xref: /linux/arch/x86/kernel/process.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/system.h>
18 #include <asm/apic.h>
19 #include <asm/syscalls.h>
20 #include <asm/idle.h>
21 #include <asm/uaccess.h>
22 #include <asm/i387.h>
23 #include <asm/ds.h>
24 #include <asm/debugreg.h>
25 
26 unsigned long idle_halt;
27 EXPORT_SYMBOL(idle_halt);
28 unsigned long idle_nomwait;
29 EXPORT_SYMBOL(idle_nomwait);
30 
31 struct kmem_cache *task_xstate_cachep;
32 
33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34 {
35 	*dst = *src;
36 	if (src->thread.xstate) {
37 		dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
38 						      GFP_KERNEL);
39 		if (!dst->thread.xstate)
40 			return -ENOMEM;
41 		WARN_ON((unsigned long)dst->thread.xstate & 15);
42 		memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
43 	}
44 	return 0;
45 }
46 
47 void free_thread_xstate(struct task_struct *tsk)
48 {
49 	if (tsk->thread.xstate) {
50 		kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
51 		tsk->thread.xstate = NULL;
52 	}
53 
54 	WARN(tsk->thread.ds_ctx, "leaking DS context\n");
55 }
56 
57 void free_thread_info(struct thread_info *ti)
58 {
59 	free_thread_xstate(ti->task);
60 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
61 }
62 
63 void arch_task_cache_init(void)
64 {
65         task_xstate_cachep =
66         	kmem_cache_create("task_xstate", xstate_size,
67 				  __alignof__(union thread_xstate),
68 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
69 }
70 
71 /*
72  * Free current thread data structures etc..
73  */
74 void exit_thread(void)
75 {
76 	struct task_struct *me = current;
77 	struct thread_struct *t = &me->thread;
78 	unsigned long *bp = t->io_bitmap_ptr;
79 
80 	if (bp) {
81 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
82 
83 		t->io_bitmap_ptr = NULL;
84 		clear_thread_flag(TIF_IO_BITMAP);
85 		/*
86 		 * Careful, clear this in the TSS too:
87 		 */
88 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
89 		t->io_bitmap_max = 0;
90 		put_cpu();
91 		kfree(bp);
92 	}
93 }
94 
95 void show_regs(struct pt_regs *regs)
96 {
97 	show_registers(regs);
98 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs),
99 		   regs->bp);
100 }
101 
102 void show_regs_common(void)
103 {
104 	const char *board, *product;
105 
106 	board = dmi_get_system_info(DMI_BOARD_NAME);
107 	if (!board)
108 		board = "";
109 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
110 	if (!product)
111 		product = "";
112 
113 	printk(KERN_CONT "\n");
114 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
115 		current->pid, current->comm, print_tainted(),
116 		init_utsname()->release,
117 		(int)strcspn(init_utsname()->version, " "),
118 		init_utsname()->version, board, product);
119 }
120 
121 void flush_thread(void)
122 {
123 	struct task_struct *tsk = current;
124 
125 	flush_ptrace_hw_breakpoint(tsk);
126 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
127 	/*
128 	 * Forget coprocessor state..
129 	 */
130 	tsk->fpu_counter = 0;
131 	clear_fpu(tsk);
132 	clear_used_math();
133 }
134 
135 static void hard_disable_TSC(void)
136 {
137 	write_cr4(read_cr4() | X86_CR4_TSD);
138 }
139 
140 void disable_TSC(void)
141 {
142 	preempt_disable();
143 	if (!test_and_set_thread_flag(TIF_NOTSC))
144 		/*
145 		 * Must flip the CPU state synchronously with
146 		 * TIF_NOTSC in the current running context.
147 		 */
148 		hard_disable_TSC();
149 	preempt_enable();
150 }
151 
152 static void hard_enable_TSC(void)
153 {
154 	write_cr4(read_cr4() & ~X86_CR4_TSD);
155 }
156 
157 static void enable_TSC(void)
158 {
159 	preempt_disable();
160 	if (test_and_clear_thread_flag(TIF_NOTSC))
161 		/*
162 		 * Must flip the CPU state synchronously with
163 		 * TIF_NOTSC in the current running context.
