1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <linux/user-return-notifier.h> 13 #include <linux/dmi.h> 14 #include <linux/utsname.h> 15 #include <trace/events/power.h> 16 #include <linux/hw_breakpoint.h> 17 #include <asm/system.h> 18 #include <asm/apic.h> 19 #include <asm/syscalls.h> 20 #include <asm/idle.h> 21 #include <asm/uaccess.h> 22 #include <asm/i387.h> 23 #include <asm/debugreg.h> 24 25 struct kmem_cache *task_xstate_cachep; 26 EXPORT_SYMBOL_GPL(task_xstate_cachep); 27 28 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 29 { 30 int ret; 31 32 *dst = *src; 33 if (fpu_allocated(&src->thread.fpu)) { 34 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); 35 ret = fpu_alloc(&dst->thread.fpu); 36 if (ret) 37 return ret; 38 fpu_copy(&dst->thread.fpu, &src->thread.fpu); 39 } 40 return 0; 41 } 42 43 void free_thread_xstate(struct task_struct *tsk) 44 { 45 fpu_free(&tsk->thread.fpu); 46 } 47 48 void free_thread_info(struct thread_info *ti) 49 { 50 free_thread_xstate(ti->task); 51 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 52 } 53 54 void arch_task_cache_init(void) 55 { 56 task_xstate_cachep = 57 kmem_cache_create("task_xstate", xstate_size, 58 __alignof__(union thread_xstate), 59 SLAB_PANIC | SLAB_NOTRACK, NULL); 60 } 61 62 /* 63 * Free current thread data structures etc.. 64 */ 65 void exit_thread(void) 66 { 67 struct task_struct *me = current; 68 struct thread_struct *t = &me->thread; 69 unsigned long *bp = t->io_bitmap_ptr; 70 71 if (bp) { 72 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 73 74 t->io_bitmap_ptr = NULL; 75 clear_thread_flag(TIF_IO_BITMAP); 76 /* 77 * Careful, clear this in the TSS too: 78 */ 79 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 80 t->io_bitmap_max = 0; 81 put_cpu(); 82 kfree(bp); 83 } 84 } 85 86 void show_regs(struct pt_regs *regs) 87 { 88 show_registers(regs); 89 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs)); 90 } 91 92 void show_regs_common(void) 93 { 94 const char *board, *product; 95 96 board = dmi_get_system_info(DMI_BOARD_NAME); 97 if (!board) 98 board = ""; 99 product = dmi_get_system_info(DMI_PRODUCT_NAME); 100 if (!product) 101 product = ""; 102 103 printk(KERN_CONT "\n"); 104 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", 105 current->pid, current->comm, print_tainted(), 106 init_utsname()->release, 107 (int)strcspn(init_utsname()->version, " "), 108 init_utsname()->version, board, product); 109 } 110 111 void flush_thread(void) 112 { 113 struct task_struct *tsk = current; 114 115 flush_ptrace_hw_breakpoint(tsk); 116 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 117 /* 118 * Forget coprocessor state.. 119 */ 120 tsk->fpu_counter = 0; 121 clear_fpu(tsk); 122 clear_used_math(); 123 } 124 125 static void hard_disable_TSC(void) 126 { 127 write_cr4(read_cr4() | X86_CR4_TSD); 128 } 129 130 void disable_TSC(void) 131 { 132 preempt_disable(); 133 if (!test_and_set_thread_flag(TIF_NOTSC)) 134 /* 135 * Must flip the CPU state synchronously with 136 * TIF_NOTSC in the current running context. 137 */ 138 hard_disable_TSC(); 139 preempt_enable(); 140 } 141 142 static void hard_enable_TSC(void) 143 { 144 write_cr4(read_cr4() & ~X86_CR4_TSD); 145 } 146 147 static void enable_TSC(void) 148 { 149 preempt_disable(); 150 if (test_and_clear_thread_flag(TIF_NOTSC)) 151 /* 152 * Must flip the CPU state synchronously with 153 * TIF_NOTSC in the current running context. 154 */ 155 hard_enable_TSC(); 156 preempt_enable(); 157 } 158 159 int get_tsc_mode(unsigned long adr) 160 { 161 unsigned int val; 162 163 if (test_thread_flag(TIF_NOTSC)) 164 val = PR_TSC_SIGSEGV; 165 else 166 val = PR_TSC_ENABLE; 167 168 return put_user(val, (unsigned int __user *)adr); 169 } 170 171 int set_tsc_mode(unsigned int val) 172 { 173 if (val == PR_TSC_SIGSEGV) 174 disable_TSC(); 175 else if (val == PR_TSC_ENABLE) 176 enable_TSC(); 177 else 178 return -EINVAL; 179 180 return 0; 181 } 182 183 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 184 struct tss_struct *tss) 185 { 186 struct thread_struct *prev, *next; 187 188 prev = &prev_p->thread; 189 next = &next_p->thread; 190 191 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ 192 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { 193 unsigned long debugctl = get_debugctlmsr(); 194 195 debugctl &= ~DEBUGCTLMSR_BTF; 196 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) 197 debugctl |= DEBUGCTLMSR_BTF; 198 199 update_debugctlmsr(debugctl); 200 } 201 202 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 203 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 204 /* prev and next are different */ 205 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 206 hard_disable_TSC(); 207 else 208 hard_enable_TSC(); 209 } 210 211 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 212 /* 213 * Copy the relevant range of the IO bitmap. 