xref: /linux/arch/x86/kernel/process.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pm.h>
13 #include <linux/tick.h>
14 #include <linux/random.h>
15 #include <linux/user-return-notifier.h>
16 #include <linux/dmi.h>
17 #include <linux/utsname.h>
18 #include <linux/stackprotector.h>
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <trace/events/power.h>
22 #include <linux/hw_breakpoint.h>
23 #include <asm/cpu.h>
24 #include <asm/apic.h>
25 #include <asm/syscalls.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34 #include <asm/switch_to.h>
35 
36 /*
37  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
38  * no more per-task TSS's. The TSS size is kept cacheline-aligned
39  * so they are allowed to end up in the .data..cacheline_aligned
40  * section. Since TSS's are completely CPU-local, we want them
41  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
42  */
43 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
44 	.x86_tss = {
45 		.sp0 = TOP_OF_INIT_STACK,
46 #ifdef CONFIG_X86_32
47 		.ss0 = __KERNEL_DS,
48 		.ss1 = __KERNEL_CS,
49 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
50 #endif
51 	 },
52 #ifdef CONFIG_X86_32
53 	 /*
54 	  * Note that the .io_bitmap member must be extra-big. This is because
55 	  * the CPU will access an additional byte beyond the end of the IO
56 	  * permission bitmap. The extra byte must be all 1 bits, and must
57 	  * be within the limit.
58 	  */
59 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
60 #endif
61 #ifdef CONFIG_X86_32
62 	.SYSENTER_stack_canary	= STACK_END_MAGIC,
63 #endif
64 };
65 EXPORT_PER_CPU_SYMBOL(cpu_tss);
66 
67 /*
68  * this gets called so that we can store lazy state into memory and copy the
69  * current task into the new thread.
70  */
71 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
72 {
73 	memcpy(dst, src, arch_task_struct_size);
74 #ifdef CONFIG_VM86
75 	dst->thread.vm86 = NULL;
76 #endif
77 
78 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
79 }
80 
81 /*
82  * Free current thread data structures etc..
83  */
84 void exit_thread(struct task_struct *tsk)
85 {
86 	struct thread_struct *t = &tsk->thread;
87 	unsigned long *bp = t->io_bitmap_ptr;
88 	struct fpu *fpu = &t->fpu;
89 
90 	if (bp) {
91 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
92 
93 		t->io_bitmap_ptr = NULL;
94 		clear_thread_flag(TIF_IO_BITMAP);
95 		/*
96 		 * Careful, clear this in the TSS too:
97 		 */
98 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
99 		t->io_bitmap_max = 0;
100 		put_cpu();
101 		kfree(bp);
102 	}
103 
104 	free_vm86(t);
105 
106 	fpu__drop(fpu);
107 }
108 
109 void flush_thread(void)
110 {
111 	struct task_struct *tsk = current;
112 
113 	flush_ptrace_hw_breakpoint(tsk);
114 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
115 
116 	fpu__clear(&tsk->thread.fpu);
117 }
118 
119 static void hard_disable_TSC(void)
120 {
121 	cr4_set_bits(X86_CR4_TSD);
122 }
123 
124 void disable_TSC(void)
125 {
126 	preempt_disable();
127 	if (!test_and_set_thread_flag(TIF_NOTSC))
128 		/*
129 		 * Must flip the CPU state synchronously with
130 		 * TIF_NOTSC in the current running context.
131 		 */
132 		hard_disable_TSC();
133 	preempt_enable();
134 }
135 
136 static void hard_enable_TSC(void)
137 {
138 	cr4_clear_bits(X86_CR4_TSD);
139 }
140 
141 static void enable_TSC(void)
142 {
143 	preempt_disable();
144 	if (test_and_clear_thread_flag(TIF_NOTSC))
145 		/*
146 		 * Must flip the CPU state synchronously with
147 		 * TIF_NOTSC in the current running context.
148 		 */
149 		hard_enable_TSC();
150 	preempt_enable();
151 }
152 
153 int get_tsc_mode(unsigned long adr)
154 {
155 	unsigned int val;
156 
157 	if (test_thread_flag(TIF_NOTSC))
158 		val = PR_TSC_SIGSEGV;
159 	else
160 		val = PR_TSC_ENABLE;
161 
162 	return put_user(val, (unsigned int __user *)adr);
163 }
164 
165 int set_tsc_mode(unsigned int val)
166 {
167 	if (val == PR_TSC_SIGSEGV)
168 		disable_TSC();
169 	else if (val == PR_TSC_ENABLE)
170 		enable_TSC();
171 	else
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 
177 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178 		      struct tss_struct *tss)
179 {
180 	struct thread_struct *prev, *next;
181 
182 	prev = &prev_p->thread;
183 	next = &next_p->thread;
184 
185 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
186 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
187 		unsigned long debugctl = get_debugctlmsr();
188 
189 		debugctl &= ~DEBUGCTLMSR_BTF;
190 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
191 			debugctl |= DEBUGCTLMSR_BTF;
192 
193 		update_debugctlmsr(debugctl);
194 	}
195 
196 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
197 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
198 		/* prev and next are different */
199 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
200 			hard_disable_TSC();
201 		else
202 			hard_enable_TSC();
203 	}
204 
205 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
206 		/*
207 		 * Copy the relevant range of the IO bitmap.