164 		 */
165 		hard_enable_TSC();
166 	preempt_enable();
167 }
168 
169 int get_tsc_mode(unsigned long adr)
170 {
171 	unsigned int val;
172 
173 	if (test_thread_flag(TIF_NOTSC))
174 		val = PR_TSC_SIGSEGV;
175 	else
176 		val = PR_TSC_ENABLE;
177 
178 	return put_user(val, (unsigned int __user *)adr);
179 }
180 
181 int set_tsc_mode(unsigned int val)
182 {
183 	if (val == PR_TSC_SIGSEGV)
184 		disable_TSC();
185 	else if (val == PR_TSC_ENABLE)
186 		enable_TSC();
187 	else
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
193 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
194 		      struct tss_struct *tss)
195 {
196 	struct thread_struct *prev, *next;
197 
198 	prev = &prev_p->thread;
199 	next = &next_p->thread;
200 
201 	if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
202 	    test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
203 		ds_switch_to(prev_p, next_p);
204 	else if (next->debugctlmsr != prev->debugctlmsr)
205 		update_debugctlmsr(next->debugctlmsr);
206 
207 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
208 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
209 		/* prev and next are different */
210 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
211 			hard_disable_TSC();
212 		else
213 			hard_enable_TSC();
214 	}
215 
216 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
217 		/*
218 		 * Copy the relevant range of the IO bitmap.
219 		 * Normally this is 128 bytes or less:
220 		 */
221 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
222 		       max(prev->io_bitmap_max, next->io_bitmap_max));
223 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
224 		/*
225 		 * Clear any possible leftover bits:
226 		 */
227 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
228 	}
229 	propagate_user_return_notify(prev_p, next_p);
230 }
231 
232 int sys_fork(struct pt_regs *regs)
233 {
234 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
235 }
236 
237 /*
238  * This is trivial, and on the face of it looks like it
239  * could equally well be done in user mode.
240  *
241  * Not so, for quite unobvious reasons - register pressure.
242  * In user mode vfork() cannot have a stack frame, and if
243  * done by calling the "clone()" system call directly, you
244  * do not have enough call-clobbered registers to hold all
245  * the information you need.
246  */
247 int sys_vfork(struct pt_regs *regs)
248 {
249 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
250 		       NULL, NULL);
251 }
252 
253 long
254 sys_clone(unsigned long clone_flags, unsigned long newsp,
255 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
256 {
257 	if (!newsp)
258 		newsp = regs->sp;
259 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
260 }
261 
262 /*
263  * This gets run with %si containing the
264  * function to call, and %di containing
265  * the "args".
266  */
267 extern void kernel_thread_helper(void);
268 
269 /*
270  * Create a kernel thread
271  */
272 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
273 {
274 	struct pt_regs regs;
275 
276 	memset(&regs, 0, sizeof(regs));
277 
278 	regs.si = (unsigned long) fn;
279 	regs.di = (unsigned long) arg;
280 
281 #ifdef CONFIG_X86_32
282 	regs.ds = __USER_DS;
283 	regs.es = __USER_DS;
284 	regs.fs = __KERNEL_PERCPU;
285 	regs.gs = __KERNEL_STACK_CANARY;
286 #else
287 	regs.ss = __KERNEL_DS;
288 #endif
289 
290 	regs.orig_ax = -1;
291 	regs.ip = (unsigned long) kernel_thread_helper;
292 	regs.cs = __KERNEL_CS | get_kernel_rpl();
293 	regs.flags = X86_EFLAGS_IF | 0x2;
294 
295 	/* Ok, create the new process.. */
296 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
297 }
298 EXPORT_SYMBOL(kernel_thread);
299 
300 /*
301  * sys_execve() executes a new program.
302  */
303 long sys_execve(char __user *name, char __user * __user *argv,
304 		char __user * __user *envp, struct pt_regs *regs)
305 {
306 	long error;
307 	char *filename;
308 
309 	filename = getname(name);
310 	error = PTR_ERR(filename);
311 	if (IS_ERR(filename))
312 		return error;
313 	error = do_execve(filename, argv, envp, regs);
314 
315 #ifdef CONFIG_X86_32
316 	if (error == 0) {
317 		/* Make sure we don't return using sysenter.. */
318                 set_thread_flag(TIF_IRET);
319         }
320 #endif
321 
322 	putname(filename);
323 	return error;
324 }
325 
326 /*
327  * Idle related variables and functions
328  */
329 unsigned long boot_option_idle_override = 0;
330 EXPORT_SYMBOL(boot_option_idle_override);
331 
332 /*
333  * Powermanagement idle function, if any..
334  */
335 void (*pm_idle)(void);
336 EXPORT_SYMBOL(pm_idle);
337 
338 #ifdef CONFIG_X86_32
339 /*
340  * This halt magic was a workaround for ancient floppy DMA
341  * wreckage. It should be safe to remove.
342  */
343 static int hlt_counter;
344 void disable_hlt(void)
345 {
346 	hlt_counter++;
347 }
348 EXPORT_SYMBOL(disable_hlt);
349 
350 void enable_hlt(void)
351 {
352 	hlt_counter--;
353 }
354 EXPORT_SYMBOL(enable_hlt);
355 
356 static inline int hlt_use_halt(void)
357 {
358 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
359 }
360 #else
361 static inline int hlt_use_halt(void)
362 {
363 	return 1;
364 }
365 #endif
366 
367 /*
368  * We use this if we don't have any better
369  * idle routine..
