xref: /linux/arch/x86/kernel/process.c (revision 308d3165d8b2b98d3dc3d97d6662062735daea67)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pm.h>
13 #include <linux/tick.h>
14 #include <linux/random.h>
15 #include <linux/user-return-notifier.h>
16 #include <linux/dmi.h>
17 #include <linux/utsname.h>
18 #include <linux/stackprotector.h>
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <trace/events/power.h>
22 #include <linux/hw_breakpoint.h>
23 #include <asm/cpu.h>
24 #include <asm/apic.h>
25 #include <asm/syscalls.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34 #include <asm/switch_to.h>
35 
36 /*
37  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
38  * no more per-task TSS's. The TSS size is kept cacheline-aligned
39  * so they are allowed to end up in the .data..cacheline_aligned
40  * section. Since TSS's are completely CPU-local, we want them
41  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
42  */
43 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
44 	.x86_tss = {
45 		.sp0 = TOP_OF_INIT_STACK,
46 #ifdef CONFIG_X86_32
47 		.ss0 = __KERNEL_DS,
48 		.ss1 = __KERNEL_CS,
49 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
50 #endif
51 	 },
52 #ifdef CONFIG_X86_32
53 	 /*
54 	  * Note that the .io_bitmap member must be extra-big. This is because
55 	  * the CPU will access an additional byte beyond the end of the IO
56 	  * permission bitmap. The extra byte must be all 1 bits, and must
57 	  * be within the limit.
58 	  */
59 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
60 #endif
61 #ifdef CONFIG_X86_32
62 	.SYSENTER_stack_canary	= STACK_END_MAGIC,
63 #endif
64 };
65 EXPORT_PER_CPU_SYMBOL(cpu_tss);
66 
67 /*
68  * this gets called so that we can store lazy state into memory and copy the
69  * current task into the new thread.
70  */
71 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
72 {
73 	memcpy(dst, src, arch_task_struct_size);
74 #ifdef CONFIG_VM86
75 	dst->thread.vm86 = NULL;
76 #endif
77 
78 	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
79 }
80 
81 /*
82  * Free current thread data structures etc..
83  */
84 void exit_thread(struct task_struct *tsk)
85 {
86 	struct thread_struct *t = &tsk->thread;
87 	unsigned long *bp = t->io_bitmap_ptr;
88 	struct fpu *fpu = &t->fpu;
89 
90 	if (bp) {
91 		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
92 
93 		t->io_bitmap_ptr = NULL;
94 		clear_thread_flag(TIF_IO_BITMAP);
95 		/*
96 		 * Careful, clear this in the TSS too:
97 		 */
98 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
99 		t->io_bitmap_max = 0;
100 		put_cpu();
101 		kfree(bp);
102 	}
103 
104 	free_vm86(t);
105 
106 	fpu__drop(fpu);
107 }
108 
109 void flush_thread(void)
110 {
111 	struct task_struct *tsk = current;
112 
113 	flush_ptrace_hw_breakpoint(tsk);
114 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
115 
116 	fpu__clear(&tsk->thread.fpu);
117 }
118 
119 static void hard_disable_TSC(void)
120 {
121 	cr4_set_bits(X86_CR4_TSD);
122 }
123 
124 void disable_TSC(void)
125 {
126 	preempt_disable();
127 	if (!test_and_set_thread_flag(TIF_NOTSC))
128 		/*
129 		 * Must flip the CPU state synchronously with
130 		 * TIF_NOTSC in the current running context.
131 		 */
132 		hard_disable_TSC();
133 	preempt_enable();
134 }
135 
136 static void hard_enable_TSC(void)
137 {
138 	cr4_clear_bits(X86_CR4_TSD);
139 }
140 
141 static void enable_TSC(void)
142 {
143 	preempt_disable();
144 	if (test_and_clear_thread_flag(TIF_NOTSC))
145 		/*
146 		 * Must flip the CPU state synchronously with
147 		 * TIF_NOTSC in the current running context.
148 		 */
149 		hard_enable_TSC();
150 	preempt_enable();
151 }
152 
153 int get_tsc_mode(unsigned long adr)
154 {
155 	unsigned int val;
156 
157 	if (test_thread_flag(TIF_NOTSC))
158 		val = PR_TSC_SIGSEGV;
159 	else
160 		val = PR_TSC_ENABLE;
161 
162 	return put_user(val, (unsigned int __user *)adr);
163 }
164 
165 int set_tsc_mode(unsigned int val)
166 {
167 	if (val == PR_TSC_SIGSEGV)
168 		disable_TSC();
169 	else if (val == PR_TSC_ENABLE)
170 		enable_TSC();
171 	else
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 
177 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178 		      struct tss_struct *tss)
179 {
180 	struct thread_struct *prev, *next;
181 
182 	prev = &prev_p->thread;
183 	next = &next_p->thread;
184 
185 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
186 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
187 		unsigned long debugctl = get_debugctlmsr();
188 
189 		debugctl &= ~DEBUGCTLMSR_BTF;
190 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
191 			debugctl |= DEBUGCTLMSR_BTF;
192 
193 		update_debugctlmsr(debugctl);
194 	}
195 
196 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
197 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
198 		/* prev and next are different */
199 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
200 			hard_disable_TSC();
201 		else
202 			hard_enable_TSC();
203 	}
204 
205 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
206 		/*
207 		 * Copy the relevant range of the IO bitmap.