214 * Normally this is 128 bytes or less: 215 */ 216 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 217 max(prev->io_bitmap_max, next->io_bitmap_max)); 218 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 219 /* 220 * Clear any possible leftover bits: 221 */ 222 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 223 } 224 propagate_user_return_notify(prev_p, next_p); 225 } 226 227 int sys_fork(struct pt_regs *regs) 228 { 229 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 230 } 231 232 /* 233 * This is trivial, and on the face of it looks like it 234 * could equally well be done in user mode. 235 * 236 * Not so, for quite unobvious reasons - register pressure. 237 * In user mode vfork() cannot have a stack frame, and if 238 * done by calling the "clone()" system call directly, you 239 * do not have enough call-clobbered registers to hold all 240 * the information you need. 241 */ 242 int sys_vfork(struct pt_regs *regs) 243 { 244 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 245 NULL, NULL); 246 } 247 248 long 249 sys_clone(unsigned long clone_flags, unsigned long newsp, 250 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) 251 { 252 if (!newsp) 253 newsp = regs->sp; 254 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); 255 } 256 257 /* 258 * This gets run with %si containing the 259 * function to call, and %di containing 260 * the "args". 261 */ 262 extern void kernel_thread_helper(void); 263 264 /* 265 * Create a kernel thread 266 */ 267 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 268 { 269 struct pt_regs regs; 270 271 memset(®s, 0, sizeof(regs)); 272 273 regs.si = (unsigned long) fn; 274 regs.di = (unsigned long) arg; 275 276 #ifdef CONFIG_X86_32 277 regs.ds = __USER_DS; 278 regs.es = __USER_DS; 279 regs.fs = __KERNEL_PERCPU; 280 regs.gs = __KERNEL_STACK_CANARY; 281 #else 282 regs.ss = __KERNEL_DS; 283 #endif 284 285 regs.orig_ax = -1; 286 regs.ip = (unsigned long) kernel_thread_helper; 287 regs.cs = __KERNEL_CS | get_kernel_rpl(); 288 regs.flags = X86_EFLAGS_IF | 0x2; 289 290 /* Ok, create the new process.. */ 291 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 292 } 293 EXPORT_SYMBOL(kernel_thread); 294 295 /* 296 * sys_execve() executes a new program. 297 */ 298 long sys_execve(const char __user *name, 299 const char __user *const __user *argv, 300 const char __user *const __user *envp, struct pt_regs *regs) 301 { 302 long error; 303 char *filename; 304 305 filename = getname(name); 306 error = PTR_ERR(filename); 307 if (IS_ERR(filename)) 308 return error; 309 error = do_execve(filename, argv, envp, regs); 310 311 #ifdef CONFIG_X86_32 312 if (error == 0) { 313 /* Make sure we don't return using sysenter.. */ 314 set_thread_flag(TIF_IRET); 315 } 316 #endif 317 318 putname(filename); 319 return error; 320 } 321 322 /* 323 * Idle related variables and functions 324 */ 325 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 326 EXPORT_SYMBOL(boot_option_idle_override); 327 328 /* 329 * Powermanagement idle function, if any.. 330 */ 331 void (*pm_idle)(void); 332 EXPORT_SYMBOL(pm_idle); 333 334 #ifdef CONFIG_X86_32 335 /* 336 * This halt magic was a workaround for ancient floppy DMA 337 * wreckage. It should be safe to remove. 338 */ 339 static int hlt_counter; 340 void disable_hlt(void) 341 { 342 hlt_counter++; 343 } 344 EXPORT_SYMBOL(disable_hlt); 345 346 void enable_hlt(void) 347 { 348 hlt_counter--; 349 } 350 EXPORT_SYMBOL(enable_hlt); 351 352 static inline int hlt_use_halt(void) 353 { 354 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 355 } 356 #else 357 static inline int hlt_use_halt(void) 358 { 359 return 1; 360 } 361 #endif 362 363 /* 364 * We use this if we don't have any better 365 * idle routine.. 