208 		 * Normally this is 128 bytes or less:
209 		 */
210 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
211 		       max(prev->io_bitmap_max, next->io_bitmap_max));
212 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
213 		/*
214 		 * Clear any possible leftover bits:
215 		 */
216 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
217 	}
218 	propagate_user_return_notify(prev_p, next_p);
219 }
220 
221 /*
222  * Idle related variables and functions
223  */
224 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
225 EXPORT_SYMBOL(boot_option_idle_override);
226 
227 static void (*x86_idle)(void);
228 
229 #ifndef CONFIG_SMP
230 static inline void play_dead(void)
231 {
232 	BUG();
233 }
234 #endif
235 
236 void arch_cpu_idle_enter(void)
237 {
238 	tsc_verify_tsc_adjust(false);
239 	local_touch_nmi();
240 }
241 
242 void arch_cpu_idle_dead(void)
243 {
244 	play_dead();
245 }
246 
247 /*
248  * Called from the generic idle code.
249  */
250 void arch_cpu_idle(void)
251 {
252 	x86_idle();
253 }
254 
255 /*
256  * We use this if we don't have any better idle routine..
257  */
258 void __cpuidle default_idle(void)
259 {
260 	trace_cpu_idle_rcuidle(1, smp_processor_id());
261 	safe_halt();
262 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
263 }
264 #ifdef CONFIG_APM_MODULE
265 EXPORT_SYMBOL(default_idle);
266 #endif
267 
268 #ifdef CONFIG_XEN
269 bool xen_set_default_idle(void)
270 {
271 	bool ret = !!x86_idle;
272 
273 	x86_idle = default_idle;
274 
275 	return ret;
276 }
277 #endif
278 void stop_this_cpu(void *dummy)
279 {
280 	local_irq_disable();
281 	/*
282 	 * Remove this CPU:
283 	 */
284 	set_cpu_online(smp_processor_id(), false);
285 	disable_local_APIC();
286 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
287 
288 	for (;;)
289 		halt();
290 }
291 
292 /*
293  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
294  * states (local apic timer and TSC stop).
295  */
296 static void amd_e400_idle(void)
297 {
298 	/*
299 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
300 	 * gets set after static_cpu_has() places have been converted via
301 	 * alternatives.
302 	 */
303 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
304 		default_idle();
305 		return;
306 	}
307 
308 	tick_broadcast_enter();
309 
310 	default_idle();
311 
312 	/*
313 	 * The switch back from broadcast mode needs to be called with
314 	 * interrupts disabled.
315 	 */
316 	local_irq_disable();
317 	tick_broadcast_exit();
318 	local_irq_enable();
319 }
320 
321 /*
322  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
323  * We can't rely on cpuidle installing MWAIT, because it will not load
324  * on systems that support only C1 -- so the boot default must be MWAIT.
325  *
326  * Some AMD machines are the opposite, they depend on using HALT.
327  *
328  * So for default C1, which is used during boot until cpuidle loads,
329  * use MWAIT-C1 on Intel HW that has it, else use HALT.
330  */
331 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
332 {
333 	if (c->x86_vendor != X86_VENDOR_INTEL)
334 		return 0;
335 
336 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
337 		return 0;
338 
339 	return 1;
340 }
341 
342 /*
343  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
344  * with interrupts enabled and no flags, which is backwards compatible with the
345  * original MWAIT implementation.