370  */
371 void default_idle(void)
372 {
373 	if (hlt_use_halt()) {
374 		trace_power_start(POWER_CSTATE, 1);
375 		current_thread_info()->status &= ~TS_POLLING;
376 		/*
377 		 * TS_POLLING-cleared state must be visible before we
378 		 * test NEED_RESCHED:
379 		 */
380 		smp_mb();
381 
382 		if (!need_resched())
383 			safe_halt();	/* enables interrupts racelessly */
384 		else
385 			local_irq_enable();
386 		current_thread_info()->status |= TS_POLLING;
387 	} else {
388 		local_irq_enable();
389 		/* loop is done by the caller */
390 		cpu_relax();
391 	}
392 }
393 #ifdef CONFIG_APM_MODULE
394 EXPORT_SYMBOL(default_idle);
395 #endif
396 
397 void stop_this_cpu(void *dummy)
398 {
399 	local_irq_disable();
400 	/*
401 	 * Remove this CPU:
402 	 */
403 	set_cpu_online(smp_processor_id(), false);
404 	disable_local_APIC();
405 
406 	for (;;) {
407 		if (hlt_works(smp_processor_id()))
408 			halt();
409 	}
410 }
411 
412 static void do_nothing(void *unused)
413 {
414 }
415 
416 /*
417  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
418  * pm_idle and update to new pm_idle value. Required while changing pm_idle
419  * handler on SMP systems.
420  *
421  * Caller must have changed pm_idle to the new value before the call. Old
422  * pm_idle value will not be used by any CPU after the return of this function.
423  */
424 void cpu_idle_wait(void)
425 {
426 	smp_mb();
427 	/* kick all the CPUs so that they exit out of pm_idle */
428 	smp_call_function(do_nothing, NULL, 1);
429 }
430 EXPORT_SYMBOL_GPL(cpu_idle_wait);
431 
432 /*
433  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
434  * which can obviate IPI to trigger checking of need_resched.
435  * We execute MONITOR against need_resched and enter optimized wait state
436  * through MWAIT. Whenever someone changes need_resched, we would be woken
437  * up from MWAIT (without an IPI).
438  *
439  * New with Core Duo processors, MWAIT can take some hints based on CPU
440  * capability.
441  */
442 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
443 {
444 	trace_power_start(POWER_CSTATE, (ax>>4)+1);
445 	if (!need_resched()) {
446 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
447 			clflush((void *)&current_thread_info()->flags);
448 
449 		__monitor((void *)&current_thread_info()->flags, 0, 0);
450 		smp_mb();
451 		if (!need_resched())
452 			__mwait(ax, cx);
453 	}
454 }
455 
456 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
457 static void mwait_idle(void)
458 {
459 	if (!need_resched()) {
460 		trace_power_start(POWER_CSTATE, 1);
461 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
462 			clflush((void *)&current_thread_info()->flags);
463 
464 		__monitor((void *)&current_thread_info()->flags, 0, 0);
465 		smp_mb();
466 		if (!need_resched())
467 			__sti_mwait(0, 0);
468 		else
469 			local_irq_enable();
470 	} else
471 		local_irq_enable();
472 }
473 
474 /*
475  * On SMP it's slightly faster (but much more power-consuming!)
476  * to poll the ->work.need_resched flag instead of waiting for the
477  * cross-CPU IPI to arrive. Use this option with caution.
478  */
479 static void poll_idle(void)
480 {
481 	trace_power_start(POWER_CSTATE, 0);
482 	local_irq_enable();
483 	while (!need_resched())
484 		cpu_relax();
485 	trace_power_end(0);
486 }
487 
488 /*
489  * mwait selection logic:
490  *
491  * It depends on the CPU. For AMD CPUs that support MWAIT this is
492  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
493  * then depend on a clock divisor and current Pstate of the core. If
494  * all cores of a processor are in halt state (C1) the processor can
495  * enter the C1E (C1 enhanced) state. If mwait is used this will never
496  * happen.
497  *
498  * idle=mwait overrides this decision and forces the usage of mwait.