366 */ 367 void default_idle(void) 368 { 369 if (hlt_use_halt()) { 370 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 371 trace_cpu_idle(1, smp_processor_id()); 372 current_thread_info()->status &= ~TS_POLLING; 373 /* 374 * TS_POLLING-cleared state must be visible before we 375 * test NEED_RESCHED: 376 */ 377 smp_mb(); 378 379 if (!need_resched()) 380 safe_halt(); /* enables interrupts racelessly */ 381 else 382 local_irq_enable(); 383 current_thread_info()->status |= TS_POLLING; 384 trace_power_end(smp_processor_id()); 385 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 386 } else { 387 local_irq_enable(); 388 /* loop is done by the caller */ 389 cpu_relax(); 390 } 391 } 392 #ifdef CONFIG_APM_MODULE 393 EXPORT_SYMBOL(default_idle); 394 #endif 395 396 void stop_this_cpu(void *dummy) 397 { 398 local_irq_disable(); 399 /* 400 * Remove this CPU: 401 */ 402 set_cpu_online(smp_processor_id(), false); 403 disable_local_APIC(); 404 405 for (;;) { 406 if (hlt_works(smp_processor_id())) 407 halt(); 408 } 409 } 410 411 static void do_nothing(void *unused) 412 { 413 } 414 415 /* 416 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 417 * pm_idle and update to new pm_idle value. Required while changing pm_idle 418 * handler on SMP systems. 419 * 420 * Caller must have changed pm_idle to the new value before the call. Old 421 * pm_idle value will not be used by any CPU after the return of this function. 422 */ 423 void cpu_idle_wait(void) 424 { 425 smp_mb(); 426 /* kick all the CPUs so that they exit out of pm_idle */ 427 smp_call_function(do_nothing, NULL, 1); 428 } 429 EXPORT_SYMBOL_GPL(cpu_idle_wait); 430 431 /* 432 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 433 * which can obviate IPI to trigger checking of need_resched. 434 * We execute MONITOR against need_resched and enter optimized wait state 435 * through MWAIT. Whenever someone changes need_resched, we would be woken 436 * up from MWAIT (without an IPI). 437 * 438 * New with Core Duo processors, MWAIT can take some hints based on CPU 439 * capability. 440 */ 441 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 442 { 443 if (!need_resched()) { 444 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR)) 445 clflush((void *)¤t_thread_info()->flags); 446 447 __monitor((void *)¤t_thread_info()->flags, 0, 0); 448 smp_mb(); 449 if (!need_resched()) 450 __mwait(ax, cx); 451 } 452 } 453 454 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 455 static void mwait_idle(void) 456 { 457 if (!need_resched()) { 458 trace_power_start(POWER_CSTATE, 1, smp_processor_id()); 459 trace_cpu_idle(1, smp_processor_id()); 460 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR)) 461 clflush((void *)¤t_thread_info()->flags); 462 463 __monitor((void *)¤t_thread_info()->flags, 0, 0); 464 smp_mb(); 465 if (!need_resched()) 466 __sti_mwait(0, 0); 467 else 468 local_irq_enable(); 469 trace_power_end(smp_processor_id()); 470 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 471 } else 472 local_irq_enable(); 473 } 474 475 /* 476 * On SMP it's slightly faster (but much more power-consuming!) 477 * to poll the ->work.need_resched flag instead of waiting for the 478 * cross-CPU IPI to arrive. Use this option with caution. 479 */ 480 static void poll_idle(void) 481 { 482 trace_power_start(POWER_CSTATE, 0, smp_processor_id()); 483 trace_cpu_idle(0, smp_processor_id()); 484 local_irq_enable(); 485 while (!need_resched()) 486 cpu_relax(); 487 trace_power_end(smp_processor_id()); 488 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 489 } 490 491 /* 492 * mwait selection logic: 493 * 494 * It depends on the CPU. For AMD CPUs that support MWAIT this is 495 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 496 * then depend on a clock divisor and current Pstate of the core. If 497 * all cores of a processor are in halt state (C1) the processor can 498 * enter the C1E (C1 enhanced) state. If mwait is used this will never 499 * happen. 500 * 501 * idle=mwait overrides this decision and forces the usage of mwait. 