346  */
347 static __cpuidle void mwait_idle(void)
348 {
349 	if (!current_set_polling_and_test()) {
350 		trace_cpu_idle_rcuidle(1, smp_processor_id());
351 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
352 			mb(); /* quirk */
353 			clflush((void *)&current_thread_info()->flags);
354 			mb(); /* quirk */
355 		}
356 
357 		__monitor((void *)&current_thread_info()->flags, 0, 0);
358 		if (!need_resched())
359 			__sti_mwait(0, 0);
360 		else
361 			local_irq_enable();
362 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
363 	} else {
364 		local_irq_enable();
365 	}
366 	__current_clr_polling();
367 }
368 
369 void select_idle_routine(const struct cpuinfo_x86 *c)
370 {
371 #ifdef CONFIG_SMP
372 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
373 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
374 #endif
375 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
376 		return;
377 
378 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
379 		pr_info("using AMD E400 aware idle routine\n");
380 		x86_idle = amd_e400_idle;
381 	} else if (prefer_mwait_c1_over_halt(c)) {
382 		pr_info("using mwait in idle threads\n");
383 		x86_idle = mwait_idle;
384 	} else
385 		x86_idle = default_idle;
386 }
387 
388 void amd_e400_c1e_apic_setup(void)
389 {
390 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
391 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
392 		local_irq_disable();
393 		tick_broadcast_force();
394 		local_irq_enable();
395 	}
396 }
397 
398 void __init arch_post_acpi_subsys_init(void)
399 {
400 	u32 lo, hi;
401 
402 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
403 		return;
404 
405 	/*
406 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
407 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
408 	 * MSR_K8_INT_PENDING_MSG.
409 	 */
410 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
411 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
412 		return;
413 
414 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
415 
416 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
417 		mark_tsc_unstable("TSC halt in AMD C1E");
418 	pr_info("System has AMD C1E enabled\n");
419 }
420 
421 static int __init idle_setup(char *str)
422 {
423 	if (!str)
424 		return -EINVAL;
425 
426 	if (!strcmp(str, "poll")) {
427 		pr_info("using polling idle threads\n");
428 		boot_option_idle_override = IDLE_POLL;
429 		cpu_idle_poll_ctrl(true);
430 	} else if (!strcmp(str, "halt")) {
431 		/*
432 		 * When the boot option of idle=halt is added, halt is
433 		 * forced to be used for CPU idle. In such case CPU C2/C3
434 		 * won't be used again.
435 		 * To continue to load the CPU idle driver, don't touch
436 		 * the boot_option_idle_override.
437 		 */
438 		x86_idle = default_idle;
439 		boot_option_idle_override = IDLE_HALT;
440 	} else if (!strcmp(str, "nomwait")) {
441 		/*
442 		 * If the boot option of "idle=nomwait" is added,
443 		 * it means that mwait will be disabled for CPU C2/C3
444 		 * states. In such case it won't touch the variable
445 		 * of boot_option_idle_override.
446 		 */
447 		boot_option_idle_override = IDLE_NOMWAIT;
448 	} else
449 		return -1;
450 
451 	return 0;
452 }
453 early_param("idle", idle_setup);
454 
455 unsigned long arch_align_stack(unsigned long sp)
456 {
457 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
458 		sp -= get_random_int() % 8192;
459 	return sp & ~0xf;
460 }
461 
462 unsigned long arch_randomize_brk(struct mm_struct *mm)
463 {
464 	return randomize_page(mm->brk, 0x02000000);
465 }
466 
467 /*
468  * Return saved PC of a blocked thread.
469  * What is this good for? it will be always the scheduler or ret_from_fork.
470  */
471 unsigned long thread_saved_pc(struct task_struct *tsk)
472 {
473 	struct inactive_task_frame *frame =
474 		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
475 	return READ_ONCE_NOCHECK(frame->ret_addr);
476 }
477 
478 /*
479  * Called from fs/proc with a reference on @p to find the function
480  * which called into schedule(). This needs to be done carefully
481  * because the task might wake up and we might look at a stack
482  * changing under us.
483  */
484 unsigned long get_wchan(struct task_struct *p)
485 {
486 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
487 	int count = 0;
488 
489 	if (!p || p == current || p->state == TASK_RUNNING)
490 		return 0;
491 
492 	if (!try_get_task_stack(p))
493 		return 0;
494 
495 	start = (unsigned long)task_stack_page(p);
496 	if (!start)
497 		goto out;
498 
499 	/*
500 	 * Layout of the stack page:
501 	 *
502 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
503 	 * PADDING
504 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
505 	 * stack
506 	 * ----------- bottom = start
507 	 *
508 	 * The tasks stack pointer points at the location where the
509 	 * framepointer is stored. The data on the stack is:
510 	 * ... IP FP ... IP FP
511 	 *
512 	 * We need to read FP and IP, so we need to adjust the upper
513 	 * bound by another unsigned long.
514 	 */
515 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
516 	top -= 2 * sizeof(unsigned long);
517 	bottom = start;
518 
519 	sp = READ_ONCE(p->thread.sp);
520 	if (sp < bottom || sp > top)
521 		goto out;
522 
523 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
524 	do {
525 		if (fp < bottom || fp > top)
526 			goto out;
527 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
528 		if (!in_sched_functions(ip)) {
529 			ret = ip;
530 			goto out;
531 		}
532 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
533 	} while (count++ < 16 && p->state != TASK_RUNNING);
534 
535 out:
536 	put_task_stack(p);
537 	return ret;
538 }
539