208 		 * Normally this is 128 bytes or less:
209 		 */
210 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
211 		       max(prev->io_bitmap_max, next->io_bitmap_max));
212 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
213 		/*
214 		 * Clear any possible leftover bits:
215 		 */
216 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
217 	}
218 	propagate_user_return_notify(prev_p, next_p);
219 }
220 
221 /*
222  * Idle related variables and functions
223  */
224 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
225 EXPORT_SYMBOL(boot_option_idle_override);
226 
227 static void (*x86_idle)(void);
228 
229 #ifndef CONFIG_SMP
230 static inline void play_dead(void)
231 {
232 	BUG();
233 }
234 #endif
235 
236 void arch_cpu_idle_enter(void)
237 {
238 	local_touch_nmi();
239 }
240 
241 void arch_cpu_idle_dead(void)
242 {
243 	play_dead();
244 }
245 
246 /*
247  * Called from the generic idle code.
248  */
249 void arch_cpu_idle(void)
250 {
251 	x86_idle();
252 }
253 
254 /*
255  * We use this if we don't have any better idle routine..
256  */
257 void __cpuidle default_idle(void)
258 {
259 	trace_cpu_idle_rcuidle(1, smp_processor_id());
260 	safe_halt();
261 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
262 }
263 #ifdef CONFIG_APM_MODULE
264 EXPORT_SYMBOL(default_idle);
265 #endif
266 
267 #ifdef CONFIG_XEN
268 bool xen_set_default_idle(void)
269 {
270 	bool ret = !!x86_idle;
271 
272 	x86_idle = default_idle;
273 
274 	return ret;
275 }
276 #endif
277 void stop_this_cpu(void *dummy)
278 {
279 	local_irq_disable();
280 	/*
281 	 * Remove this CPU:
282 	 */
283 	set_cpu_online(smp_processor_id(), false);
284 	disable_local_APIC();
285 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
286 
287 	for (;;)
288 		halt();
289 }
290 
291 /*
292  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
293  * states (local apic timer and TSC stop).
294  */
295 static void amd_e400_idle(void)
296 {
297 	/*
298 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
299 	 * gets set after static_cpu_has() places have been converted via
300 	 * alternatives.
301 	 */
302 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
303 		default_idle();
304 		return;
305 	}
306 
307 	tick_broadcast_enter();
308 
309 	default_idle();
310 
311 	/*
312 	 * The switch back from broadcast mode needs to be called with
313 	 * interrupts disabled.
314 	 */
315 	local_irq_disable();
316 	tick_broadcast_exit();
317 	local_irq_enable();
318 }
319 
320 /*
321  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
322  * We can't rely on cpuidle installing MWAIT, because it will not load
323  * on systems that support only C1 -- so the boot default must be MWAIT.
324  *
325  * Some AMD machines are the opposite, they depend on using HALT.
326  *
327  * So for default C1, which is used during boot until cpuidle loads,
328  * use MWAIT-C1 on Intel HW that has it, else use HALT.
329  */
330 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
331 {
332 	if (c->x86_vendor != X86_VENDOR_INTEL)
333 		return 0;
334 
335 	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
336 		return 0;
337 
338 	return 1;
339 }
340 
341 /*
342  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
343  * with interrupts enabled and no flags, which is backwards compatible with the
344  * original MWAIT implementation.