499  */
500 static int __cpuinitdata force_mwait;
501 
502 #define MWAIT_INFO			0x05
503 #define MWAIT_ECX_EXTENDED_INFO		0x01
504 #define MWAIT_EDX_C1			0xf0
505 
506 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
507 {
508 	u32 eax, ebx, ecx, edx;
509 
510 	if (force_mwait)
511 		return 1;
512 
513 	if (c->cpuid_level < MWAIT_INFO)
514 		return 0;
515 
516 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
517 	/* Check, whether EDX has extended info about MWAIT */
518 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
519 		return 1;
520 
521 	/*
522 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
523 	 * C1  supports MWAIT
524 	 */
525 	return (edx & MWAIT_EDX_C1);
526 }
527 
528 /*
529  * Check for AMD CPUs, which have potentially C1E support
530  */
531 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
532 {
533 	if (c->x86_vendor != X86_VENDOR_AMD)
534 		return 0;
535 
536 	if (c->x86 < 0x0F)
537 		return 0;
538 
539 	/* Family 0x0f models < rev F do not have C1E */
540 	if (c->x86 == 0x0f && c->x86_model < 0x40)
541 		return 0;
542 
543 	return 1;
544 }
545 
546 static cpumask_var_t c1e_mask;
547 static int c1e_detected;
548 
549 void c1e_remove_cpu(int cpu)
550 {
551 	if (c1e_mask != NULL)
552 		cpumask_clear_cpu(cpu, c1e_mask);
553 }
554 
555 /*
556  * C1E aware idle routine. We check for C1E active in the interrupt
557  * pending message MSR. If we detect C1E, then we handle it the same
558  * way as C3 power states (local apic timer and TSC stop)
559  */
560 static void c1e_idle(void)
561 {
562 	if (need_resched())
563 		return;
564 
565 	if (!c1e_detected) {
566 		u32 lo, hi;
567 
568 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
569 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
570 			c1e_detected = 1;
571 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
572 				mark_tsc_unstable("TSC halt in AMD C1E");
573 			printk(KERN_INFO "System has AMD C1E enabled\n");
574 			set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
575 		}
576 	}
577 
578 	if (c1e_detected) {
579 		int cpu = smp_processor_id();
580 
581 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
582 			cpumask_set_cpu(cpu, c1e_mask);
583 			/*
584 			 * Force broadcast so ACPI can not interfere.
585 			 */
586 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
587 					   &cpu);
588 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
589 			       cpu);
590 		}
591 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
592 
593 		default_idle();
594 
595 		/*
596 		 * The switch back from broadcast mode needs to be
597 		 * called with interrupts disabled.
598 		 */
599 		 local_irq_disable();
600 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
601 		 local_irq_enable();
602 	} else
603 		default_idle();
604 }
605 
606 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
607 {
608 #ifdef CONFIG_SMP
609 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
610 		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
611 			" performance may degrade.\n");
612 	}
613 #endif
614 	if (pm_idle)
615 		return;
616 
617 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
618 		/*
619 		 * One CPU supports mwait => All CPUs supports mwait
620 		 */
621 		printk(KERN_INFO "using mwait in idle threads.\n");
622 		pm_idle = mwait_idle;
623 	} else if (check_c1e_idle(c)) {
624 		printk(KERN_INFO "using C1E aware idle routine\n");
625 		pm_idle = c1e_idle;
626 	} else
627 		pm_idle = default_idle;
628 }
629 
630 void __init init_c1e_mask(void)
631 {
632 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
633 	if (pm_idle == c1e_idle)
634 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
635 }
636 
637 static int __init idle_setup(char *str)
638 {
639 	if (!str)
640 		return -EINVAL;
641 
642 	if (!strcmp(str, "poll")) {
643 		printk("using polling idle threads.\n");
644 		pm_idle = poll_idle;
645 	} else if (!strcmp(str, "mwait"))
646 		force_mwait = 1;
647 	else if (!strcmp(str, "halt")) {
648 		/*
649 		 * When the boot option of idle=halt is added, halt is
650 		 * forced to be used for CPU idle. In such case CPU C2/C3
651 		 * won't be used again.
652 		 * To continue to load the CPU idle driver, don't touch
653 		 * the boot_option_idle_override.
654 		 */
655 		pm_idle = default_idle;
656 		idle_halt = 1;
657 		return 0;
658 	} else if (!strcmp(str, "nomwait")) {
659 		/*
660 		 * If the boot option of "idle=nomwait" is added,
661 		 * it means that mwait will be disabled for CPU C2/C3
662 		 * states. In such case it won't touch the variable
663 		 * of boot_option_idle_override.
664 		 */
665 		idle_nomwait = 1;
666 		return 0;
667 	} else
668 		return -1;
669 
670 	boot_option_idle_override = 1;
671 	return 0;
672 }
673 early_param("idle", idle_setup);
674 
675 unsigned long arch_align_stack(unsigned long sp)
676 {
677 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
678 		sp -= get_random_int() % 8192;
679 	return sp & ~0xf;
680 }
681 
682 unsigned long arch_randomize_brk(struct mm_struct *mm)
683 {
684 	unsigned long range_end = mm->brk + 0x02000000;
685 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
686 }
687 
688