502 */ 503 504 #define MWAIT_INFO 0x05 505 #define MWAIT_ECX_EXTENDED_INFO 0x01 506 #define MWAIT_EDX_C1 0xf0 507 508 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 509 { 510 u32 eax, ebx, ecx, edx; 511 512 if (boot_option_idle_override == IDLE_FORCE_MWAIT) 513 return 1; 514 515 if (c->cpuid_level < MWAIT_INFO) 516 return 0; 517 518 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 519 /* Check, whether EDX has extended info about MWAIT */ 520 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 521 return 1; 522 523 /* 524 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 525 * C1 supports MWAIT 526 */ 527 return (edx & MWAIT_EDX_C1); 528 } 529 530 bool c1e_detected; 531 EXPORT_SYMBOL(c1e_detected); 532 533 static cpumask_var_t c1e_mask; 534 535 void c1e_remove_cpu(int cpu) 536 { 537 if (c1e_mask != NULL) 538 cpumask_clear_cpu(cpu, c1e_mask); 539 } 540 541 /* 542 * C1E aware idle routine. We check for C1E active in the interrupt 543 * pending message MSR. If we detect C1E, then we handle it the same 544 * way as C3 power states (local apic timer and TSC stop) 545 */ 546 static void c1e_idle(void) 547 { 548 if (need_resched()) 549 return; 550 551 if (!c1e_detected) { 552 u32 lo, hi; 553 554 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 555 556 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 557 c1e_detected = true; 558 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 559 mark_tsc_unstable("TSC halt in AMD C1E"); 560 printk(KERN_INFO "System has AMD C1E enabled\n"); 561 } 562 } 563 564 if (c1e_detected) { 565 int cpu = smp_processor_id(); 566 567 if (!cpumask_test_cpu(cpu, c1e_mask)) { 568 cpumask_set_cpu(cpu, c1e_mask); 569 /* 570 * Force broadcast so ACPI can not interfere. 571 */ 572 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 573 &cpu); 574 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 575 cpu); 576 } 577 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 578 579 default_idle(); 580 581 /* 582 * The switch back from broadcast mode needs to be 583 * called with interrupts disabled. 584 */ 585 local_irq_disable(); 586 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 587 local_irq_enable(); 588 } else 589 default_idle(); 590 } 591 592 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 593 { 594 #ifdef CONFIG_SMP 595 if (pm_idle == poll_idle && smp_num_siblings > 1) { 596 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," 597 " performance may degrade.\n"); 598 } 599 #endif 600 if (pm_idle) 601 return; 602 603 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 604 /* 605 * One CPU supports mwait => All CPUs supports mwait 606 */ 607 printk(KERN_INFO "using mwait in idle threads.\n"); 608 pm_idle = mwait_idle; 609 } else if (cpu_has_amd_erratum(amd_erratum_400)) { 610 /* E400: APIC timer interrupt does not wake up CPU from C1e */ 611 printk(KERN_INFO "using C1E aware idle routine\n"); 612 pm_idle = c1e_idle; 613 } else 614 pm_idle = default_idle; 615 } 616 617 void __init init_c1e_mask(void) 618 { 619 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 620 if (pm_idle == c1e_idle) 621 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 622 } 623 624 static int __init idle_setup(char *str) 625 { 626 if (!str) 627 return -EINVAL; 628 629 if (!strcmp(str, "poll")) { 630 printk("using polling idle threads.\n"); 631 pm_idle = poll_idle; 632 boot_option_idle_override = IDLE_POLL; 633 } else if (!strcmp(str, "mwait")) { 634 boot_option_idle_override = IDLE_FORCE_MWAIT; 635 } else if (!strcmp(str, "halt")) { 636 /* 637 * When the boot option of idle=halt is added, halt is 638 * forced to be used for CPU idle. In such case CPU C2/C3 639 * won't be used again. 640 * To continue to load the CPU idle driver, don't touch 641 * the boot_option_idle_override. 642 */ 643 pm_idle = default_idle; 644 boot_option_idle_override = IDLE_HALT; 645 } else if (!strcmp(str, "nomwait")) { 646 /* 647 * If the boot option of "idle=nomwait" is added, 648 * it means that mwait will be disabled for CPU C2/C3 649 * states. In such case it won't touch the variable 650 * of boot_option_idle_override. 651 */ 652 boot_option_idle_override = IDLE_NOMWAIT; 653 } else 654 return -1; 655 656 return 0; 657 } 658 early_param("idle", idle_setup); 659 660 unsigned long arch_align_stack(unsigned long sp) 661 { 662 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 663 sp -= get_random_int() % 8192; 664 return sp & ~0xf; 665 } 666 667 unsigned long arch_randomize_brk(struct mm_struct *mm) 668 { 669 unsigned long range_end = mm->brk + 0x02000000; 670 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 671 } 672 673