345  */
346 static __cpuidle void mwait_idle(void)
347 {
348 	if (!current_set_polling_and_test()) {
349 		trace_cpu_idle_rcuidle(1, smp_processor_id());
350 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
351 			mb(); /* quirk */
352 			clflush((void *)&current_thread_info()->flags);
353 			mb(); /* quirk */
354 		}
355 
356 		__monitor((void *)&current_thread_info()->flags, 0, 0);
357 		if (!need_resched())
358 			__sti_mwait(0, 0);
359 		else
360 			local_irq_enable();
361 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
362 	} else {
363 		local_irq_enable();
364 	}
365 	__current_clr_polling();
366 }
367 
368 void select_idle_routine(const struct cpuinfo_x86 *c)
369 {
370 #ifdef CONFIG_SMP
371 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
372 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
373 #endif
374 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
375 		return;
376 
377 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
378 		pr_info("using AMD E400 aware idle routine\n");
379 		x86_idle = amd_e400_idle;
380 	} else if (prefer_mwait_c1_over_halt(c)) {
381 		pr_info("using mwait in idle threads\n");
382 		x86_idle = mwait_idle;
383 	} else
384 		x86_idle = default_idle;
385 }
386 
387 void amd_e400_c1e_apic_setup(void)
388 {
389 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
390 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
391 		local_irq_disable();
392 		tick_broadcast_force();
393 		local_irq_enable();
394 	}
395 }
396 
397 void __init arch_post_acpi_subsys_init(void)
398 {
399 	u32 lo, hi;
400 
401 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
402 		return;
403 
404 	/*
405 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
406 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
407 	 * MSR_K8_INT_PENDING_MSG.
408 	 */
409 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
410 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
411 		return;
412 
413 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
414 
415 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
416 		mark_tsc_unstable("TSC halt in AMD C1E");
417 	pr_info("System has AMD C1E enabled\n");
418 }
419 
420 static int __init idle_setup(char *str)
421 {
422 	if (!str)
423 		return -EINVAL;
424 
425 	if (!strcmp(str, "poll")) {
426 		pr_info("using polling idle threads\n");
427 		boot_option_idle_override = IDLE_POLL;
428 		cpu_idle_poll_ctrl(true);
429 	} else if (!strcmp(str, "halt")) {
430 		/*
431 		 * When the boot option of idle=halt is added, halt is
432 		 * forced to be used for CPU idle. In such case CPU C2/C3
433 		 * won't be used again.
434 		 * To continue to load the CPU idle driver, don't touch
435 		 * the boot_option_idle_override.
436 		 */
437 		x86_idle = default_idle;
438 		boot_option_idle_override = IDLE_HALT;
439 	} else if (!strcmp(str, "nomwait")) {
440 		/*
441 		 * If the boot option of "idle=nomwait" is added,
442 		 * it means that mwait will be disabled for CPU C2/C3
443 		 * states. In such case it won't touch the variable
444 		 * of boot_option_idle_override.
445 		 */
446 		boot_option_idle_override = IDLE_NOMWAIT;
447 	} else
448 		return -1;
449 
450 	return 0;
451 }
452 early_param("idle", idle_setup);
453 
454 unsigned long arch_align_stack(unsigned long sp)
455 {
456 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
457 		sp -= get_random_int() % 8192;
458 	return sp & ~0xf;
459 }
460 
461 unsigned long arch_randomize_brk(struct mm_struct *mm)
462 {
463 	return randomize_page(mm->brk, 0x02000000);
464 }
465 
466 /*
467  * Return saved PC of a blocked thread.
468  * What is this good for? it will be always the scheduler or ret_from_fork.
469  */
470 unsigned long thread_saved_pc(struct task_struct *tsk)
471 {
472 	struct inactive_task_frame *frame =
473 		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
474 	return READ_ONCE_NOCHECK(frame->ret_addr);
475 }
476 
477 /*
478  * Called from fs/proc with a reference on @p to find the function
479  * which called into schedule(). This needs to be done carefully
480  * because the task might wake up and we might look at a stack
481  * changing under us.
482  */
483 unsigned long get_wchan(struct task_struct *p)
484 {
485 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
486 	int count = 0;
487 
488 	if (!p || p == current || p->state == TASK_RUNNING)
489 		return 0;
490 
491 	if (!try_get_task_stack(p))
492 		return 0;
493 
494 	start = (unsigned long)task_stack_page(p);
495 	if (!start)
496 		goto out;
497 
498 	/*
499 	 * Layout of the stack page:
500 	 *
501 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
502 	 * PADDING
503 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
504 	 * stack
505 	 * ----------- bottom = start
506 	 *
507 	 * The tasks stack pointer points at the location where the
508 	 * framepointer is stored. The data on the stack is:
509 	 * ... IP FP ... IP FP
510 	 *
511 	 * We need to read FP and IP, so we need to adjust the upper
512 	 * bound by another unsigned long.
513 	 */
514 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
515 	top -= 2 * sizeof(unsigned long);
516 	bottom = start;
517 
518 	sp = READ_ONCE(p->thread.sp);
519 	if (sp < bottom || sp > top)
520 		goto out;
521 
522 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
523 	do {
524 		if (fp < bottom || fp > top)
525 			goto out;
526 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
527 		if (!in_sched_functions(ip)) {
528 			ret = ip;
529 			goto out;
530 		}
531 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
532 	} while (count++ < 16 && p->state != TASK_RUNNING);
533 
534 out:
535 	put_task_stack(p);
536 	return ret;
537 }
538