { 426 smp_mb(); 427 /* kick all the CPUs so that they exit out of pm_idle */ 428 smp_call_function(do_nothing, NULL, 1); 429 } 430 EXPORT_SYMBOL_GPL(cpu_idle_wait); 431 432 /* 433 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 434 * which can obviate IPI to trigger checking of need_resched. 435 * We execute MONITOR against need_resched and enter optimized wait state 436 * through MWAIT. Whenever someone changes need_resched, we would be woken 437 * up from MWAIT (without an IPI). 438 * 439 * New with Core Duo processors, MWAIT can take some hints based on CPU 440 * capability. 441 */ 442 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 443 { 444 trace_power_start(POWER_CSTATE, (ax>>4)+1); 445 if (!need_resched()) { 446 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 447 clflush((void *)¤t_thread_info()->flags); 448 449 __monitor((void *)¤t_thread_info()->flags, 0, 0); 450 smp_mb(); 451 if (!need_resched()) 452 __mwait(ax, cx); 453 } 454 } 455 456 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 457 static void mwait_idle(void) 458 { 459 if (!need_resched()) { 460 trace_power_start(POWER_CSTATE, 1); 461 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 462 clflush((void *)¤t_thread_info()->flags); 463 464 __monitor((void *)¤t_thread_info()->flags, 0, 0); 465 smp_mb(); 466 if (!need_resched()) 467 __sti_mwait(0, 0); 468 else 469 local_irq_enable(); 470 } else 471 local_irq_enable(); 472 } 473 474 /* 475 * On SMP it's slightly faster (but much more power-consuming!) 476 * to poll the ->work.need_resched flag instead of waiting for the 477 * cross-CPU IPI to arrive. Use this option with caution. 478 */ 479 static void poll_idle(void) 480 { 481 trace_power_start(POWER_CSTATE, 0); 482 local_irq_enable(); 483 while (!need_resched()) 484 cpu_relax(); 485 trace_power_end(0); 486 } 487 488 /* 489 * mwait selection logic: 490 * 491 * It depends on the CPU. For AMD CPUs that support MWAIT this is 492 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 493 * then depend on a clock divisor and current Pstate of the core. If 494 * all cores of a processor are in halt state (C1) the processor can 495 * enter the C1E (C1 enhanced) state. If mwait is used this will never 496 * happen. 497 * 498 * idle=mwait overrides this decision and forces the usage of mwait. 499 */ 500 static int __cpuinitdata force_mwait; 501 502 #define MWAIT_INFO 0x05 503 #define MWAIT_ECX_EXTENDED_INFO 0x01 504 #define MWAIT_EDX_C1 0xf0 505 506 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 507 { 508 u32 eax, ebx, ecx, edx; 509 510 if (force_mwait) 511 return 1; 512 513 if (c->cpuid_level < MWAIT_INFO) 514 return 0; 515 516 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 517 /* Check, whether EDX has extended info about MWAIT */ 518 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 519 return 1; 520 521 /* 522 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 523 * C1 supports MWAIT 524 */ 525 return (edx & MWAIT_EDX_C1); 526 } 527 528 /* 529 * Check for AMD CPUs, which have potentially C1E support 530 */ 531 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) 532 { 533 if (c->x86_vendor != X86_VENDOR_AMD) 534 return 0; 535 536 if (c->x86 < 0x0F) 537 return 0; 538 539 /* Family 0x0f models < rev F do not have C1E */ 540 if (c->x86 == 0x0f && c->x86_model < 0x40) 541 return 0; 542 543 return 1; 544 } 545 546 static cpumask_var_t c1e_mask; 547 static int c1e_detected; 548 549 void c1e_remove_cpu(int cpu) 550 { 551 if (c1e_mask != NULL) 552 cpumask_clear_cpu(cpu, c1e_mask); 553 } 554 555 /* 556 * C1E aware idle routine. We check for C1E active in the interrupt 557 * pending message MSR. If we detect C1E, then we handle it the same 558 * way as C3 power states (local apic timer and TSC stop) 559 */ 560 static void c1e_idle(void) 561 { 562 if (need_resched()) 563 return; 564 565 if (!c1e_detected) { 566 u32 lo, hi; 567 568 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 569 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 570 c1e_detected = 1; 571 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 572 mark_tsc_unstable("TSC halt in AMD C1E"); 573 printk(KERN_INFO "System has AMD C1E enabled\n"); 574 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); 575 } 576 } 577 578 if (c1e_detected) { 579 int cpu = smp_processor_id(); 580 581 if (!cpumask_test_cpu(cpu, c1e_mask)) { 582 cpumask_set_cpu(cpu, c1e_mask); 583 /* 584 * Force broadcast so ACPI can not interfere. 585 */ 586 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 587 &cpu); 588 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 589 cpu); 590 } 591 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 592 593 default_idle(); 594 595 /* 596 * The switch back from broadcast mode needs to be 597 * called with interrupts disabled. 598 */ 599 local_irq_disable(); 600 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 601 local_irq_enable(); 602 } else 603 default_idle(); 604 } 605 606 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 607 { 608 #ifdef CONFIG_SMP 609 if (pm_idle == poll_idle && smp_num_siblings > 1) { 610 printk(KERN_WARNING "WARNING: polling idle and HT enabled," 611 " performance may degrade.\n"); 612 } 613 #endif 614 if (pm_idle) 615 return; 616 617 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 618 /* 619 * One CPU supports mwait => All CPUs supports mwait 620 */ 621 printk(KERN_INFO "using mwait in idle threads.\n"); 622 pm_idle = mwait_idle; 623 } else if (check_c1e_idle(c)) { 624 printk(KERN_INFO "using C1E aware idle routine\n"); 625 pm_idle = c1e_idle; 626 } else 627 pm_idle = default_idle; 628 } 629 630 void __init init_c1e_mask(void) 631 { 632 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 633 if (pm_idle == c1e_idle) 634 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 635 } 636 637 static int __init idle_setup(char *str) 638 { 639 if (!str) 640 return -EINVAL; 641 642 if (!strcmp(str, "poll")) { 643 printk("using polling idle threads.\n"); 644 pm_idle = poll_idle; 645 } else if (!strcmp(str, "mwait")) 646 force_mwait = 1; 647 else if (!strcmp(str, "halt")) { 648 /* 649 * When the boot option of idle=halt is added, halt is 650 * forced to be used for CPU idle. In such case CPU C2/C3 651 * won't be used again. 652 * To continue to load the CPU idle driver, don't touch 653 * the boot_option_idle_override. 654 */ 655 pm_idle = default_idle; 656 idle_halt = 1; 657 return 0; 658 } else if (!strcmp(str, "nomwait")) { 659 /* 660 * If the boot option of "idle=nomwait" is added, 661 * it means that mwait will be disabled for CPU C2/C3 662 * states. In such case it won't touch the variable 663 * of boot_option_idle_override. 664 */ 665 idle_nomwait = 1; 666 return 0; 667 } else 668 return -1; 669 670 boot_option_idle_override = 1; 671 return 0; 672 } 673 early_param("idle", idle_setup); 674 675 unsigned long arch_align_stack(unsigned long sp) 676 { 677 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 678 sp -= get_random_int() % 8192; 679 return sp & ~0xf; 680 } 681 682 unsigned long arch_randomize_brk(struct mm_struct *mm) 683 { 684 unsigned long range_end = mm->brk + 0x02000000; 685 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 686 } 687 688